瓦多乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瓦多乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列对实数的说法其中错误的是()
A. 实数与数轴上的点一一对应
B. 两个无理数的和不一定是无理数
C. 负数没有平方根也没有立方根
D. 算术平方根等于它本身的数只有0或1
【答案】C
【考点】算术平方根,实数在数轴上的表示,有理数及其分类
【解析】【解答】A. 实数与数轴上的点一一对应,故A不符合题意;
B. =2,故B不符合题意;
C. 负数立方根是负数,故C符合题意;
D. 算术平方根等于它本身的数只有0或1,故D不符合题意;
故答案为:C.
【分析】实数与数轴上的点是一一对应的关系;两个无理数的和不一定是无理数,可能是0,也可能是有理数;负数立方根是负数,负数没有平方根;算术平方根等于它本身的数只有0或1.
2、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

3、(2分)对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()
A. 1
B. 3
C. 4
D. 5
【答案】A
【考点】代数式求值,三元一次方程组解法及应用
【解析】【解答】解:将x=-1,x=0,x=3,分别代入代数式,
可得,计算得出a=b=-,c=-1,
代数式为-x2+x+1,
将x=2代入求出代数式,得-×4+×2+1=1.
故答案为:A.
【分析】将x值代入代数式,得出三元一次方程组,求出a、b、c的值,再将x=2代入代数式求解。

4、(2分)下列各对数中,相等的一对数是().
A. B. C. D.
【答案】A
【考点】实数的运算
【解析】【解答】解:A.∵(-2)3=-8,-23=-8,∴(-2)3=-23,A符合题意;
B.∵-22=-4,(-2)2=4,∴-22≠(-2)2,B不符合题意;
C.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,C不符合题意;
D.∵=,()2=,∴≠()2,D不符合题意;
故答案为:A.
【分析】根据乘方的运算,绝对值,去括号法则,分别算出每个值,再判断是否相等,从而可得出答案.
5、(2分)比较2, , 的大小,正确的是()
A. 2< <
B. 2< <
C. <2<
D. < <2
【答案】C
【考点】实数大小的比较,估算无理数的大小
【解析】【解答】解:∵1<<2,2<<3
∴<2<
故答案为:C
【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。

6、(2分)6月8日我县最高气温是29℃,最低气温是19℃,则当天我县气温t(℃)的变化范围是()
A.19≤t≤29
B.t<19
C.t≤19
D.t≥29
【答案】A
【考点】不等式及其性质
【解析】【解答】解:因为最低气温是19℃,所以19≤t,最高气温是29℃,t≤29,
则今天气温t(℃)的范围是19≤t≤29.
故答案为:A.
【分析】由最高气温是19℃,最低气温是29℃可得,气温变化范围是19≤t≤29,即可作出判断。

7、(2分)下列说法:①;②数轴上的点与实数成一一对应关系;③-2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】C
【考点】实数及其分类,实数在数轴上的表示,实数的运算,无理数的认识
【解析】【解答】解:①=10,故说法错误;
②数轴上的点与实数成一一对应关系,故说法正确;
③-2是的平方根,故说法正确;
④任何实数不是有理数就是无理数,故说法正确;
⑤两个无理数的和还是无理数,如与- 的和是0,是有理数,故说法错误;
⑥无理数都是无限小数,故说法正确.
故正确的是②③④⑥共4个.故答案为:C.
【分析】根据二次根式的性质,一个数的平方的算术平方根等于它的绝对值;数轴上的点与实数成一一对应关系;一个正数有两个平方根,这两个平方根互为相反数,=4,-2是4的一个平方根;实数分为有理数和无理数,故任何实数不是有理数就是无理数;两个无理数的和不一定是无理数;无理数是无限不循环的小数,故无理数都是无限小数;根据这些结论即可一一判断。

8、(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意. 故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
9、(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
10、(2分)下列调查方式,你认为正确的是()
A. 了解我市居民日平均用水量采用抽查方式
B. 要保证“嫦娥一号”卫星发射成功,对零部件采用抽查方式检查质量
C. 了解北京市每天的流动人口数,采用普查方式
D. 了解一批冰箱的使用寿命采用普查方式
【答案】A
【考点】全面调查与抽样调查
【解析】【解答】解:A、了解我市居民日平均用水量,知道大概就可以,适合采用抽查方式;
B、要保证“嫦娥一号”卫星发射成功,对零部件要求很精密,不能有点差错,所以适合采用普查方式检查质量;
C、了解北京市每天的流动人口数,知道大概就可以,适合采用抽查方式;
D、了解一批冰箱的使用寿命,具有破坏性,所以适合采用抽查方式.
故答案为:A
【分析】根据抽样调查和全面调查的特征进行判断即可确定正确的结论.
11、(2分)不等式x<-2的解集在数轴上表示为()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:A、数轴上表达的解集是:,不符合题意;
B、数轴上表达的解集是:,不符合题意;
C、数轴上表达的解集是:,不符合题意;
D、数轴上表达的解集是:,符合题意.
故答案为:D.
【分析】满足x<-2 的点都在-2的左边,不包括-2本身,应用“<”表示。

12、(2分)下列命题是假命题的是()
A. 对顶角相等
B. 两直线平行,同旁内角相等
C. 平行于同一条直线的两直线平行
D. 同位角相等,两直线平行
【答案】B
【考点】命题与定理
【解析】【解答】解:A.对顶角相等是真命题,故本选项正确,A不符合题意;
B.两直线平行,同旁内角互补,故本选项错误,B符合题意;
C.平行于同一条直线的两条直线平行是真命题,故本选项正确,C不符合题意;
D.同位角相等,两直线平行是真命题,故本选项正确,D不符合题意.
故答案为:B.
【分析】本题是让选假命题,也就是在题设的条件下得到错误的结论. 两直线平行同旁内角互补而不是相等.
二、填空题
13、(1分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于________
【答案】20°
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,∠ABC=46°,
∴∠BCD=∠ABC=46°,
∵EF∥CD,∠CEF=154°,
∴∠ECD=180°﹣∠CEF=180°﹣154°=26°,
∴∠BCE=∠BCD﹣∠ECD=46°﹣26°=20°.
故答案为:20°
【分析】因为两直线平行,内错角相等,可知∠BCD=∠ABC=,又因为EF∥CD,所以∠ECD+∠FEC=,
从而求出∠ECD的值,即可知∠BCE的值.
14、(1分)如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。

若∠D=116°,则∠DHB的大小为________。

【答案】32°
【考点】平行线的性质,作图—复杂作图
【解析】【解答】∵AB∥CD,
∴∠D+∠ABD=180°,∠DHB=∠ABH
又∵∠D=116°,
∴∠ABD=64°,
由作法知,BH是∠ABD的平分线,
∴∠DHB= ∠ABD=32°
【分析】利用两直线平行,同旁内角互补,就可求出∠ABD的度数,同时可证得∠DHB=∠ABH,再根据作法可知BH是∠ABD的平分线,然后利用角平分线的定义,就可求出结果。

15、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程

解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即
可。

16、(1分)图形在平移时,下列特征:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,其中不发生改变的有________ (把你认为正确的序号都填上)
【答案】①③④⑤⑥
【考点】平移的性质
【解析】【解答】解:∵平移只改变图形的位置
∴:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,都不会改变。

故答案为:①③④⑤⑥【分析】根据平移的性质,可知平移只改变图形的位置,即可得出答案。

17、(4分)下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.
【答案】3;5;4;2
【考点】实数及其分类
【解析】【解答】属于开方开不尽的数,是无理数;是一个分数,属于有理数,是负数;
属于开方开得尽的数,是有理数,是负数;1.414是有限小数,是有理数,是正数;中含有π,是无理数,是负数;3.12122是有限小数,是有理数,是正数;是有理数,是负数;3.161661666…(每两个1之间依次多1个6)属于看似有规律实则没有规律的一种数,是无理数,是正数。

故答案为:3;5;4;2。

【分析】实数分为有理数和无理数,开方开不尽的数,含有π的数,看似有规律实则没有规律的都是无理数,
分数和有限小数,开方开得尽的数都是有理数。

18、(3分)已知a,b,c为同一平面内三条不同的直线. (1)若a∥b,b⊥c,则a与c的位置关系是________;
(2)若c⊥a,c⊥b,则a与b的位置关系是________; (3)若a∥b,c∥a,则b与c的位置关系是________.
【答案】(1)a⊥c
(2)a∥b
(3)b∥c
【考点】垂线,平行线的判定与性质
【解析】【解答】(1)如图,a⊥c
理由:∵a∥b
∴∠1=∠2
∵b⊥c
∴∠1=90°
∴∠2=90°
∴a⊥c
(2)如图1
a∥b
理由:∵b⊥c,a⊥c
∴∠1=∠2=90°
∴a∥b
(3)如图2
结论:b∥c
理由:∵a∥b,c∥a,
∴∠1=∠2,∠1=∠3
∴∠2=∠3
∴b∥c
【分析】(1)根据平行线的性质,可证得∠1=∠2,再根据垂直的定义求出∠2=90°,就可证得结论。

(2)根据垂直的定义证得∠1=∠2=90°,再根据平行线的判定可证得结论。

(3)根据平行线的性质,可证得∠1=∠2,∠1=∠3,再证明∠2=∠3,从而可证得结论。

三、解答题
19、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.
(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。

(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。

【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
20、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。

21、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。

22、(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。

23、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
24、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
成绩等级A B C D
人数60x y10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
25、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
26、(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
第21 页,共21 页。

相关文档
最新文档