鲁卡斯数列表

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NewPanderKing
抬头是山,路在脚下!
斐波那契数列
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。

他被人称作―比萨的列昂纳多‖。

1202年,他撰写了《珠算原理》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列通项公式
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(见图)(又叫―比内公式‖,是用无理数表示有理数的一个范例。


有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

而且当n无穷大时an-1/an越来越逼近黄金分割数
0.618
证明:
a[n+2]=a[n+1]+a[n]
两边同时除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]
若a[n+1]/a[n]的极限存在,设其极限为x,
则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x
所以x=1+1/x
即x²=x+1
所以极限是黄金分割比.
奇妙的属性
随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……
从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)
如果你看到有这样一个题目:
某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故
作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积
确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:
1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1
2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)
3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1
4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)
5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1
6.f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)
利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。

怎样实现呢?伪代码描述一下?
7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)
8.f(2n-1)=[f(n)]^2-[f(n-2)]^2
9.3f(n)=f(n+2)+f(n-2)
10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
11.f(2n+1)=[f(n)]^2+[f(n+1)]^2
在杨辉三角中隐藏着斐波那契数列
将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……
公式表示如下:
f(1)=C(0,0)=1
f(2)=C(1,0)=1
f(3)=C(2,0)+C(1,1)=1+1=2
f(4)=C(3,0)+C(2,1)=1+2=3
f(5)=C(4,0)+C(3,1)+C(2,2)=1+3+1=5
f(6)=C(5,0)+C(4,1)+C(3,2)=1+4+3=8
F(7)=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
斐波那契数列的整除性与素数生成性
每3个数有且只有一个被2整除,
每4个数有且只有一个被3整除,
每5个数有且只有一个被5整除,
每6个数有且只有一个被8整除,
每7个数有且只有一个被13整除,
每8个数有且只有一个被21整除,
每9个数有且只有一个被34整除,
.......
我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)
斐波那契数列的素数无限多吗?
斐波那契数列的个位数:一个60步的循环
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
斐波那契数与植物花瓣
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花
8………………………翠雀花
13………………………金盏
和玫瑰
21………………………紫宛
34、55、89……………雏菊
斐波那契数还可以在植物的叶、枝、茎等排列中发现。

例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。

叶子从一个位置到达下一个正对的位置称为一个循回。

叶子在一个循回中旋转的圈数也是斐波那契数。

在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。

多数的叶序比呈现为斐波那契数的比。

斐波那契—卢卡斯数列与广义斐波那契数列
斐波那契—卢卡斯数列
卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。

(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2))。

这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n12345678910…
斐波那契数列F(n)11235813213455…
卢卡斯数列L(n)13471118294776123…
F(n)*L(n)138215514437798725846765…
类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。

如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。

斐波那契—卢卡斯数列之间的广泛联系
①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—
卢卡斯数列。

如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n12345678910…
F[1,4]n14591423376097157…
F[1,3]n13471118294776123…
F[1,4]n-F[1,3]n0112358132134…
F[1,4]n+F[1,3]n27916254166107173280…
②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如n12345678910…
F[1,1](n)11235813213455…
F[1,1](n-1)0112358132134…
F[1,1](n-1)0112358132134…
F[1,3]n13471118294776123…
黄金特征与孪生斐波那契—卢卡斯数列
斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,
斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]数列:|4*4-1*5|=11
F[2,5]数列:|5*5-2*7|=11
F[2,7]数列:|7*7-2*9|=31
斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。

卢卡斯数列的黄金特征是5,也是独生数列。

前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。

而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。

F[2,7]也有孪生数列:F[3,8]。

其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。

广义斐波那契数列
斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。

佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。

当p=1,q=1时,我们得到斐波那契—卢卡斯数列。

当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。

当p=-1,q=2时,我们得到等差数列。

其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。

自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。

具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1。

当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……
斐波那契数列与黄金比
1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…。

..
越到后面,这些比值越接近黄金比
相关的数学问题
1.排列组合
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1,2,3,5,8,13……所以,登上十级,有89种走法。

2.数列中相邻两项的前项比后项的极限
当n趋于无穷大时,F(n)/F(n+1)的极限是多少?
这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表大自然的和谐的一个数字。

3.求递推数列a(1)=1,a(n+1)=1+1/a(n)的通项公式
由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。

斐波那契数列别名
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为―兔子数列‖。

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一
对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对
两个月后,生下一对小兔民数共有两对
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对
------
依次类推可以列出下表:
经过月数0123456789101112
幼仔对数001123581321345589
成兔对数01123581321345589144
总体对数1123581321345589144233
幼仔对数=前月成兔对数
成兔对数=前月成兔对数+前月幼仔对数
总体对数=本月成兔对数+本月幼仔对数
可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。

这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
斐波那契数列公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、……
如果设F(n)为该数列的第n项(n∈N+)。

那么这句话可以写成如下形式:
F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2),
显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解:设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x&sup2;-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2 *a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/ 2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n
斐波拉契数列&卢卡斯数列(2009-07-28 23:44:34)
分类:股票
费波拿契数:
0、1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、1597、2584、4141、6765等。

卢卡斯数(Lucas Number):
2、1、
3、
4、7、11、18、29、47、76、123、199、322、521、843、1364、2207、3571、5781、9349 等。

佩尔数(Pell Number):
0、1、2、5、12、29、70、169、408、985、2378、5741等。

佩尔- 卢卡斯数(Pell - Lucas Number) :
2、2、6、14、34、82、198、478、1154、2786、6726等。

此等全都是数学界很有名的数列。

斐波拉契数列
斐波拉契数列的简介
斐波拉契数列(又译作―斐波那契数列‖或―斐波那切数列‖)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、21……等等的正方形。

这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

―斐波那契数列‖的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作―比萨的列昂纳多‖。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34……
这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:
(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示5的算术平方根)(19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856)
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

斐波拉契数列之闻名,可能还跟美国悬疑作家丹·布朗有关,他在他的小说《达芬奇密码》之中巧妙地运用了该数列。

其实,我国现行的高中教材中提及了杨辉三角,斐波拉契数列可在其中寻得。

■斐波拉契数列的出现
13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目:
―如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?‖
斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……
这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。

而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。

于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。

大家都叫它―斐波拉契数列‖,又称―兔子数列‖。

这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的―黄金分割律‖相吻合。

人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。

斐氏本人对这个数列并没有再做进一步的探讨。

直到十九世纪初才有人详加研究,1960年左右,许多数学家对斐波拉契数列和有关的现象非常感到兴趣,不但成立了斐氏学会,还创办了相关刊物,其后各种相关文章也像斐氏的兔子一样迅速地增加。

■斐波拉契数列的来源及关系
斐波拉契(Fibonacci)数列来源于兔子问题,它有一个递推关系,
f(1)=1
f(2)=1
f(n)=f(n-1)+f(n-2),其中n>=2
{f(n)}即为斐波拉契数列。

■斐波拉契数列的公式
它的通项公式为:{[(1+√5)/2]^n -[(1-√5)/2]^n }/√5 (注:√5表示根号5)
■斐波拉契数列的某些性质
1),f(n)f(n)-f(n+1)f(n-1)=(-1)^n;
2), f(1)+f(2)+f(3)+……+f(n)=f(n+2)-1
3),arctan[1/f(2n+1)]=arctan[1/f(2n+2)]+arctan[1/f(2n+3)]
【斐波拉契数列的存在】
甚至可以说,斐波拉契数列无处不在,以下仅举几条常见的例子:
1.杨辉三角对角线上各数之和构成斐波拉契数列.
2.多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n×2的棋盘,覆盖的方案数等于斐波拉契数列。

3.从蜜蜂的繁殖来看,雄峰只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂,未受精的孵化为雄峰。

人们在追溯雄峰的祖先时,发现一只雄峰的第n代祖先的数目刚好就是斐波拉契数列的第n项Fn。

4.钢琴的13个半音阶的排列完全与雄峰第六代的排列情况类似,说明音调也与斐波拉契数列有关。

5.自然界中一些花朵的花瓣数目符合于斐波拉契数列,也就是说在大多数情况下,一朵花花瓣的数目都是3,5,8,13,21,34,……(有6枚是两套3枚;有4枚可能是基因突变)。

6.如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝,那么历年的树枝数,也构成一个斐波拉契数列.
【斐波拉契数列与黄金分割】
斐波拉契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波拉契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n-1)/f(n)-→0.618…。

由于斐波拉契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的斐波拉契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

不仅这个由1,1,2,3,5....开始的"斐波拉契数"是这样,随便选两个整数,然后按照斐波拉契数的规律排下去,两数间比也是会逐渐逼近黄金比的.
帕多瓦数列的三角形
【斐波拉契数列的变式】■1.帕多瓦数列:1,1,1,2,2,3,4,5,7,9,12,16,21,……这样的数列称为帕多瓦数列。

它和斐波拉契数列非常相似,稍有不同的是:每个数都是跳过它前面的那个数,并把再前面的两个数相加而得出的。

这个数列可以用另一幅图来表示,它是由一些等边三角形构成的(如右图)。

开始的三角形用灰色表示,为了使这些三角形天衣无缝地拼在一起,头三个三角形的边长均为1,其后的两个三角形的边长为2,然后依次是3、4、5、7、9、12、16、2l……等等。

■2.冬冬有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?
如果冬冬有3块糖、4块糖或者5块糖,都只有1种吃法;如果有6块糖,则有2种吃法;如果有7块糖,则有3种吃法;如果有8块糖,则有4种吃法;如果有9块糖,则有6种吃法.
既:吃糖的粒数:3456789101112...
糖的吃法:111234691319...
这样的数列,它和斐波拉契数列不同的是,每次都是跳过中间的那个数,再把第1、3两个数相加,等于第4个数。

它的规律和斐波拉契数列既相似之处又有不同之处.
■3.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法?
这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法.
既:楼梯的级数:12345678...
上楼梯的走法:124713244481...
这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… (后一项与前一项之比1.6180339887…… )
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

【斐波那契数列别名】
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为―兔子数列‖。

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12
兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233
表中数字1,1,2,3,5,8---构成了一个数列。

这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)
卢卡斯数列
卢卡斯数列(Lucas Sequence) 和费波拿契数列(Fibonnacci Sequence) 有莫大的关系。

先定义整数P 和Q 使D = P2 - 4Q > 0,
从而得一方程x2 - Px + Q = 0,其根为a, b,
现定义卢卡斯数列为:
Un(P,Q) = (an - bn) / (a-b) 及Vn(P,Q) = an + bn
其中n 为非负整数,得U0(P,Q) = 0、U1(P,Q) = 1 、V0(P,Q) = 2 、V1(P,Q) = P、......
我们有下列和卢卡斯数列相关的恒等式:
Um+n = UmVn - anbnUm-n 、Vm+n = VmVn - anbnVm-n
Um+1 = P*Um - Q*Um-1 、Vm+1 = P*Vm - Q*Vm-1 (取n = 1)
U2n = UnVn 、V2n = Vn2 - Qn
U2n+1 = Un+1Vn - Qn 、V2n+1 = Vn+1Vn - PQn
若取(P,Q) = (1,-1),我们便有Un 为费波拿契数,
即0、1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、1597、2584、4141、6765等。

而Vn 为卢卡斯数(Lucas Number),
即2、1、3、4、7、11、18、29、47、76、123、199、322、521、843、1364、2207、3571、5781、9349等。

若取(P,Q) = (2,-1),我们便有Un 为佩尔数(Pell Number),
即0、1、2、5、12、29、70、169、408、985、2378、5741等。

而Vn 为佩尔- 卢卡斯数(Pell - Lucas Number) (详见另文《佩尔数列》),
即2、2、6、14、34、82、198、478、1154、2786、6726等。

此等全都是数学界很有名的数列。

卢卡斯数的性质
卢卡斯数(简记Ln) 有很多性质和费波拿契数很相似。

如Ln = Ln-1 + Ln-2,其中不同的是L1 = 1、L2 = 3。

所以卢卡斯数有:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...... (OEIS A000204),当中的平方数只有1 和4,这是由哥恩(John H. E. Cohn) 证明的。

而素数,即卢卡斯素数(Lucas Prime) 则有:3, 7, 11, 29, 47, ...... 。

当中现在知道最大的拟素数(Probable Prime) 为L574219 ,此数达120005位之多。

我们有下列和卢卡斯数相关的恒等式:
Ln2 - Ln-1Ln+1 = 5 (-1)n
L12 + L22 + ...... + Ln2 = LnLn+1 - 2
Lm+n = (5FmFn + LmLn) / 2 (式中的Fn 为费波拿契数)
Lm-n = (-1)n (LmLn - 5FmFn) / 2
Ln2 - 5Fn2 = 4 (-1)n
卢卡斯素数龙虎榜
n 数位发现者年份
56003 11704 欧文(Sean A. Irvine) / 禾达(Bouk de Water) 2006
51169 10694 禾达(Bouk de Water) / 布靴斯特(David Broadhurst)
2001
44507 9302 禾达(Bouk de Water) / 布靴斯特(David Broadhurst) / 伦斯(John Renze) 2005
36779 7687 禾达(Bouk de Water) / 布靴斯特(David Broadhurst) / 伦斯(John Renze) 2005
35449 7409 禾达(Bouk de Water) 2001
19469 4069 禾达(Bouk de Water) / 布靴斯特(David Broadhurst) 2002
19449 3020 都伯纳(Harvey Dubner) / 凯勒(Wilfrid Keller) 1995
13963 2919 奥基斯(Mike Oakes) 2002
12251 2561 禾达(Bouk de Water) / 布靴斯特(David Broadhurst) 2001
10691 2235 都伯纳(Harvey Dubner) / 凯勒(Wilfrid Keller) 1995
若我们考虑的是拟素数,即那些通过费马小定理(Fermat's Little Theorem) 逆命题测试的数,这有很大机会是素数,或可能是卡迈克尔数(Carmichael Number)。

那我们可把n 推至202667。

但正因为n 很大,要判断该数的素性的确不易。

斐波那契数列
(2012-03-04 11:51:19)转载▼
分类:概念定义常识
标签:杂

斐波那契数列
求助编辑百科名片
斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

目录
定义通项公式
通项公式的推导
与黄金分割的关系
奇妙的属性在杨辉三角中隐藏着斐波那契数列
斐波那契数列的整除性与素数生成性
斐波那契数列的个位数:一个60步的循环
斐波那契数与植物花瓣
斐波那契—卢卡斯数列与广义斐波那契数列斐波那契—卢卡斯数列
斐波那契—卢卡斯数列之间的广泛联系
黄金特征与孪生斐波那契—卢卡斯数列
广义斐波那契数列
相关的数学问题1.排列组合
2.数列中相邻两项的前项比后项的极限
3.兔子繁殖问题(关于斐波那契数列的别名)
编程中的斐波那契数列PB语言程序
C语言程序
C#语言程序
Java语言程序
JavaScript语言程序
Pascal语言程序
PL/SQL程序
Python程序
前若干项
斐波那契弧线
应用数学游戏
自然界中的巧合
数字谜题
影视作品中的斐波那契数列
社会文明中的斐波那契数列艾略特波浪理论
人类文明的斐波那契演进
定义通项公式
通项公式的推导
与黄金分割的关系
奇妙的属性在杨辉三角中隐藏着斐波那契数列
斐波那契数列的整除性与素数生成性
斐波那契数列的个位数:一个60步的循环
斐波那契数与植物花瓣
斐波那契—卢卡斯数列与广义斐波那契数列斐波那契—卢卡斯数列斐波那契—卢卡斯数列之间的广泛联系
黄金特征与孪生斐波那契—卢卡斯数列
广义斐波那契数列
相关的数学问题1.排列组合
2.数列中相邻两项的前项比后项的极限
3.兔子繁殖问题(关于斐波那契数列的别名)
编程中的斐波那契数列PB语言程序
C语言程序
C#语言程序
Java语言程序
JavaScript语言程序
Pascal语言程序
PL/SQL程序
Python程序
数列与矩阵
前若干项
斐波那契弧线
应用数学游戏
自然界中的巧合
影视作品中的斐波那契数列
社会文明中的斐波那契数列艾略特波浪理论
人类文明的斐波那契演进
展开
编辑本段定义
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。

他被人称作―比萨的列昂纳多‖。

1202年,他撰写了《珠算原理》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、…… 这个数列从第三项开始,每一项都等于前两项之和。

斐波那契数列通项公式
通项公式
(见图)(又叫―比内公式‖,是用无理数表示有理数的一个范例。

)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通项公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n 项(n∈N+)。

那么这句话可以写成如下形式:F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2),显然这是一个线性递推数列。

方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1 解得X1=(1+√5)/2,,X2=(1-√5)/2。

则F(n)=C1*X1^n + C2*X2^n。

∵F(1)=F(2)=1。

∴C1*X1 + C2*X2。

C1*X1^2 + C2*X2^2。

解得C1=√5/5,C2=-√5/5。

∴F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)。

方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s。

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

则r+s=1,-rs=1。

n≥3时,有。

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。

…… F(3)-r*F(2)=s*[F(2)-r*F(1)]。

联立以上n-2个式子,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。

∵s=1-r,F(1)=F(2)=1。

上式可化简得:F(n)=s^(n-1)+r*F(n-1)。

那么:F(n)=s^(n-1)+r*F(n-1)。

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。

…… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。

=(s^n - r^n)/(s-r)。

r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2。

则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。

方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。

解:设an-αa(n-1)=β(a(n-1)-αa(n-2))。

得α+β=1。

αβ=-1。

构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。

所以。

an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)````````` 1。

相关文档
最新文档