措勤县高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

措勤县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若1sin()34πα-=,则cos(2)3π
α+=
A 、78-
B 、14
- C 、14 D 、78
2. “方程
+
=1表示椭圆”是“﹣3<m <5”的( )条件.
A .必要不充分
B .充要
C .充分不必要
D .不充分不必要
3. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( )
A .38
B .20
C .10
D .9
4. 关于函数2
()ln f x x x
=
+,下列说法错误的是( ) (A )2x =是()f x 的极小值点
( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立
(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>
5. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6. 已知函数f (x )=x 2﹣
,则函数y=f (x )的大致图象是( )
A .
B .
C .
D .
7. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )
A .
B .
C .
D .
8. 下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
9. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )
A .1﹣i
B .1+i
C .﹣1﹣i
D .﹣1+i
10.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )
A .
B . C. D .
11.若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 12.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2
C .3
D .4
二、填空题
13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .
14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
15.已知椭圆+
=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[,
],则该椭圆离心率e 的取值范围为 .
16.将曲线1:C 2sin(),04
y x π
ωω=+>向右平移
6
π
个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.
17.【常熟中学2018届高三10月阶段性抽测(一)】函数()2
1ln 2
f x x x =
-的单调递减区间为__________.
18.若x,y满足线性约束条件,则z=2x+4y的最大值为.
三、解答题
19.已知函数f(x)=ax3+2x﹣a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.
(i)证明:n≥2时存在唯一x n且;
(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.
20.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1.
21.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
22.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.
(1)求a2;
(2)求数列{a n}的通项公式a n;
(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.
23.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
24.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)
(1)求f(1)的值,
(2)若f(6)=1,解不等式f(x+3)﹣f()<2.
措勤县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】 选A ,解析:2
227
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
2. 【答案】C
【解析】解:若方程
+=1表示椭圆,则满足,即,
即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,
当m=1时,满足﹣3<m <5,但此时方程+
=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要
性不成立.
故“方程+
=1表示椭圆”是“﹣3<m <5”的充分不必要条件.
故选:C .
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
3. 【答案】C
【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,
则a m ﹣1+a m+1﹣a m 2
=a m (2﹣a m )=0,
解得:a m =0或a m =2,
若a m 等于0,显然S 2m ﹣1=
=(2m ﹣1)a m =38不成立,故有a m =2, ∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10. 故选C
4. 【答案】 C
【解析】
22212
'()x f x x x x
-=-
+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-22
17()24x x -+
=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222
()20g e e e
=+-<,
所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x x
h x x x x
==+
,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()
f x k x
<,
()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草

可看出(0,2)的时候递减的更快,所以124x x +>
5. 【答案】B
【解析】解:∵(﹣4+5i )i=﹣5﹣4i ,
∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,
∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.
故选:B .
6. 【答案】A
【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项. ∵当x >0时,
t=
=
在x=e 时,t
有最小值为
∴函数y=f (x )=x 2﹣
,当x >0时满足y=f (x )≥e 2
﹣>0,
因此,当x >0时,函数图象恒在x 轴上方,排除D 选项
故选A
7. 【答案】C
【解析】解:因为x 1<x 2<x 3<x 4<x 5<﹣1,题目中数据共有六个,排序后为x 1<x 3<x 5<1<﹣x 4<﹣x 2,
故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,
故这组数据的中位数是(x 5+1).
故选:C .
【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
8. 【答案】B
【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;
C 选项中,直线与直线相交、平行、异面都有可能,故不正确;
D 中选项也可能相交. 故选:B .
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
9. 【答案】A
【解析】解:∵z (1+i )=2,∴z==
=1﹣i .
故选:A .
【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.
10.【答案】A 【解析】
试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法.
11.【答案】A 【解析】
试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 12.【答案】A
【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,
得:(a 3+2)2
=(a 1+1)(a 5+3), 整理得:a 32
+4a 3+4=a 1a 5+3a 1+a 5+3
即(a 1+2d )2
+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.
化简得:(2d+1)2
=0,即d=﹣.
∴q===1.
故选:A .
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
二、填空题
13.【答案】25 【




点:分层抽样方法.
14.【答案】 充分不必要
【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i , ∴在复平面内对应的点M 的坐标是(a+2,a ﹣2), 若点在第四象限则a+2>0,a ﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
15.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);
F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e
≤﹣1; 故答案为:
[

﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
16.【答案】6
【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446
y x x ππππ
ωωω=-
+=+-,由1C 与2C 关于x 轴对
称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡
⎤++-+=⎢⎥⎣
⎦对一切
x R ∈恒成立,∴1cos()06
sin()0
6πωπω⎧
+=⎪⎪⎨⎪=⎪⎩
∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.
17.【答案】()0,1
【解析】
18.【答案】38.
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
三、解答题
19.【答案】
【解析】解:(Ⅰ)f'(x)=3ax2+2,
若a≥0,则f'(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴或,
函数f(x)的单调递增区间为和;
(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,
又f n(1)=n+2﹣n=2>0,
f n()==
==﹣
当n≥2时,g(n)=n2﹣n﹣1>0,,
n≥2时存在唯一x n且
(i i)当n≥2时,,∴(零点的区间判定)
∴,(数列裂项求和)
∴,
又f1(x)=x3+2x﹣1,,(函数法定界)
,又,
∴,
∴,(不等式放缩技巧)
命题得证.
【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.
20.【答案】
【解析】解:(1)∵ABC﹣A1B1C1为直三棱柱,
∴CC1⊥平面ABC,AC⊂平面ABC,
∴CC1⊥AC…
∵AC=3,BC=4,AB=5,
∴AB2=AC2+BC2,∴AC⊥CB …
又C1C∩CB=C,
∴AC⊥平面C1CB1B,又BC1⊂平面C1CB1B,
∴AC⊥BC1…
(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,
∴E为C1B的中点…
又D为AB中点,∴AC1∥DE…
DE⊂平面CDB1,AC1⊄平面CDB1,
∴AC1∥平面CDB1…
【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.
21.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
22.【答案】
【解析】解:(1)当n=1时,2S1=2a1=a2+2,
∴a2=4…1;
(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,
∴a n+1=3a n﹣2,
∴a n+1﹣1=3(a n﹣1)…4,
∴,
∴{a n﹣1}从第二项起是公比为3的等比数列…5,
∵,
∴,
∴;
(3)∴ (8)
∴① (9)
∴②
①﹣②得:,
=,
=(2﹣2n)×3n﹣4, (11)
∴ (12)
【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.
23.【答案】
【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,
由题设f(x)=k
x,g(x)=k2,(k1,k2≠0;x≥0)
由图知f(1)=,∴k1=
又g(4)=,∴k2=
从而f(x)=,g(x)=(x≥0)
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元
y=f(x)+g(10﹣x)=,(0≤x≤10),
令,∴(0≤t≤)
当t=,y max≈4,此时x=3.75
∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.
【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.
24.【答案】
【解析】解:(1)在f()=f(x)﹣f(y)中,
令x=y=1,则有f(1)=f(1)﹣f(1),
∴f(1)=0;
(2)∵f(6)=1,∴2=1+1=f(6)+f(6),
∴不等式f(x+3)﹣f()<2
等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),
即f()<f(6),
∵f(x)是(0,+∞)上的增函数,
∴,解得﹣3<x<9,
即不等式的解集为(﹣3,9).。

相关文档
最新文档