南昌市七年级上学期期末数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌市七年级上学期期末数学试题
一、选择题
1.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =时,则x 的值为( ) A .14
-
B .116
C .
14
D .
12
2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )
A .
B .
C .
D .
3.下列数或式:3
(2)-,6
1()3
-,25- ,0,21m +在数轴上所对应的点一定在原点右边
的个数是( ) A .1
B .2
C .3
D .4
4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )
A .208
B .480
C .496
D .592
5.有一个数值转换器,流程如下:
当输入x 的值为64时,输出y 的值是( ) A .2
B .22
C .2
D .32
6.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .160160
3045x x
-= B .1601601
452x x -= C .
1601601
542
x x -= D .
160160
3045x x
+= 7.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:
||||||a b b c a c -+-=-,则点B ( )
A .在点 A, C 右边
B .在点 A,
C 左边
C .在点 A, C 之间
D .以上都有可能
8.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )
A .48°
B .42°
C .36°
D .33°
9.方程312x -=的解是( ) A .1x =
B .1x =-
C .13
x =-
D .13
x =
10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯
B .51510⨯
C .70.1510⨯
D .61.510⨯
11.如图的几何体,从上向下看,看到的是( )
A.B.C.D.
12.若2m
ab
-与16
2n a b
-是同类项,则m n
+=()
A.3B.4C.5D.7
二、填空题
13.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.
14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.
15.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB
∠的大小为______.
16.已知单项式2452
25
n m
x y x y
++
与是同类项,则m n=______.
17.定义-种新运算:22
a b b ab
⊕=-,如2
1222120
⊕=-⨯⨯=,则
(1)2
-⊕=__________.
18.如图,在长方形ABCD中,10,13.,,,
AB BC E F G H
==分别是线段,,,
AB BC CD AD上的定点,现分别以,
BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且
,
BE DG
=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为
123
,,
s s s.若2
1
3
7
S
S
=,

3
S=___
19.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.
20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.若
2a +1与212
a +互为相反数,则a =_____. 22.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.
23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为
AM AB 、的中点,则PQ 的长为____________.
24.已知7635a ∠=︒',则a ∠的补角为______°______′.
三、压轴题
25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)
(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;
(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且
3DOE AOE ∠∠=,3COF BOF ∠=∠,7
2
EOF COD ∠=∠,求EOF ∠的度数;
(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若
3MOI POI ∠=∠,则t = 秒.
26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为
0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=1
2
AE,且此时点E为点A、B的“n节
点”,求n的值.
27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.
28.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.
29.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点
(1)若AP=2时,PM=____;
(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F
表示的数;
(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.
30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是
0,3,10,且2CD AB =.
(1)点D 表示的数是 ;(直接写出结果)
(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;
②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.
31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.
(1)填空:AB = ,BC = ;
(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?
(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.
32.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.
(1)求A,B 两点之间的距离;
(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;
(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动. 设运动时间为t 秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 利用max
{
}
2,,x x x 的定义分情况讨论即可求解.
【详解】 解:当max {
}
21
,,2
x x x =
时,x ≥0 ①x =1
2,解得:x =14
,此时x >x >x 2,符合题意; ②x 2=12,解得:x =22
;此时x >x >x 2,不合题意; ③x =
1
2
,x >x >x 2,不合题意; 故只有x =
1
4
时,max {
}
21,,2
x x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
2.A
解析:A 【解析】 【分析】
从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】
∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是

故选:A . 【点睛】
本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.
3.B
解析:B 【解析】 【分析】
点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】
()3
2-=-8,6
13⎛⎫- ⎪⎝⎭
=1719,25-=-25 ,0,21m +≥1 在原点右边的数有6
13⎛⎫- ⎪⎝⎭
和 21m +≥1 故选B 【点睛】
此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.
4.C
解析:C 【解析】 【分析】
由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】
解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,
16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
5.C
解析:C 【解析】 【分析】
把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】
,是有理数, ∴继续转换,
,是有理数, ∴继续转换,
∵2,是无理数,
∴输出, 故选:C. 【点睛】
本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.
6.B
解析:B 【解析】 【分析】
甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】
甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得
1604x -1605x =1
2, 故选B. 【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
7.C
解析:C 【解析】 【分析】
根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】
∵绝对值表示数轴上两点的距离
a b -表示a 到b 的距离
b c -表示b 到c 的距离 a c -表示a 到c 的距离
∵a b b c a c -+-=-丨丨丨丨丨丨
∴B 在A 和C 之间 故选:C 【点睛】
本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.
8.A
解析:A 【解析】 【分析】
首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】
解:
OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,
843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.
故选:A . 【点睛】
本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.
9.A
解析:A 【解析】
试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .
考点:解一元一次方程.
10.D
解析:D 【解析】 【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】
150万=1500000=61.510⨯, 故选:D. 【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
11.A
解析:A 【解析】 【分析】
根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可. 【详解】
从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意,
故选:A .
【点睛】
本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.
12.C
解析:C
【解析】
【分析】
根据同类项的概念求得m 、n 的值,代入m n +即可.
【详解】
解:∵2m ab -与162n a b -是同类项,
∴2m=6,n-1=1,
∴m=3,n=2,
则325m n +=+=.
故选:C .
【点睛】
本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.
二、填空题
13.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.5
【解析】
【分析】
把x=2代入方程求出a的值即可.
【详解】
解:∵关于x的方程5x+a=3(x+3)的解是x=2,
∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解
解析:5
【解析】
【分析】
把x=2代入方程求出a的值即可.
【详解】
解:∵关于x的方程5x+a=3(x+3)的解是x=2,
∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解,掌握方程的解的意义解答本题的关键.
15.【解析】
【分析】
根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】
根据题意可得:∠AOB=(90
解析:141
【解析】
【分析】
根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.
【详解】
根据题意可得:∠AOB=(90-54)+90+15=141°.
故答案为141°.
此题主要考查角度的计算与方位,熟练掌握,即可解题.
16.9
【解析】
【分析】
根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.
【详解】
解:
和是同类项


【点睛】
本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9
【解析】
【分析】
根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.
【详解】
解:
242n x y +和525m x y +是同类项
∴25n +=且24m +=
∴3n =,2m =
∴239m n ==
【点睛】
本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 17.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22
a b b ab
⊕=-;
所以2
(1)222(1)28.
-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【解析】
【分析】
设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.
【详解】
解:如图,设CG=a,则DG=GI=BE=10−a,
解析:
121
4
【解析】
【分析】
设CG=a,然后用a分别表示出AE、PI和AH,根据2
1
3
7
S
S
=,列方程可得a的值,根据正方形的面积公式可计算S3的值.
【详解】
解:如图,设CG=a,则DG=GI=BE=10−a,
∵AB=10,BC=13,
∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,
AH=13−DH=13−(10−a)=a+3,
∵2
1
3
7
S
S
=,即23
(3)7
a
a a
=
+

∴4a2−9a=0,
解得:a1=0(舍),a2=9
4

则S3=(10−2a)2=(10−9
2
)2=
121
4

故答案为121 4

【点睛】
本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.
19.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;

解析:26,5,4 5
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
20.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:,,

故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
21.﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a 的值.
【详解】
根据题意得:
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:
解析:﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】
根据题意得:a2a1
10 22
+
++=
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:﹣1
【点睛】
本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.
22.8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.23.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】
【分析】
根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12
AM=2cm ,AQ=
12
AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,
∴AM=4cm .BM=12cm ,
∵P ,Q 分别为AM ,AB 的中点,
∴AP=
12AM=2cm ,AQ=12
AB=8cm , ∴PQ=AQ-AP=6cm ;
故答案为:6cm .
【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
24.25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
的补角为
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题
解析:25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
a ∠的补角为180762313550'='︒-︒︒
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题.
三、压轴题
25.(1)40º;(2)84º;(3)7.5或15或45
【解析】
【分析】 (1)利用角的和差进行计算便可;
(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;
(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.
【详解】
解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴COD AOD BOC AOB ∠=∠+∠-∠
160120=︒-︒
40=︒
(2)3DOE AOE ∠=∠,3COF BOF ∠=∠
∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒
则3COF y ∠=︒,
44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒
EOF EOD FOC COD ∠=∠+∠-∠
()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒
72
EOF COD ∠=∠ 7120()(44120)2
x y x y ∴-+=+- 36x y ∴+=
120()84EOF x y ∴︒+︒︒∠=-=
(3)当OI 在直线OA 的上方时,
有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12
×120°=60°,
∠PON=1
2
×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t=15
2
或15;
当OI在直线AO的下方时,
∠MON═1
2
(360°-∠AOB)═
1
2
×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°-6120
2
t-
)或180°-3t=3(
6120
2
t-
-60°),
解得t=30或45,
综上所述,满足条件的t的值为15
2
s或15s或30s或45s.
【点睛】
此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.
26.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,
∴AC=2,BC=6,
∴n=AC+BC=2+6=8.
(2)如图所示:
∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,
∵AB=4,
∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E在BA延长线上时,
∵不能满足BE=1
2 AE,
∴该情况不符合题意,舍去;
②当点E在线段AB上时,可以满足BE=1
2
AE,如下图,
n=AE+BE=AB=4;
③当点E在AB延长线上时,
∵BE=1
2 AE,
∴BE=AB=4,
∴点E表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
【点睛】
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
27.(1)-12,8-5t;(2)9
4

11
4
;(3)10;(4)MN的长度不变,值为10.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;
(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;
(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=20,
∴点B表示的数是8﹣20=﹣12,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8﹣5t,
故答案为﹣12,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;
分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=20,解得t=9
4;
②点P、Q相遇之后,
由题意得3t﹣2+5t=20,解得t=11 4,
答:若点P、Q同时出发,9
4

11
4
秒时P、Q之间的距离恰好等于2;
(3)如图,设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=20,
解得:x=10,
∴点P运动10秒时追上点Q;
(4)线段MN的长度不发生变化,都等于10;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=
1
2
AB=10,
②当点P运动到点B的左侧时:
MN=MP ﹣NP=
12AP ﹣12BP=12(AP ﹣BP)=12
AB=10, ∴线段MN 的长度不发生变化,其值为10.
【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
28.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.
【解析】
【分析】
(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;
(2)先求出对称点,即可得出结果;
(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;
(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.
【详解】
(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.
∵b 是最小的正整数,∴b =1.
故答案为﹣2,1,7.
(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.
故答案为4.
(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.
故答案为3t +3,5t +9,2t +6.
(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.
【点睛】
本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127
t =
或6t =. 【解析】
【分析】
(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;
(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;
(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.
【详解】
(1)5 ; (2)∵点A 表示的数是5-
∴点B 表示的数是7
∵点P 运动3秒是9个单位长度,M 为PB 的中点
∴PM=
12
PB=4.5,即点M 表示的数是2.5 ∵FM=2PM
∴FM=9
∴点F 表示的数是11.5或者-6.5
(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,
则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=
12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127
; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,
则PB=2QB ,
则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.
【点睛】
本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.
30.(1)16;(2)①t 的值为3或
143秒;②存在,P 表示的数为314. 【解析】
【分析】
(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,
(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=
143
秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.
【详解】
(1)16
(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.
当BC =2,点B 在点C 的右边时,
由题意得:32-10-2BC t t =+=(),
解得:t =3,
当AD=2,点A 在点D 的左边时,
由题意得:16--22AD t t ==,
解得:t =143
. 综上,t 的值为3或
143秒 ②存在,理由如下:
当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,
-3BD PA PC =,
()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤
314
x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163
,D 点表示的数为343
. 则37343816-1-|-|3333
BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛
⎫= ⎪⎝
⎭, 解得:7912x =或176, 又283733
x ≤≤, x ∴无解
综上,P 表示的数为
314. 【点睛】
本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.
31.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着
时间的变化而改变,理由见解析
【解析】
【分析】
(1)根据数轴上点的位置求出AB 与BC 的长即可,
(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,
(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.
【详解】
解:(1)AB =15,BC =20,
(2)设点N 移动x 秒时,点N 追上点M ,由题意得:
15322x x ⎛⎫=+ ⎪⎝
⎭, 解得15x =,
答:点N 移动15秒时,点N 追上点M .
(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是
25y --、103y -+、107y +,
∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,
∴BC -AB 的值不会随着时间的变化而改变.
【点睛】
本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,
32.2+t 6-2t 或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)、设BC 的长为x ,则AC=2x ,根据AB 的长度得出x 的值,从而得出点C 所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t >3,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.。

相关文档
最新文档