2019-2020学年上学期高二数学12月月考试题含解析(789)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金湖县第二中学校2019-2020学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12
B .10
C .9
D .8
2. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )
A .程序流程图
B .工序流程图
C .知识结构图
D .组织结构图
3. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,
其余各
面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中
正确命题的个数是( )
A .0
B .1
C .2
D .3
4. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )
A .
B .
C .
D .
5. 函数f (x )=cos 2x ﹣cos 4x 的最大值和最小正周期分别为( )
A .,π
B .,
C .,π
D .,
6. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则
AB AC ⋅=( )
(A ) 13 ( B ) 49 (C ) 2
3 (D )
89
7. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )
A .1
B .2
C .3
D .4
8. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1
B .2
C .3
D .4
9. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能
力.
10.已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.
11.设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )
A .5
B .
C .
D .
12.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )
A .
B .
C .
D .
二、填空题
13.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为
__________
14.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
15.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)
①﹣,1是函数g (x )=2x 2﹣1有两个不动点;
②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;
⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.
16.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .
17.对于集合M ,定义函数
对于两个集合A ,B ,定义集合
A △B={x|f A (x )f
B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .
18.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数” 的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
三、解答题
19.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.
(1)若p=,求A ∩B ;
(2)若A ∩B=B ,求实数p 的取值范围. 20.函数。

定义数列如下:是过两点
的直线
与轴交点的横坐标。

(1)证明:;
(2)求数列
的通项公式。

21.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
22.(本小题满分12分)
ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,
(5sin 6sin ,sin sin )n B C C A =--垂直.
(1)求sin A 的值;
(2)若a =ABC ∆的面积S 的最大值.
23.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的
切线与AC 交于D .
(1)求证:CD =DA ;
(2)若CE =1,AB =2,求DE 的长.
24.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).
(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;
(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.
金湖县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1.【答案】D
【解析】解:∵函数y=f(x)为
偶函数,且满足f(x+2)=﹣f(x),
∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),
∴偶函数y=f(x)
为周期为4的函数,
由x∈[0,2]时,
f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,
同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.
数形结合可得交点个为8,
故选:D.
2.【答案】D
【解析】解:用来描述系统结构的图示是结构图,
某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.
故选D.
【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.
3.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
4. 【答案】C
【解析】解:如图所示,△BCD 是圆内接等边三角形,
过直径BE 上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD 的内切圆的半径为1,
显然当弦为CD 时就是△BCD 的边长,
要使弦长大于CD 的长,就必须使圆心O 到弦的距离小于|OF|, 记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内}, 由几何概型概率公式得P (A )
=

即弦长超过圆内接等边三角形边长的概率是. 故选C .
【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答.
5. 【答案】B
【解析】解:y=cos 2x ﹣cos 4x=cos 2x (1﹣cos 2x )=cos 2x •sin 2
x=sin 2
2x=

故它的周期为
=
,最大值为
=.
故选:B .
6. 【答案】C
【解析】由1(),21(2),2AD AB AC BE AB AC ⎧
=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE
⎧=-⎪⎪⎨⎪=+⎪⎩ 22422
()()33333
AB AC AD BE AD BE ⋅=-⋅+=.
7. 【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2
﹣y=0,x ∈R ,
y ∈R}═{(x ,y )|
} 将x 2﹣y=0代入x 2+y 2
=1, 得y 2
+y ﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个, 故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题
8. 【答案】B
【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .
9. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 10.【答案】D
【解析】由已知得{}
=01A x x <?,故A B =1
[,1]2
,故选D .
11.【答案】C
【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,
又已知渐近线为,∴ =,b=2a ,
故双曲线离心率e===
=

故选C .
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率
=,是解题的关键.
12.【答案】C
【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧, 由以上各视图的描述可知其俯视图符合C 选项.
故选:C . 【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽
相等”的含义.
二、填空题
13.【答案】
【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
14.【答案】1a =
【解析】
试题分析:因为不等式()2
110ax a x +++≥恒成立,所以当0a =时,不等式可化为
10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0a a >⎧⎨-≤⎩
,解得1a =.1
考点:不等式的恒成立问题. 15.【答案】 ①②⑤
【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;
对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也
是函数y=f (x )的稳定点,故②正确;
对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2
﹣1=x ,因为不动点必为稳定点,所以该方
程一定有两解x=﹣,1,
由此因式分解,可得(x ﹣1)(2x+1)(4x 2
+2x ﹣1)=0
还有另外两解,故函数g (x )的稳定点有﹣,1,,其中
是稳定点,但不是不动点,故③④错误;
对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;
若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0
即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,
假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾; 假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾; 故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确. 故答案为:①②⑤.
【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.
16.【答案】 0.3 .
【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.
17.【答案】 {1,6,10,12} .
【解析】解:要使f A (x )f B (x )=﹣1, 必有x ∈{x|x ∈A 且x ∉B}∪{x|x ∈B 且x ∉A} ={6,10}∪{1,12}={1,6,10,12,}, 所以A △B={1,6,10,12}. 故答案为{1,6,10,12}.
【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理
解,是基础题.
18.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2
y x =图象关于y 轴对称,但不是奇函数;必要性成立,
()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称. 考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
三、解答题
19.【答案】
【解析】解:(1)当p=时,B={x|0≤x ≤},
∴A ∩B={x|2<x ≤}; (2)当A ∩B=B 时,B ⊆A ;
令2p ﹣1>p+3,解得p >4,此时B=∅,满足题意;
当p ≤4时,应满足,
解得p 不存在;
综上,实数p 的取值范围p >4.
20.【答案】 【解析】(1)为,故点
在函数
的图像上,故由所给出
的两点,可知,直线
斜率一定存在。

故有直线
的直线方程为
,令
,可求得
所以
下面用数学归纳法证明 当时,,满足
假设时,
成立,则当
时,【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,
进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.
考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式. 22.【答案】(1)4
5
;(2)4. 【解析】
试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得
cos A ,
由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式222
65
bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1
sin 2
S bc A =可得面积的最大值. 试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂
直,
∴2
2
2
5sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,
考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 23.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC,
∴DC=DE,
∴CD=DA.
(2)∵CA是⊙O的切线,AB是直径,
∴∠CAB=90°,
由勾股定理得CA2=CB2-AB2,
又CA2=CE×CB,CE=1,AB=2,
∴1·CB=CB2-2,
即CB2-CB-2=0,解得CB=2,
∴CA2=1×2=2,∴CA=2.
由(1)知DE=1
2CA=
2 2,
所以DE的长为2
2.
24.【答案】
【解析】
【专题】计算题;直线与圆;坐标系和参数方程.
【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.
【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,
可化为直角坐标方程x2+y2﹣2x+4y+4=0,
即圆(x﹣1)2+(y+2)2=1;
曲线C2的参数方程为(t为参数),
可化为普通方程为:3x+4y﹣15=0.
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.
则由点到直线的距离公式可得d==4,
则切线长为=.
故这条切线长的最小值为.
【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.。

相关文档
最新文档