安平县二中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安平县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )
A .
B .
C .
D .
2. 是首项
,公差的等差数列,如果
,则序号等于( )
A .667
B .668
C .669
D .670
3. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )
A .
B .
C .
D .3
4. 如图,空间四边形OABC 中,,

,点M 在OA 上,且,点N 为BC 中点,

等于( )
A .
B .
C .
D .
5. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上
的一点,圆M 为三角形12PF F 的内切圆,
PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
近线平行且距离为
2
,则双曲线C 的离心率是( )
A B .2 C D .
2
6. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2
')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 7. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,
=

(2x n +1
)(其中,{x n }是首项为1的正项数列),则x 5等于
( )
A .65
B .63
C .33
D .31
8. 给出下列两个结论:
①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;
②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;
则判断正确的是( ) A .①对②错 B .①错②对
C .①②都对
D .①②都错
9.
双曲线:的渐近线方程和离心率分别是( ) A
. B

C

D

10
.双曲线=1(m ∈Z )的离心率为( ) A

B .2
C

D .3
11.已知函数21
1,[0,)22
()13,[,1]
2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4 B
.1[,
86
C .31[,)162
D .3[,3)8
12.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),
若函数的所有极大值点都落在同一直线上,则常数c 的值是( )
A .1
B .±2 C
.或3 D .1或2
二、填空题
13.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .
14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .
15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a . 17.已知三次函数f (x )=ax 3+bx 2+cx+d
的图象如图所示,则
= .
18.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
三、解答题
19.如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于180°)到ABEF 的位置. (Ⅰ)求证:CE ∥平面ADF ;
(Ⅱ)若K 为线段BE 上异于B ,E 的点,
CE=2.设直线AK 与平面BDF 所成角为φ,当30°≤φ≤45°时,
求BK 的取值范围.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238
20.(本小题满分12分)
设p :实数满足不等式39a ≤,:函数()()32331
932
a f x x x x -=+
+无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;
(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛
⎫-+++> ⎪ ⎪⎝⎭⎝
⎭,若是t ⌝的必要不充分
条件,求正整数m 的值.
21.【南师附中2017届高三模拟二】已知函数()()3
23
131,02
f x x a x ax a =+
--+>. (1)试讨论()()0f x x ≥的单调性;
(2)证明:对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.
22.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O
为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.
23.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.
24.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.
(Ⅰ)求曲线r的方程;
(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,
(ⅰ)求证:直线CD过定点;
(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.
阿啊阿
安平县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C
【解析】解:如图所示,△BCD是圆内接等边三角形,
过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,
要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,
记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P(A)=,
即弦长超过圆内接等边三角形边长的概率是.
故选C.
【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.2.【答案】C
【解析】
由已知,由得,故选C
答案:C
3.【答案】A
【解析】解:由,得3x2﹣4x+8=0.
△=(﹣4)2﹣4×3×8=﹣80<0.
所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.
设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0
联立,得3x 2﹣4x ﹣m=0.
由△=(﹣4)2
﹣4×3(﹣m )=16+12m=0,
得m=﹣.
所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2
相切的直线方程为4x+3y ﹣=0.
所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是
=.
故选:A . 【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是
中档题.
4. 【答案】B
【解析】解: ==
=;
又,


∴.
故选B .
【点评】本题考查了向量加法的几何意义,是基础题.
5. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=的距离为
22=
,得a b =,则为等轴双曲
故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
6. 【答案】C.
【解析】由,得:,
即,令,则当时,,
即在是减函数,,
,,
在是减函数,所以由得,,
即,故选
7.【答案】D
【解析】解:由=﹣(2x n+1),
得+(2x n+1)=,
设,
以线段P n A、P n D作出图形如图,
则,
∴,∴,
∵,∴,
则,
即x n+1=2x n+1,∴x n+1+1=2(x n+1),
则{x n+1}构成以2为首项,以2为公比的等比数列,
∴x5+1=2•24=32,
则x5=31.
故选:D.
【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.
8.【答案】C
【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.
②根据逆否命题的定义可知②正确.
故选C.
【点评】考查特称命题,全称命题,和逆否命题的概念.
9.【答案】D
【解析】解:双曲线:的a=1,b=2,c==
∴双曲线的渐近线方程为y=±x=±2x;离心率e==
故选D
10.【答案】B
【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1
∵双曲线的方程是y2﹣x2=1
∴a2=1,b2=3,
∴c2=a2+b2=4
∴a=1,c=2,
∴离心率为e==2.
故选:B.
【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:
c2=a2+b2.
11.【答案】C
【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,由1324x +=,可得14x =,
由2
13x =,可得3x =(负舍),即有12111,4223
x x ≤<≤≤,即221143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
12.【答案】D
【解析】解:∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|. 当1≤x <2时,2≤2x <4,
则f (x )=f (2x )=(1﹣|2x ﹣3|),
此时当x=时,函数取极大值; 当2≤x ≤4时, f (x )=1﹣|x ﹣3|;
此时当x=3时,函数取极大值1;
当4<x ≤8时,2<≤4,
则f (x )=cf ()=c (1﹣|﹣3|), 此时当x=6时,函数取极大值c .
∵函数的所有极大值点均落在同一条直线上,
即点(,),(3,1),(6,c )共线,
∴=,
解得c=1或2.
故选D.
【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.
二、填空题
13.【答案】(﹣∞,]∪[,+∞).
【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,
∴数列{a n}是以1为首项,以为公比的等比数列,
S n==2﹣()n﹣1,
对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,
∴x2+tx+1≥2,
x2+tx﹣1≥0,
令f(t)=tx+x2﹣1,
∴,
解得:x≥或x≤,
∴实数x的取值范围(﹣∞,]∪[,+∞).
14.【答案】A<G.
【解析】解:由题意可得A=,G=±,
由基本不等式可得A≥G,当且仅当a=b取等号,
由题意a,b是互异的负数,故A<G.
故答案是:A<G.
【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.
15.【答案】19 【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.
16.【答案】1 【解析】
试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直
【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,
需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是2
12121c c
b b a a ≠=,当直线是斜截式直线方程时,两直线垂直
121-=k k ,两直线平行时,21k k =,21b b ≠.1
17.【答案】 ﹣5 .
【解析】解:求导得:f ′(x )=3ax 2
+2bx+c ,结合图象可得 x=﹣1,2为导函数的零点,即f ′(﹣1)=f ′(2)=0,

,解得
故==﹣5
故答案为:﹣5
18.【答案】 3+

【解析】解:本小题考查归纳推理和等差数列求和公式. 前n ﹣1行共有正整数1+2+…+(n ﹣1)个,

个,
因此第n 行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+.
三、解答题
19.【答案】
【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…
∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…
又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…
(Ⅱ)解:∵BE=BC=2,CE=,∴CE2
=BC2+BE2.
∴△BCE为直角三角形,BE⊥BC,…
又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…
以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),
F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).
设K(0,0,m),平面BDF的一个法向量为=(x,y,z).
由,,得可取=(1,﹣1,1),…
又=(0,﹣2,m),于是sinφ==,
∵30°≤φ≤45°,∴,即…
结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…
【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.
20.【答案】(1){}
m=.
或;(2)1
125
<<≤
a a a
【解析】
(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2
115a a a a ≤⎧⇒<⎨<>⎩
或.………………………………5分
若为真命题,p 为假命题,则2
2515a a a >⎧⇒<≤⎨
≤≤⎩
.……………………………………6分 于是,实数的取值范围为{}
125a a a <<≤或.……………………………………7分
考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 21.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤;
(3)()g a 【解析】【试题分析】(1)先对函数()()3
23
131,02
f x x a x ax a =+
--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值
()01,f =()3213122f a a a =--+=
()()2
11212
a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]
0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[
)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

证明:(1)由于()()2
3313f x x a x a =+--'()()31x x a =+-,且0a >,
故()f x 在[]0,a 上单调递减,在[
),a +∞上单调递增.
(3)由(2)知()f x 在[
)0,+∞上的最小值为()f a .
当01a <≤时,()1f a ≥-,则()g a 是方程()1f p =满足p a >的实根,
即()2
23160p a p a +--=满足p a >的实根,
所以()()314
a g a -=

又()g a 在(]
0,1上单调递增,故()()max 1g a g == 当1a >时,()1f a <-,由于()()()9
01,11112
f f a ==--<-, 故][0,0,1p ⎡⎤⊂⎣⎦.此时,()1
g a ≤.
综上所述,()g a 22.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A 1AD=,且AA 1=2,AO=1,
∴A 1O==
,…(2分)

+AD 2=AA 12,
∴A 1O ⊥AD .…(3分) 又A 1O ⊥CD ,且CD ∩AD=D , ∴A 1O ⊥平面ABCD .…(5分)
(Ⅱ)解:过O 作Ox ∥AB ,以O 为原点,建立空间直角坐标系O ﹣xyz (如图),
则A(0,﹣1,0),A
(0,0,),…(6分)
1
设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),
∵=,=(1,m+1,0),

取z=1,得=.…(8分)
又A1O⊥平面ABCD,A1O⊂平面A1ADD1
∴平面A1ADD1⊥平面ABCD.
又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,
∴CD⊥平面A1ADD1.
不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)
由题意得==,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.
23.【答案】
【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣

若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.
若p∨q为真,¬p为真,
则p为假命题,q为真命题.
∴.
∴实数m的取值范围是或.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】满分(13分).
解:(Ⅰ)由题意可知,|HF|=|HP|,
∴点H到点F(0,1)的距离与到直线l1:y=﹣1的距离相等,…(2分)
∴点H的轨迹是以点F(0,1)为焦点,直线l1:y=﹣1为准线的抛物线,…(3分)
∴点H的轨迹方程为x2=4y.…(4分)
(Ⅱ)(ⅰ)证明:设P(x1,﹣1),切点C(x C,y C),D(x D,y D).
由y=,得.
∴直线PC:y+1=x C(x﹣x1),…(5分)
又PC过点C,y C=,
∴y C+1=x C(x﹣x1)=x C x1,
∴y C+1=,即.…(6分)
同理,
∴直线CD的方程为,…(7分)
∴直线CD过定点(0,1).…(8分)
(ⅱ)由(Ⅱ)(ⅰ)P(1,﹣1)在直线CD的方程为,
得x1=1,直线CD的方程为.
设l:y+1=k(x﹣1),
与方程联立,求得x Q=.…(9分)
设A(x A,y A),B(x B,y B).
联立y+1=k(x﹣1)与x2=4y,得
x2﹣4kx+4k+4=0,由根与系数的关系,得
x A+x B=4k.x A x B=4k+4…(10分)
∵x Q﹣1,x A﹣1,x B﹣1同号,
∴+=|PQ|
=
=…(11分)
=
=,
∴+为定值,定值为2.…(13分)
【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力.。

相关文档
最新文档