盐城市九年级(上)期末数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城市九年级(上)期末数学试卷
一、选择题
1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0 B .x 2+2x +1=0
C .x 2+2x +3=0
D .x 2+2x -3=0 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )
A .5
B .4
C .3
D .2
3.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )
A .团队平均日工资不变
B .团队日工资的方差不变
C .团队日工资的中位数不变
D .团队日工资的极差不变
4.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )
A .60°
B .65°
C .70°
D .80°
5.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,
△EBF 的面积为2
ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物
线,MN 为线段.则下列说法:
①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =
3; ④点E 的运动速度为每秒2cm .其中正确的是( )
A .①②③
B .①③④
C .①②④
D .②③④
6.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为
( ) A .相交
B .相切
C .相离
D .无法确定
7.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .
23
x y = B .
32=y x
C .
23
x y = D .
23=y x
8.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )
A .180°﹣2α
B .2α
C .90°+α
D .90°﹣α 9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内
B .P 在圆上
C .P 在圆外
D .无法确定
10.方程2210x x --=的两根之和是( ) A .2-
B .1-
C .
12
D .12
-
11.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程
2(1)(1)0a x b x c -+-+=的解为( )
A .120,2x x ==
B .122,4x x =-=
C .120,4x x ==
D .122,2x x =-=
12.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )
A .100°
B .110°
C .120°
D .130°
13.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2
B .y =(x ﹣3)2+2
C .y =(x +2)2+3
D .y =(x ﹣2)2+3
14.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )
A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3 15.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是
A.相离B.相切C.相交D.无法判断
二、填空题
16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,
DC=60m,EC=50m,求得河宽AB=______m.
17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.
18.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.
19.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.
20.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.
21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 22.把抛物线2
2(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 23.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半
径是______.
24.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.
25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内
部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.
26.抛物线2
28y x x m =++与x 轴只有一个公共点,则m 的值为________. 27.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.
28.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.
29.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.
30.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.
三、解答题
31.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.
(1)求该基地这两年“早黑宝”种植面积的平均增长率;
(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?
32.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.
33.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .
(1)判断△FAG 的形状,并说明理由;
(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC . 34.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-
35.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;
(2)若AB=8,求图中阴影部分的面积.
四、压轴题
36.问题提出
(1)如图①,在ABC中,42,6,135
AB AC BAC
==∠=,求ABC的面积.
问题探究
(2)如图②,半圆O的直径10
AB=,C是半圆AB的中点,点D在BC上,且2
CD BD
=,点P是AB上的动点,试求PC PD
+的最小值.
问题解决
(3)如图③,扇形AOB的半径为20,45
AOB
∠=在AB选点P,在边OA上选点E,在边OB上选点F,求PE EF FP
++的长度的最小值.
37.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=
1
3,求sin2α的值.小娟是这样给小芸讲解的:
构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=
1
3
BC
AB
=
,可设BC=x,则AB=3x,….
【问题解决】
(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)
(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=
3
5,求sin2β的值.
38.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.
(1)若ED=BE,求∠F的度数:
(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.
39.如图,在边长为5的菱形OABC中,sin∠AOC=4
5
,O为坐标原点,A点在x轴的正半
轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:
(1)当CP⊥OA时,求t的值;
(2)当t<10时,求点P的坐标(结果用含t的代数式表示);
(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.
40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.
(1)当点B移动到使AB:OA=:3时,求的长;
(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.
(3)连接PQ,试说明3PQ2+OA2是定值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】
A、△=0-4×1×1=-4<0,没有实数根;
B、△=22-4×1×1=0,有两个相等的实数根;
C、△=22-4×1×3=-8<0,没有实数根;
D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,
故选D.
【点睛】
本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.
2.D
解析:D
【解析】
【分析】
满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.
【详解】
解:根据题意得,
a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】
本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.
3.B
解析:B 【解析】 【分析】
根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】
解:调整前的平均数是:260428043004
43
⨯+⨯+⨯⨯=280;
调整后的平均数是:
260528023005
525
⨯+⨯+⨯++=280; 故A 正确;
调整前的方差是:()()()222
142602804280280430028012⎡⎤-+-+-⎣
⎦=8003;
调整后的方差是:()()()222
152602802280280530028012
⎡⎤-+-+-⎣⎦=10003; 故B 错误;
调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;
最中间两个数的平均数是:280,则中位数是280,
调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;
最中间两个数的平均数是:280,则中位数是280, 故C 正确;
调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】
此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.
4.D
解析:D 【解析】 【分析】
根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出
∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】
解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,
∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,
∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】
本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.
5.C
解析:C 【解析】 【分析】
①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得
5
3
BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】
解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,
由题意,1··( 2.5)72
1·(4)42
a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩
解得4
6a b =⎧⎨=⎩

所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,

5
3
BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,
222AB AS BS +=,
2224(63)(5)x x ∴+-=, 解得1x =或13
4
-
(舍), 5BS ∴=,3SD =,3AS =,
3sin 5
AS ABS BS ∴∠=
=故③错误, 5BS =,
5 2.5k ∴=, 2/k cm s ∴=,故④正确,
故选:C .
【点睛】
本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.
6.B
解析:B
【解析】
【分析】
根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.
【详解】
∵圆心到直线的距离5cm=5cm ,
∴直线和圆相切,
故选B .
【点睛】
本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.
7.D
解析:D
【解析】
【分析】
根据比例的性质,把等积式写成比例式即可得出结论.
【详解】
A.由内项之积等于外项之积,得x :3=y :2,即
32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32
x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即
32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即
23=y x
,故D 符合题意; 故选:D .
【点睛】
本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.
8.D
解析:D
【解析】
连接OC ,则有∠BOC=2∠A=2α,
∵OB=OC ,∴∠OBC=∠OCB ,
∵∠OBC+∠OCB+∠BOC=180°,
∴2∠OBC+2α=180°,
∴∠OBC=90°-α,
故选D.
9.C
解析:C 【解析】 【分析】
点到圆心的距离大于半径,得到点在圆外.
【详解】 ∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,
∴点P 在圆外.
故选:C.
【点睛】
此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.
10.C
解析:C
【解析】
【分析】
利用两个根和的关系式解答即可.
【详解】
两个根的和=
1122b a , 故选:C.
【点睛】
此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a
+=-=. 11.C
解析:C
【解析】
【分析】
设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.
【详解】
解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-
则方程变为20at bt c ++=
∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,
∴关于t 的方程20at bt c ++=的解为1
1t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3
解得:10x =,24x =,
故选C .
【点睛】
此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.
12.C
解析:C
【解析】
【分析】
直接利用圆周角定理求解.
【详解】
解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,
∴∠AOC=2∠ABC=2×60°=120°.
故选:C .
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
13.A
解析:A
【解析】
【分析】
直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,
再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.
故选:A .
【点睛】
解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.14.B
解析:B
【解析】
【分析】
本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.
【详解】
∵抛物线y=﹣(x+1)2+m,如图所示,
∴对称轴为x=﹣1,
∵A(﹣2,y1),
∴A点关于x=﹣1的对称点A'(0,y1),
∵a=﹣1<0,
∴在x=﹣1的右边y随x的增大而减小,
∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,
∴y1>y2>y3,
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.
15.C
解析:C
【解析】
试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,
∵⊙O的半径为6,圆心O到直线l的距离为5,
∴6>5,即:d<r.
∴直线l与⊙O的位置关系是相交.故选C.
二、填空题
16.100
【解析】
【分析】
由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
【详解】
解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△E
解析:100
【解析】
【分析】
由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
【详解】
解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△ECD,
∴AB BD EC CD
=,

BD EC AB
CD

=,
解得:AB=12050
60

=100(米).
故答案为100.
【点睛】
本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.
17.【解析】
试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,
∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.
考点:1.圆周角定理;2.解直角三角形
解析:1 3
【解析】
试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,
AC=2,∴cosD=cosA=AC
AB
=
2
6
=
1
3
.故答案为
1
3

考点:1.圆周角定理;2.解直角三角形.
18.【解析】
【分析】
根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.
【详解】
解:连接OA,OB,OC,AB,OA与BC交于D点
∵正
解析:2 3π
【解析】
【分析】
根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.
【详解】
解:连接OA,OB,OC,AB,OA与BC交于D点
∵正六边形内接于O,
∴∠BOA=∠AOC=60°,OA=OB=OC=4,
∴∠BOC=120°,OD⊥BC,BD=CD
∴∠OCB=∠OBC=30°,
∴OD=11
22
OB OA DA ,
∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,
∴图中涂色部分的面积等于扇形AOB的面积为:
2
6022 3603π
π

=.
故答案为:2
3π.
【点睛】
本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.
19.15
【解析】
【分析】
由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.
【详解】
解:∵比例尺为1:500000,量得两地的距离
解析:15
【解析】
【分析】
由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.
【详解】
解:∵比例尺为1:500000,量得两地的距离是3厘米,
∴A、B两地的实际距离3×500000=1500000cm=15km,
故答案为15.
【点睛】
此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.
20.-1<x<3
【解析】
【分析】
根据图象,写出函数图象在y=3下方部分的x的取值范围即可.
【详解】
解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,
故答案为:-1<x<3.
【点睛
解析:-1<x<3
【解析】
【分析】
根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.
【详解】
解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,
故答案为:-1<x <3.
【点睛】
本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.
21.2π
【解析】
分析:根据弧长公式可得结论.
详解:根据题意,扇形的弧长为=2π,
故答案为:2π
点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.
解析:2π
【解析】
分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为
1203180
π⨯=2π, 故答案为:2π
点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 22.【解析】
【分析】
根据二次函数图象的平移规律平移即可.
【详解】
抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是

故答案为:.
【点睛】
本题主要考查二次函
解析:22(1)2y x =+-
【解析】
【分析】
根据二次函数图象的平移规律平移即可.
【详解】
抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是
22(12)13y x =-++-
即22(1)2y x =+-
故答案为:22(1)2y x =+-.
【点睛】
本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 23.3
【解析】
【分析】
由题意连接OA ,根据切线的性质得出OA⊥PA,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.
【详解】
解:连接OA ,
∵PA 切⊙O 于点A ,
∴OA
解析:3
【解析】
【分析】
由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.
【详解】
解:连接OA ,
∵PA 切⊙O 于点A ,
∴OA ⊥PA ,
∴∠OAP=90°,
∵∠APO=45°,
∴OA=PA=3,
故答案为:3.
【点睛】
本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的
半径,构造定理图,得出垂直关系.
24.140°.
【解析】
【分析】
根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.
【详解】
∵点O是△ABC
解析:140°.
【解析】
【分析】
根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.
【详解】
∵点O是△ABC的内切圆的圆心,
∴OB、OC为∠ABC和∠ACB的角平分线,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠A=100°,
∴∠ABC+∠ACB=180°-100°=80°,
∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)=40°,
∴∠BOC=180°-40°=140°.
故答案为:140°
【点睛】
本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.
25.【解析】
【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧
2
【解析】
【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,
AB===PAB PBC
∠=∠,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°
的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.
【详解】
∵90ACB ∠=︒,3AC =,3BC =
, ∴()22223323AB AC BC =+=+=
∴∠CAB=30°,∠ABC=60°
∵PAB PBC ∠=∠,∠PAB+∠PAC=30°
∴∠ACB+∠PAC+∠PBC=∠APB=120°
∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小
∴CO ⊥AB ,∠COB=60°,∠ABO=30°
∴OB=2,∠OBC=90°
∴()2222237OC OB BC =+=
+= ∴72CP OC OP =-=
-
故答案为72-.
【点睛】
此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.
26.8
【解析】
试题分析:由题意可得,即可得到关于m 的方程,解出即可.
由题意得,解得
考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x
解析:8
【解析】
试题分析:由题意可得,即可得到关于m的方程,解出即可.
由题意得,解得
考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.
27.120°.
【解析】
试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形
解析:120°.
【解析】
试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.
考点:旋转对称图形.
28.【解析】
【分析】
根据几何概率的求解公式即可求解.
【详解】
解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积
∴飞镖落在阴影部分的概率是,
故答案为.
【点睛】
此题主要
解析:1 3
【解析】
【分析】
根据几何概率的求解公式即可求解.
【详解】
解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积
∴飞镖落在阴影部分的概率是31 93 ,
故答案为
13
. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.
29..
【解析】
【分析】
根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.
【详解】
平均数等于总和除以个数,所以平均数.
【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:
mx ny m n
++. 【解析】
【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.
【详解】 平均数等于总和除以个数,所以平均数mx ny m n
+=
+. 【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 30.2
【解析】
【分析】
根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.
【详解】
当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时,
,即
解析:
【解析】
【分析】
根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a
+=-
即可. 【详解】
当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,
=0∆,即2220=0b a -,
解得b =﹣a 或b =(舍去),
原方程可化为ax 2﹣+5a =0,
则这两个相等实数根的和为
故答案为:
【点睛】
本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

三、解答题
31.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元
【解析】
【分析】
(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.
【详解】
(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=
解得10.440%x ==,2 2.4x =-(不合题意,舍去)
答:该基地这两年“早黑宝”种植面积的平均增长率为40%.
(2)设售价应降低y 元,则每天可售出(20050)y +千克
根据题意,得(2012)(20050)1750y y --+=
整理得,2430y y -+=,解得11y =,23y =
∵要减少库存
∴11y =不合题意,舍去,∴3y =
答:售价应降低3元.
【点睛】
本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.
32.【解析】
【分析】
如图,把(0,6)代入y =2x 2+bx ﹣6可得b 值,根据二次函数解析式可得点C 坐标,令y=0,解方程可求出x 的值,即可得点A 、B 的坐标,利用△ABC 的面积=
12
×AB×OC ,即可得答案.
【详解】
如图,
∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,
解得:b=﹣4,
∴抛物线的表达式为:y=2x2﹣4x﹣6;
∴点C(0,﹣6);
令y=0,则2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3,
∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,
∴△ABC的面积=1
2
×AB×OC=
1
2
×4×6=12.
【点睛】
本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.
33.(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=52
3

【解析】
【分析】
(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;
(2)成立,同(1)的证明方法即可得答案;
(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角
形的性质得到AF=BF=1
2
BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD
=12,AB=13ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.
【详解】
(1)△FAG等腰三角形;理由如下:
∵BC为直径,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵AE AB
=,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(2)成立,理由如下:
∵BC为直径,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵AE AB
=,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,
∴AF=BF,
∵AF=FG,
∴BF=GF,即F为BG的中点,
∵△BAG为直角三角形,
∴AF=BF=1
2
BG=13,
∵DF=5,
∴AD=AF﹣DF=13﹣5=8,
∴在Rt△BDF中,BD12,
∴在Rt△BDA中,AB=
∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,
∴BC
BA

AB
DB

12
, ∴BC =
523, ∴⊙O 的直径BC =
523
. 【点睛】 本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.
34.(1)1233x x =-=-;(2)122,33
x x =
= 【解析】
【分析】
(1)根据配方法即可求解;
(2)根据因式分解法即可求解.
【详解】
(1)2620x x ++= 2697x x ++=
2(3)7x +=
3x +=
1233x x =-=-.
(2)2(3)3(3)x x x -=-
2(3)3(3)0x x x ---=
(23x)(x 3)0--=,
2-3x=0或x-3=0 ∴122,33
x x =
= 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.
35.(1)见解析; (2)83
π 【解析】
【分析】
(1)连接OC ,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD ,∠ACO=∠A ,得出∠ACO=∠BCD ,证出∠DCO=90°,则CD ⊥OC ,即可得出结论;。

相关文档
最新文档