高中物理电磁感应现象易错题知识归纳总结含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁感应现象易错题知识归纳总结含答案
一、高中物理解题方法:电磁感应现象的两类情况
1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,
cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:2
2012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
2.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.
(1)求棒MN 的最大速度v m ;
(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.
(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)
【答案】(1)25m /s m v = (2)Q =5 J (3)405m x = 【解析】 【分析】 【详解】
(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R
=
联立上述式子,有:222B L at
F ma R
=+
代入数据解得:F =0.5N 5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W
棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:
0m m
P
BI L v -= 2m
m BLv I R
=
代入数据解得:25m/s m v =
(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=
设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211
222
m Q mv mv '=-⨯ 代入数据解得:Q =5J ;
(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v
对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t
对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R
==
由法拉第电磁感应定律得:BLx
E t
= 又2BLx
q R
=
代入数据解得:405m x =
3.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:
(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -⨯ 【解析】 【分析】 【详解】
(1)感应电动势:10.2
10000.00200.82
B E n n S V t t ∆Φ∆-===⨯⨯=∆∆; (2)电路电流120.8
0.1134
E I A r R R =
==++++,电阻2R 两端电压
220.140.4U IR V ==⨯=,
电容器所带电荷量65
230104 1.210Q CU C --==⨯⨯=⨯,S 断开后,流经2R 的电量为
41.210C -⨯;
【点睛】
本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.
4.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:
(1)棒进入磁场前,回路中的电动势E 大小;
(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.
【答案】(1)0.04 V ; (2)0.04 N , I =22Bv t
R
;
【解析】 【分析】 【详解】
⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E =
=0.04V
⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V
根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m =
=0.2A
根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i =
=
(其中,1s≤t≤
+1s )
即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】
注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.
5.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;
(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .
【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】
(1)当棒ab 达到最大速度时,对ab 和cd 的整体:
20.2N F mg ==
(2) ab 棒由静止到最大速度通过ab 棒的电荷量
q It = 22BLx E t
I R R
== 解得
10.20.1
C 0.05C 220.2
BLx q R ⨯⨯=
==⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg
由闭合电路欧姆定律知
2E
I R
=
棒ab 切割磁感线产生的感应电动势
E=BLv m
代入数据解得
v m =1m/s
ab 棒由静止到最大速度过程中,由能量守恒定律得
()21
2
m F mg x mv Q -+=
代入数据解得
Q =5×10-3J
6.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd ,线框质量为m,电阻为R,边长为L ,有yi 方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L ,左边界与ab 边平行,线框水平向右拉力作用下垂直于边界线穿过磁场区.
(1)若线框以速度v 匀速穿过磁场区,求线框在离开磁场时七两点间的电势差; (2)若线框从静止开始以恒定的加速度a 运动,经过h 时间七边开始进入磁场,求cd 边将要进入磁场时刻回路的电功率;
(3)若线框速度v 0进入磁场,且拉力的功率恒为P 0,经过时间T ,cd 边进入磁场,此过程中回路产生的电热为Q ,后来ab 边刚穿出磁场时,线框速度也为v 0,求线框穿过磁场所用的时间t. 【答案】(1)(2)
(3)
【解析】 【分析】 【详解】
(1)线框在离开磁场时,cd 边产生的感应电动势 E=BLv 回路中的电流
则ab 两点间的电势差 U=IR ab =BLv (2)t 1时刻线框速度 v 1=at 1
设cd 边将要进入磁场时刻速度为v 2,则v 22-v 12=2aL 此时回路中电动势 E 2=BLv 2
回路的电功率
解得
(3)设cd 边进入磁场时的速度为v ,线框从cd 边进入到ab 边离开磁场的时间为△t ,则 P 0T=(mv 2−m v 02)+Q P 0△t=m v 02-mv 2 解得
线框离开磁场时间还是T ,所以线框穿过磁场总时间t=2T+△t=+T
【点睛】
本题电磁感应中电路问题,要熟练运用法拉第电磁感应定律切割式E=Blv ,欧姆定律求出电压.要抓住线框运动过程的对称性,分析穿出磁场时线框的速度,运用能量守恒列式求时间.
7.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .求:此过程中,
(1)导体棒刚开始运动时的加速度a (2)导体棒速度的最大值v m (3)导体棒中产生的焦耳热Q (4)流过电阻R 的电量q 【答案】(1)F mg a m μ-= (2)22
()()
m F mg r R v B d μ-+= (3){2221()()[]2r F mg r R Q FL mgL m r R B d μμ-+⎫=--⎬
+⎭
(4)BLd
q R r =+ 【解析】
(1)导体棒刚开始运动时,水平方向只受拉力F 和摩擦力作用,则F-μmg=ma,解得
F mg
a m
μ-=
(2)杆受到的安培力:F B =BId=22 m
B d v R r
+,
杆匀速运动时速度最大,由平衡条件得:F=F B +f ,
即:F=22 m
B d v R r
++μmg , 解得:()()22
m F mg r R v B d μ-+=
;
(3)开始到达到最大速度的过程中,由能量守恒定律得:FL-μmgL=Q+1
2
mv m 2, 导体棒上产生的热流量:Q R =
r
R r
+Q , 解得:Q R = r R r + [(F-μmg )L-22
44
()()2m F mg R r B d
μ-+]; (4)电荷量:()E BdL BdL
q I t t t R r R r t
R r ==
=⨯=+++; 【点睛】当杆做匀速运动时速度最大,应用平衡条件、安培力公式、能量守恒定律即可正确解题.分析清楚杆的运动过程,杆做匀速运动时速度最大;杆克服安培力做功转化为焦耳热,可以从能量角度求焦耳热.
8.如图所示,间距为
L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,
左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.
【答案】(1)12B Lv r ;2122B B L v
r -mgsin β(2)22222
1
sin m g r B L α 【解析】 【分析】
(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv① 导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r
=
② 联立①②式解得流过导体棒cd 的电流大小为:12B Lv
I r
=③ 导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:
21212sin ?sin 2B B L v
f m
g F mg r
ββ=-=-
⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L v
f F m
g mg r
ββ=-=-⑥
(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦
流过导体棒ab 的电流大小为:0
02E I r
=
⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨ 导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:022
12sin mgr v B L α
=
此时cd 棒消耗的电功率为:22220
22
1sin m g r P I R B L
α
== 【点睛】
本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.
9.如图,光滑的平行金属导轨水平放置,导轨间距为L ,左侧接一阻值为R 的电阻,导轨其余部分电阻不计。
矩形区域abfe 内存在垂直轨道平面向下的有界匀强磁场,磁感应强度大小为B ,一质量为m 的金属棒MN 置于导轨上,连人电路部分的电阻为r ,与导轨垂直且接触良好。
金属棒受到一个水平拉力作用,从磁场的左边界由静止开始作匀加速直线运动,加速度大小为a 。
棒运动到cd 处撤去外力,棒继续运动到磁场右边界ef 处恰好静止。
已知ac=bd=x 1,求:
(1)金属棒在区域abdc 内切割磁感线时产生的感应电动势E 随位移x (相对b 点)的表达式; (2)撤去外力后继续运动到ef 的位移x 2;
(3)金属棒整个运动过程中电阻R .上的最大热功率。
【答案】(1)()120
E BL ax
x x = (2)1
2()2m R r ax x +=
(3)
2212
2()ax B L P R R r =+
【解析】 【详解】
(1)金属棒产生的感应电动势
E BLv =
金属棒由静止开始作匀加速直线运动,则有
22v ax =
联立得
()120E BL ax
x x =
(2)当位移为x 1时,有
112v ax =回路总电阻
R R r =+总
根据动量定理得
10BIL t mv -∆=-
通过金属棒的电荷量q I t =∆, 又有
2BLx q R r R r
φ∆=
=++ 解得
1
2()2m R r ax x +=
(3)金属棒运动到cd 时电动势最大
12E BL ax =
热功率
2P I R =
回路电流
E I R r
=
+ 电阻R 的最大热功率 22
122()
ax B L P R R r =+ 答案:(1)()120E BL ax x x = (2)1222()2m R r ax x B L
+= (3)22
12
2()ax B L P R R r =+
10.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m ,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻;质量为m =0.2kg 、阻值r =0.5Ω的匀质金属棒ab 放在两导轨上,距离导轨最上端为L 2=4m ,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.(g =10m /s 2)
(1)保持ab 棒静止,在0~4s 内,通过金属棒ab 的电流多大?方向如何?
(2)为了保持ab 棒静止,需要在棒的中点施加了一平行于导轨平面的外力F ,求当t =2s 时,外力F 的大小和方向;
(3)5s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2.4m ,求金属棒此时的速度及下滑到该位置的过程中在电阻R 上产生的焦耳热.
【答案】(1)0.5A (2)0.75N (3)1.5J
【解析】
【分析】
【详解】
(1)在0~4s内,由法拉第电磁感应定律:
由闭合电路欧姆定律:
(2)当t=2s时,ab棒受到沿斜面向上的安培力
对ab棒受力分析,由平衡条件:
解得:
方向沿导轨斜面向上.
(3)ab棒沿导轨下滑切割磁感线产生感应电动势,有:
产生的感应电流
棒下滑至受到稳定时,棒两端电压也恒定,此时ab棒受力平衡,有:
解得:
由动能定理得:
得:
故。