北师大版数学八下优辅难题培优新编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版数学八下优辅
难题培优新编
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
29级初二下学期数学优辅(四)——图形的变换
1.(2016四川达州第15题)如图,P 是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.
2. 如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为()
A.5 B.13 C.5 D.6
3. 如图,边长为6的等边三角形ABC 中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是
4. 如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于
5. 如图,△AOB中,∠AOB=90°,
AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为
6. 如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点
P2013的坐标为
7. 如图,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为
8.如图所示,在正方形网格中,图①经过平变换可以得到图②;图③
是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”)
9. 如图,在平面直角坐标系中,△A′B′C′是由△ABC经过平移,翻折等变换得到的,其中点P与P′是一对对应点.若点P的坐标为(a,b),则点P′的坐标为(用含a、b的代数式表示).
10. 如图,△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到△A1B1C的位置,A1B1交直线CA于点D.若AC=6,BC=8,当线段CD的长为时,△A1CD是等腰三角形.
11. 如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AK= 12. 如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF 的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.(1)在图1中,DE交AB于M,DF交BC 于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB 交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD 交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
13. 如图,等腰直角△ABC中,∠
ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;
(2)当AB=4,AP:PC=1:3时,求PQ 的大小;
(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.14. 课题学习
问题背景:
甲、乙、丙三名同学探索课本上一道题:如图1,E是边长为a的正方形ABCD 中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形
任务要求:
(1)请你在图1中画出旋转后的图形甲、乙、丙三名同学又继续探索:在正方形ABCD中,∠EAF=45°,点F为BC上一点,点E为DC上一点,∠EAF的两边AE、AF分别与直线BD交于点M、N.连接EF
甲发现:线段BF,EF,DE之间存在着关系式EF=BF+DE;
乙发现:△CEF的周长是一个恒定不变的值;
丙发现:线段BN,MN,DM之间存在着关系式BN2+DM2=MN2(2)现请也参与三位同学的研究工作中来,你认为三名同学中哪个的发现是正确的,并说明你的理由.。