七年级下册期末试卷测试题(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册期末试卷测试题(Word 版 含解析)
一、选择题
1.4的平方根为()
A .2
B .2±
C .4
D .4±
2.下列运动属于平移的是( )
A .汽车在平直的马路上行驶
B .吹肥皂泡时小气泡变成大气泡
C .铅球被抛出
D .红旗随风飘扬 3.在平面直角坐标系中,下列点中位于第四象限的是( ) A .()0,3
B .()2,1-
C .()1,2-
D .()1,1-- 4.下列命题中是假命题的是( )
A .对顶角相等
B .两直线平行,同位角互补
C .在同一平面内,经过一点有且只有一条直线与已知直线垂直
D .平行于同一直线的两条直线平行
5.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:
①ACB E ∠=∠;②DF 平分ADC ∠;③BFD BDF ∠=∠;④ABF BCD ∠=∠中,正确的有( )
A .1个
B .2个
C .3个
D .4个 6.下列结论正确的是( )
A .64的立方根是±4
B .﹣18
没有立方根 C .立方根等于本身的数是0
D .327-=﹣3
7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )
A .62°
B .48°
C .58°
D .72°
8.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,
()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )
A .1009
B .1010
C .1011
D .1012
二、填空题
9.0.0081的算术平方根是______
10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.
12.如图,己知AB ∥CD .OE 平分∠AOC ,OE ⊥OF ,∠C =50°,则∠AOF 的度数为___.
13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12
BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.
14.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x≤
3722
-的最大整数,则M +N 的平方根为________.
15.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ . 16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.
三、解答题
17.计算:
(1)3181624
-+-; (2)1333⎛⎫+ ⎪⎝
⎭. 18.求下列各式中x 的值:
(1)23126x -=
(2)()3
180x --=
19.如图,∠1+∠2=180°,∠C =∠D .求证:AD //BC .
证明:∵∠1+∠2=180°,∠2+∠AED =180°,
∴∠1=∠AED ( ),
∴AC // ( ),
∴∠D =∠DAF ( ).
∵∠C =∠D ,
∴∠DAF = (等量代换).
∴AD //BC ( ).
20.如图,ABC 的顶点坐标分别为:(4,5)A ,(1,1)B ,(5,2)C ,将ABC 平移得到A B C ''',使点A 的对应点为(2,1)A '--.
(1)A B C '''可以看作是由ABC 先向左平移 个单位,再向下平移 个单位得到的; (2)在图中作出A B C ''',并写出点B 、C 的对应点B '、'C 的坐标;
(3)求A B C '''的面积.
21.若整数m 的两个平方根为63a -,22a -;b 为89的整数部分.
(1)求a 及m 的值;
(2)求275m b ++的立方根.
二十二、解答题
22.观察下图,每个小正方形的边长均为1,
(1)图中阴影部分的面积是多少?边长是多少?
(2)估计边长的值在哪两个整数之间.
二十三、解答题
23.已知,AB ∥CD ,点E 为射线FG 上一点.
(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .
(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.
24.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒
(1)求A ∠的度数.
(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.
25.模型与应用.
(模型)
(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.
(应用)
(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 的度数为 .
(3)如图④,已知AB ∥CD ,∠AM 1M 2的角平分线M 1 O 与∠CM n M n -1的角平分线M n O 交于点O ,若∠M 1OM n =m °.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n -1的度数.(用含m 、n 的代数式表示)
26.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,
90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.
(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.
(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=
(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.
(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.
(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据平方根的定义,如果一个数的平方等于a ,则a ±.
【详解】
解:因为22=4,(-2)2=4,
所以4的平方根是2±,
故选B.
【点睛】
本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.
2.A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;
B 、吹肥皂泡时小气泡变成大气泡,不属于平移
解析:A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;
C 、铅球被抛出是旋转与平移组合,故C 选项不符合;
D 、随风摆动的红旗,不属于平移,故D 选项不符合.
故选:A .
【点睛】
此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.
【详解】
解:A 、(0,3)在y 轴上,故本选项不符合题意;
B 、(2,1)-在第二象限,故本选项不符合题意;
C 、(1,2)-在第四象限,故本选项符合题意;
D 、(1,1)--在第三象限,故本选项不符合题意.
故选:C .
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.
4.B
【分析】
根据对顶角的性质、平行线的性质、平行公理判断即可.
【详解】
解:A 、对顶角相等,是真命题;
B 、两直线平行,同位角相等,故原命题是假命题;
C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;
D 、平行于同一直线的两条直线互相平行,是真命题,
故选:B .
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.B
【分析】
根据平行线的性质求出ACB E ∠=∠,根据角平分线定义和平行线的性质求出
ABF CBF ADC EDC ∠=∠=∠=∠,推出//BF DC ,再根据平行线的性质判断即可.
【详解】
∵//BC DE ,
∴ACB E ∠=∠,∴①正确;
∵//BC DE ,
∴ABC ADE ∠=∠,
∵BF 平分ABC ∠,DC 平分ADE ∠, ∴12
ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠, ∴ABF CBF ADC EDC ∠=∠=∠=∠,
∴//BF DC ,
∴BFD FDC ∠=∠,
∴根据已知不能推出ADF CDF ∠=∠,∴②错误;③错误;
∵ABF ADC ∠=∠,ADC EDC ∠=∠,
∴ABF EDC ∠=∠,
∵//DE BC ,
∴BCD EDC ∠=∠,
∴ABF BCD ∠=∠,∴④正确;
即正确的有2个,
故选:B .
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.
6.D
【分析】
利用立方根的定义及求法分别判断后即可确定正确的选项.
【详解】
解:A 、64的立方根是4,原说法错误,故这个选项不符合题意;
B 、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;
C 、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;
D 3,原说法正确,故这个选项符合题意;
故选:D .
【点睛】
本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.
7.B
【分析】
先根据平行线的性质求出∠CED ,再根据三角形的内角和等于180°即可求出∠CDE .
【详解】
解:∵DE ∥AF ,∠CAF =42°,
∴∠CED =∠CAF =42°,
∵∠DCE =90°,∠CDE +∠CED +∠DCE =180°,
∴∠CDE =180°-∠CED -∠DCE =180°-42°-90°=48°,
故选:B .
【点睛】
本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.
8.B
【分析】
根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则,,,,,,,,由此可知当n 为偶数时;,,,,可得 ,,可以得到,由此求解即可.
解析:B
【分析】
根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2
n n a =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可.
【详解】
解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),
∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶
数时2n n a =
, ∴2020202010102
a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,
∴可以得到21210n n a a -++=,
∴201920210a a +=,
∴2019202020211010a a a ++=,
故选B .
【点睛】
本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解.
二、填空题
9.3
【分析】
根据算术平方根的性质解答即可.
【详解】
解:,
0.09的算术平方根是0.3.
故答案为:0.3.
【点睛】
本题考查了算术平方根,解题的关键是化简后再求算术平方根.
解析:3
【分析】
根据算术平方根的性质解答即可.
【详解】
0.00810.09=,
0.09的算术平方根是0.3.
故答案为:0.3.
【点睛】
本题考查了算术平方根,解题的关键是化简后再求算术平方根.
10.【分析】
如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质
解析:()4,3-
【分析】
如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ ,∠PAQ =90°,由于点P 坐标已知,故可求出点A 的坐标,进而可求出点Q 坐标.
【详解】
解:如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,
设直线y=x -1交x 轴于点B ,交y 轴于点C ,则点B (1,0)、点C (0,﹣1), ∴OB=OC =1,∴∠OBC =45°,∴∠PAB=45°,
∵P 、Q 关于直线y=x -1对称,∴AP=AQ ,∠PAB =∠QAB =45°,∴∠PAQ =90°,∴AQ ⊥x 轴,
∵P (﹣2,3),且当y =3时,3=x ﹣1,解得x =4,∴A (4,3),∴AD =3,PA =6=AQ ,∴DQ =3,∴点Q 的坐标是(4,﹣3).
故答案为:(4,﹣3).
【点睛】
本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 11.【解析】
已知∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以
BC=CD+DB=1+2=3.
解析:【解析】
已知∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE =1;因30B DE AB ∠=︒⊥,,根据30°直角三角形的性质可得BD =2DE =2,所以BC=CD+DB =1+2=3. 12.115°
【分析】
要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE=∠AOC ,再利用平行线的性质得到∠C=∠AOC 即可求解.
【详解】
解:∵AB ∥CD
解析:115°
【分析】
要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE =∠AOC ,再利用平行线的性质得到∠C =∠AOC 即可求解.
【详解】
解:∵AB ∥CD ,∠C =50°,
∴∠C =∠AOC =50°,
∵OE 平分∠AOC , ∴12
AOE COE AOC ===∠∠∠25°, ∵OE ⊥OF ,
∴∠EOF =90°,
∴∠AOF =∠AOE +∠EOF =115°,
故答案为:115°.
【点睛】
本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.
13.35°或75°或125°
【分析】
由于EF 不与BC 平行,则分EF ∥AB 和EF ∥AC ,画出图形,结合折叠和平行线的性质求出∠BDE 的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折
解析:35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折叠可知:∠DEF=∠DEB,
∴∠BDE=∠DEB,又∠B=30°,
∴∠BDE=1
(180°-30°)=75°;
2
当EF∥AC时,
如图,∠C=∠BEF=50°,
由折叠可知:∠BED=∠FED=25°,
∴∠BDE=180°-∠B=∠BED=125°;
如图,EF∥AC,
则∠C=∠CEF=50°,
由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,
则∠CED+50°=180°-∠CED,
解得:∠CED=65°,
∴∠BDE=∠CED-∠B=65°-30°=35°;
综上:∠BDE的度数为35°或75°或125°.
【点睛】
本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】
解:∵M36
a<a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x372-
∴N=2,
∴M+N的平方根为:4±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
15.(6,2)或(4,2)
【分析】
根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A 的左边与右边两种情况讨论求出点C的横坐标,从而得解.
【详解】
∵点A(1,2),AC∥x轴,
解析:(6,2)或(-4,2)
【分析】
根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.
【详解】
∵点A(1,2),AC∥x轴,
∴点C的纵坐标为2,
∵AC=5,
∴点C在点A的左边时横坐标为1-5=-4,
此时,点C的坐标为(-4,2),
点C在点A的右边时横坐标为1+5=6,
此时,点C的坐标为(6,2)
综上所述,则点C的坐标是(6,2)或(-4,2).
故答案为(6,2)或(-4,2).
【点睛】
本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.
16.(1010,1)
【分析】
根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.
【详解】
解:由图可知A4,A8都在x轴上,
解析:(1010,1)
【分析】
根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用
2020÷4=505,可得出点A2021的坐标.
【详解】
解:由图可知A4,A8都在x轴上,
∵蚂蚁每次移动1个单位,
∴OA4=2,OA8=4,
∴A4(2,0),A8(4,0),
∴OA4n=4n÷2=2n,
∴点A4n的坐标为(2n,0).
∵2020÷4=505,
∴点A2020的坐标是(1010,0).
∴点A2021的坐标是(1010,1).
故答案为:(1010,1).
【点睛】
本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.
三、解答题
17.(1)0.5;(2)4
【分析】
(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.
【详解】
解:(1);
(2).
【点睛】
本题考查实数
解析:(1)0.5;(2)4
【分析】
(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;
(2)根据实数的混合运算法则进行求解.
【详解】
解:(1
3
24
2
=-+-0.5
=;
(2
31
=+4
=.
【点睛】
本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1);(2)
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵


∴;
(2)解:∵


∴.
解析:(1)3x =±;(2)3x =
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;
(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵23126x -=
∴2327x =
∴29x =
∴3x =±;
(2)解:∵()3
180x --=
∴()318x -= ∴12x -=
∴3x =.
【点睛】
本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.
19.同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:12180∠+∠=︒,2180AED ∠+∠=︒,
1AED ∴∠=∠(同角的补角相等),
//AC DE ∴(内错角相等,两直线平行),
D DAF ∴∠=∠(两直线平行,内错角相等),
C D ∠=∠,
DAF C ∴∠=∠(等量代换),
//AD BC ∴(同位角相等,两直线平行).
故答案为:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;
C ∠;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
20.(1)6;6;(2)图见解析,,;(3)
【分析】
(1)根据平移的性质,由对应点的坐标即可得到平移的方式;
(2)根据平移的方式,即可画出平移后的图形.
(3)利用间接求面积的方法,即可求出三角形
解析:(1)6;6;(2)图见解析,(5,5)B -'-,(1,4)C -'-;(3)132 【分析】
(1)根据平移的性质,由对应点的坐标即可得到平移的方式;
(2)根据平移的方式,即可画出平移后的图形.
(3)利用间接求面积的方法,即可求出三角形的面积.
【详解】
解:(1)∵(4,5)A 平移后对应点为(2,1)A '--,
∴A B C '''可以看作是由ABC 先向左平移6个单位,再向下平移6个单位得到的 故答案为:6;6;
(2)作出ΔA B C '''如图所示.
∴点B 、C 的对应点B '、C '的坐标分别为:(5,5)B -'-,(1,4)C -'-;
(3)将三角形ΔA B C '''补成如图所示的正方形,则其面积为:
11113443414132222
A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】
本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形.
21.(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a 值,从而得到m ;
(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,
解析:(1)a =4,m =36;(2)6
【分析】
(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;
(2b 值,代入求出275m b ++,从而得到275m b ++的立方根.
【详解】
解:(1)∵整数m 的两个平方根为63a -,22a -,
∴63220a a -+-=,
解得:4a =,
∴222426a -=⨯-=,
∴m =36;
(2)∵b ∴<
∴910<,
∴b =9,
∴275275369216m b ++=+⨯+=,
∴275m b ++的立方根为6.
【点睛】
本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间
【分析】
(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可
解析:(1)图中阴影部分的面积17;(2)边长的值在4与5之间
【分析】
(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;
(2
【详解】
(1)由图可知,图中阴影正方形的面积是:5×5−1442=17
则阴影正方形的边长为:17
答:图中阴影部分的面积17,边长是17
(2)∵161725<<
所以4<17<5
∴边长的值在4与5之间;
【点睛】 本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算.
二十三、解答题
23.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°
【分析】
(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;
(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,
180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;
(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.
【详解】
解:(1)过E 作//EF AB ,
//AB CD ,
//EF CD ∴,
25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,
70AED AEH DEH ∴∠=∠+∠=︒,
故答案为:70︒;
(2)EAF AED EDG ∠=∠+∠.
理由如下:
过E 作//EM AB ,
//AB CD ,
//EM CD ∴,
180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,
180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,
EAF AED EDG ∴∠=∠+∠;
(3):1:2EAP BAP ∠∠=,
设EAP x ∠=,则3BAE x ∠=,
32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,
又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,
22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,
224CDE EDK x ∴∠=∠=-︒,
//AB CD ,
EHC EAF AED EDG ∴∠=∠=∠+∠,
即33224x x =︒+-︒,解得28x =︒,
28226EDK ∴∠=︒-︒=︒,
1802632122EKD ∴∠=︒-︒-︒=︒.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
24.(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1)60A ∠=;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=
【分析】
(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得
2APB ADB ∠=∠,即可完成求解;
(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得
ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.
【详解】
(1)∵BC ,BD 分别评分ABP ∠和PBN ∠, ∴1122
CBP ABP DBP PBN ∠=∠∠=∠,, ∴2ABN CBD ∠=∠
又∵60CBD ∠=,
∴120ABN ∠=
∵//AM BN ,
∴180A ABN ∠+∠=
∴60A ∠=;
(2)∵//AM BN ,
∴APB PBN ∠=∠,ADB DBN ∠=∠
又∵BD 平分PBN ∠
∴2PBN DBN ∠=∠,
∴2APB ADB ∠=∠;
∴APB ∠与ADB ∠之间的数量关系保持不变;
(3)∵//AD BN ,
∴ACB CBN ∠=∠
又∵ACB ABD =∠∠,
∴CBN ABD ∠=∠,
∵ABC CBN ABD DBN ∠+∠=∠+∠
∴ABC DBN ∠=∠
由(1)可得60CBD ∠=,120ABN ∠= ∴()112060302
ABC ∠=⨯-=. 【点睛】
本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.
25.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°
【详解】
【模型】
(1)证明:过点E 作EF ∥CD ,
∵AB ∥CD ,
∴EF ∥AB ,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900°, 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C M n O=∠M n OR
∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,
∴∠A M1O+∠CM n O=∠M1OM n=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CM n M n-1=2∠CM n O,
∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
26.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=1
2∠FGQ,∠HFA=1
2
∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=1
2
∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=1
2∠FGQ=1
2
(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

相关文档
最新文档