2020-2021初三数学上期末第一次模拟试题含答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初三数学上期末第一次模拟试题含答案(1)
一、选择题
1.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,
()1212122(2)2x x x x x x -+--+3=-,则k 的值( )
A .0或2
B .-2或2
C .-2
D .2 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A .y =﹣2(x +1)2+1
B .y =﹣2(x ﹣1)2+1
C .y =﹣2(x ﹣1)2﹣1
D .y =﹣2(x +1)2﹣1 3.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )
A .若1a =-,函数的最大值是5
B .若1a =,当2x ≥时,y 随x 的增大而增大
C .无论a 为何值时,函数图象一定经过点(1,4)-
D .无论a 为何值时,函数图象与x 轴都有两个交点
4.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )
A .25°
B .30°
C .50°
D .55°
5.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )
A .6
B .8
C .10
D .12
6.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )
A .AC BC A
B A
C = B .2·BC AB BC = C .51AC AB -=
D .0.618≈BC AC
7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )
A .x(x -1)=2070
B .x(x +1)=2070
C .2x(x +1)=2070
D .(1)2
x x -=2070 8.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )
A .15
B .18
C .20
D .24
9.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )
A .4m 或10m
B .4m
C .10m
D .8m 10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°
B .54°
C .72°
D .108° 11.二次函数y=3(x –2)2–5与y 轴交点坐标为( )
A .(0,2)
B .(0,–5)
C .(0,7)
D .(0,3) 12.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )
A .22︒
B .52︒
C .60︒
D .82︒
二、填空题
13.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).
14.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.
15.如图,AB 为O e 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O e 的半径为______.
16.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画»AC
,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)
17.如图,在Rt △ABC 中,∠ACB =90°,CB =4,以点C 为圆心,CB 的长为半径画弧,
与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面
积为_____.
18.二次函数22(1)
3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是
_____. 19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、
B 、
C 、
D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.
20.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.
三、解答题
21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
22.关于x 的一元二次方程230x x k -+=有实数根.
(1)求k 的取值范围;
(2)如果k 是符合条件的最大整数,且一元二次方程()2
130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.
23.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:
(1)本次一共调查了_________名学生;
(2)请将条形统计图补充完整;
(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
24.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE ⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
25.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,
∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
将()1212122(2)2=3x x x x x x -+--+-化简可得,()2
1212124423x x x x x x +-+=--, 利用韦达定理,()2
142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.
【详解】
解:由韦达定理,得: 12x x +=k -1,122x x k +=-,
由()1212122(2)23x x x x x x -+--+=-,得:
()21212423x x x x --+=-,
即()21212124423x x x x x x +-+=--,
所以,()2142(2)3k k ----+=-,
化简,得:24k =,
解得:k =±2,
因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,
所以,△=()214(2)k k ---+=227k k +-〉0,
k =-2不符合,
所以,k =2
故选:D.
【点睛】
本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 2.B
解析:B
【解析】
【详解】
∵函数y=-2x 2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B .
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
3.D
解析:D
【分析】
将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.
【详解】
当1a =-时,()2
24125=--+=-++y x x x ,
∴当2x =-时,函数取得最大值5,故A 正确;
当1a =时,()224125y x x x =--=--,
∴函数图象开口向上,对称轴为2x =,
∴当2x ≥时,y 随x 的增大而增大,故B 正确;
当x=1时,44=--=-y a a ,
∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;
当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;
故选D.
【点睛】
本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 4.C
解析:C
【解析】
试题解析:∵CC′∥AB ,
∴∠ACC′=∠CAB=65°,
∵△ABC 绕点A 旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C .
5.D
解析:D
【解析】
【分析】
连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.
【详解】
连接AO 、BO 、CO ,
∵AC 是⊙O 内接正四边形的一边,
∴∠AOC =360°÷4=90°,
∵BC 是⊙O 内接正六边形的一边,
∴∠BOC=360°÷6=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∴n=360°÷30°=12;
故选:D.
【点睛】
本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.
6.B
解析:B
【解析】
【详解】
∵AC>BC,
∴AC是较长的线段,
根据黄金分割的定义可知:AC BC
AB AC
==51
2
≈0.618,
故A、C、D正确,不符合题意;
AC2=AB•BC,故B错误,符合题意;
故选B.
7.A
解析:A
【解析】
【分析】
【详解】
解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,
∴全班共送:(x﹣1)x=2070,
故选A.
【点睛】
本题考查由实际问题抽象出一元二次方程.
8.C
解析:C
【解析】
【分析】
连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定
理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据
△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.
【详解】
∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,
∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,
∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又
∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.
【点睛】
本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.
9.C
解析:C
【解析】
【分析】
设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.
【详解】
设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,
根据题意列出方程x(28-2x)=80,
解得x1=4,x2=10
因为8≤x<14
∴与墙垂直的边x为10m
故答案为C.
【点睛】
本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.
10.C
解析:C
【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是360
5
=72度,
故选C.
11.C
解析:C
【解析】
【分析】
由题意使x=0,求出相应的y的值即可求解.
【详解】
∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).
故选C.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.
12.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得
∠'的度数.
A CO
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
二、填空题
13.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能
解析:不可能
【解析】
根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.
14.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四
边形BDFE=BD×OE=2×2=
解析:4
【解析】
【分析】
由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.
【详解】
令y=0,则:x=±1,令x=0,则y=2,
则:OB=1,BD=2,OB=2,
S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.
故:答案为4.
【点睛】
本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.
15.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:
解析:5
【解析】
【分析】
连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.
【详解】
解:连接OD,
∵CD⊥AB于点E,
∴DE=CE= 1
2
CD=
1
2
×8=4,∠OED=90°,
由勾股定理得:2222
345
OE DE
+=+=,
即⊙O的半径为5.
故答案为:5.
【点睛】
本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.16.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利
解析:1 2π
【解析】
【分析】
如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】
解:如图,设图中③的面积为S3.
由题意:
2
13
2
23
1
··2
4
1
··1
2
S S
S S
π
π
⎧
+=
⎪⎪
⎨
⎪+=
⎪⎩
,
可得S1﹣S2=1
2π,
故答案为1
2π.
【点睛】
本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.
17.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB=2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD =60°∵CB=4∴AB=8AC=4∴阴影部
解析:
8
83
3
π
.
【解析】
【分析】
根据题意,用ABC
n的面积减去扇形CBD的面积,即为所求.【详解】
由题意可得,
AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,
则∠A=30°,∠B=∠BCD=60°,
∵CB=4,
∴AB=8,AC=3,
∴阴影部分的面积为:
2
443604
2360
π
⨯⨯⨯
-=
8
83
3
π
,
故答案为:83
π. 【点睛】 本题考查不规则图形面积的求法,属中档题.
18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤
【解析】
【分析】
先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.
【详解】
解:∵抛物线的解析式是22(1)3y x =+-,
∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,
且当2x =-时,1y =-;当x =1时,y =5;
∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,
∴当21x -<≤时,y 的取值范围是:35y -≤≤.
故答案为:35y -≤≤.
【点睛】
本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键. 19.20【解析】【分析】抛物线的解析式为y=x2-6x-
16可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0
解析:20
【解析】
【分析】
抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.
【详解】
抛物线的解析式为y=x 2-6x-16,
则D (0,-16)
令y=0,解得:x=-2或8,
函数的对称轴x=-
2b a
=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10,
圆的半径为12AB=5, 在Rt △COM 中,
OM=5,OM=3,则:CO=4,
则:CD=CO+OD=4+16=20.
故答案是:20.
【点睛】
考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.
20.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1
解析:2-1
【解析】
由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .
Q AB =2,勾股定理得∴AE =AD=1,∴DB =2-1
22112122
ABE DBF S S S AE BD =-=-=-V V 阴影.
三、解答题
21.(1)见解析;(2)
13
. 【解析】
【分析】
(1)画树状图列举出所有情况;
(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
【详解】
解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
【点睛】
本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.
22.(1)94k ≤
;(2)m 的值为32
. 【解析】
【分析】
(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;
(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.
【详解】
解:(1)根据题意得()2340k ∆=--≥, 解得94
k ≤; (2)k 的最大整数为2,
方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,
∵一元二次方程()2
130m x x m -++-=与方程230x x k -+=有一个相同的根, ∴当1x =时,1130m m -++-=,解得32
m =; 当2x =时,()41230m m -++-=,解得1m =,
而10m -≠,
∴m 的值为
32
. 【点睛】
本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.
23.(1)50;(2)见解析;(3)
16
. 【解析】
【分析】
(1) 本次一共调查:15÷30%;(2)先求出B对应的人数为:50﹣16﹣15﹣7,再画图;(3)先列表,再计算概率.
【详解】
(1)本次一共调查:15÷30%=50(人);
故答案为50;
(2)B对应的人数为:50﹣16﹣15﹣7=12,
如图所示:
(3)列表:
A B C D
A A
B A
C AD
B BA B
C BD
C CA CB CD
D DA DB DC
∴P(选中A、B)=
2
12
=
1
6
.
【点睛】
本题考核知识点:统计初步,概率.解题关键点:用列表法求概率.
24.(1)证明见解析;(2)阴影部分的面积为
8
83
3
π
.
【解析】
【分析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD ﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,
∵AC平分∠BAE,∴∠OAC=∠CAE,
∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,
∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,
∴CD=2222
8443
-=-=
DO OC
∴S△OCD=
434
22
⋅⨯
=
CD OC
=83,∵∠D=30°,∠OCD=90°,
∴∠DOC=60°,∴S扇形OBC=1
6
×π×OC2=
8
3
π,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣8
3
π
,
∴阴影部分的面积为83﹣8
3
π
.
25.(1)证明见解析;(2)阴影部分面积为4
3 3
π-
【解析】
【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;
(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,
∠AOC=120°,BC=2,由勾股定理可知:3OAC的面积以及扇形OAC的面积即可求出阴影部分面积.
【详解】(1)如图,连接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BCD=∠BAC,
∴∠BCD=∠OCA,
∵AB是直径,
∴∠ACB=90°,
∴∠OCA+OCB=∠BCD+∠OCB=90°
∴∠OCD=90°
∵OC是半径,
∴CD是⊙O的切线
(2)设⊙O的半径为r,
∴AB=2r,
∵∠D=30°,∠OCD=90°,
∴OD=2r,∠COB=60°
∴r+2=2r,
∴r=2,∠AOC=120°
∴BC=2,
∴由勾股定理可知:AC=23,
易求S△AOC=1
2
×23×1=3
S扇形OAC=12044 3603
ππ
⨯
=,
∴阴影部分面积为4
3 3
π
-.
【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.。