乌鲁木齐市初中毕业生学业水平测试数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX 年乌鲁木齐市初中毕业生学业水平测试
数学试卷(问卷)
注意事项:
1.本卷共4页,满分150分,考试时间120分钟.考试时可使用计算器.
2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试卷指定的位置上.
3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试卷上.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚.
4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效.在草稿纸、本试卷上答题无效.
5.作图可先用2B 铅笔绘出图,确定后必须用0.5毫米的黑色字迹的签字笔描黑.
6.考试结束后,将本试卷和答题卡一并回.
一、选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求.
1.在0
,1,2-这四个数中负整数是 A.2- B. 0
C.-
D. 1
2.如图1是由五个相同的小正方体组成的几何体,则它的左视图是
3.“十二五”期间,新疆将建成横贯东西、沟通天山的“十”字形高速公路主骨架,全疆高 速公路总里程突破4 000km ,交通运输条件得到全面改善,将4 000用科学记数法可以表 示为
A.24010⨯
B. 3410⨯
C. 40.410⨯
D. 4
410⨯
4.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种 电子产品的标价为
A. 26元
B. 27元
C. 28元
D. 29元 5.已知整式2
5
2
x x -
的值为6,则2256x x -+的值为 A. 9 B. 12 C. 18 D. 24
6.如图2,在平面直角坐标系中,点A B C 、、的坐标为 (1,4)、(5,4)、(1、2-),则ABC △外接圆的圆心 坐标是
A.(2,3)
B.(3,2)
C.(1,3)
D.(3,1)
图
1
图2
7.有若干张面积分别为22a b ab 、、的正方形和长方形纸片,阳阳从中抽取了1张面积为2
a 的正方形纸片,4张面积为a
b 的长方形纸片,若他想拼成一个大正方形,则还需要抽取 面积为2
b 的正方形纸片
A. 2张
B.4张
C.6张
D.8张
8.
A. 13,11
B. 50,35
C. 50,40
D. 40,50
9.如图3,四边形OABC
为菱形,点A B 、在以点O 为圆心的DE 上,若312OA =
∠=∠,,则扇形ODE 的面积为 A.
3π2 B. 2π C.
5
π2
D. 3π 10.
将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构 成一个正六边形,则这个正六边形的面积为
A.2cm 2
B.4cm 2
C.8
cm 2 D.2
二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卡的相应位置处.
11.=_____________.
12.如图4,AB 是O ⊙的直径,C D 、为O ⊙上的两点, 若35CDB ∠=°,则ABC ∠的度数为__________. 13.在数轴上,点A B 、对应的数分别为2,
5
1
x x -+,且A B 、 两点关于原点对称,则x 的值为___________.
14.已知点1(1)A y -,,2(1)B y ,,3(2)C y ,在反比例函数(0)k
y k x
=
<的图象上,则 123y y y 、、的大小关系为_________(用“>”或“<”连接).
15.暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日 本馆和瑞士馆中预约两个馆重点参观,想用抽签的方式来作决定,于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则他恰好抽中中国馆、澳大利亚馆的概率是___________.
三、解答题(本大题Ⅰ—Ⅴ,共9小题,共90分)解答时对应在答题卡的相应位置处写出文字说明、证明过程或演算过程.
Ⅰ.(本题满分15分,第16题6分,第17题9分)
16.解不等式组1
(4)223(1) 5.
x x x ⎧+<⎪⎨⎪-->⎩,
A
D
O E
C
B
图3
C
O
图4
B
D
A
17.先化简,再求值:
21111211
a a a a a a ++-÷+-+-
,其中a =
Ⅱ.(本题满分30分,第18题8分,第19题、20题,每题11分)
18.如图5,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交 BC 于点F . 求证:(1)ABE CDF △≌;
(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.
19.如图6,在平面直角坐标系中,直线4
:43
l y x =-+分别交x 轴、y 轴于点A B 、,将 AOB △绕点O 顺时针旋转90°后得到A OB ''△. (1)求直线A B ''的解析式;
(2)若直线A B ''与直线l 相交于点C ,求A BC '△的面积.
F D 图5 E
C A B 图6
C
A
y x
O
l
A '
B '
20.某过街天桥的截面图为梯形,如图7所示,其中天桥斜面CD
的坡度为i =
(i =DE 与水平宽度CE 的比),CD 的长为10m ,天桥另一斜面AB
坡角ABG ∠=45°.
(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;
(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°, 方便过路群众,改建后斜面为AF .试计算此改建需占路面的宽度FB 的长(结果精确0.01)
Ⅲ.(本题满分23分,第21题11分,第22题12分)
21.20XX 年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重 要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施 维护和建设,以后逐年增加,计划到20XX 年当年用于城市基础设施维护与建设资金达到 8.45亿元. (1)求从20XX 年至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率; (2)若20XX 年至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,
预计我市这三年用于城市基础设施维护和建设资金共多少亿元?
22.20XX 年6月4日,乌鲁木齐市政府通报了首府环境质量公报,其中空气质量级别分布统计图如图8所示,请根据统计图解答以下问题: (1)写出乌鲁木齐市全年三级轻度污染天数:
(2)求出空气质量为二级所对应扇形圆心角的度数(结果保留到个位);
(3)若到20XX 年,首府空气质量良好(二级及二级以上)的天数与全年天数(20XX 年是闰年,全年有366天)之比超过85%,求20XX 年空气质量良好的天数要比至少增加多少天?
F A
B G D E C
图7
图
8
Ⅳ.(本题满分10分)
23.已知二次函数2(0)y ax bx c a =++≠的图象经过(00)(1)O M ,,,1和()(0)N n n ≠,0 三点.
(1)若该函数图象顶点恰为点M ,写出此时n 的值及y 的最大值;
(2)当2n =-时,确定这个二次函数的解析式,并判断此时y 是否有最大值; (3)由(1)、(2)可知,n 的取值变化,会影响该函数图象的开口方向.请你求出n 满足 什么条件时,y 有最小值?
Ⅴ.(本题满分12分)
24.如图9,边长为5的正方形OABC 的顶点O 在坐标原点处,点A C 、分别在x 轴、y 轴 的正半轴上,点E 是OA 边上的点(不与点A 重合),EF CE ⊥,且与正方形外角平分 线AC 交于点P .
(1)当点E 坐标为(30),
时,试证明CE EP =; (2)如果将上述条件“点E 坐标为(3,0)”改为“点E 坐标为(t ,0)(0t >)”,结论
CE EP =是否仍然成立,请说明理由;
(3)在y 轴上是否存在点M ,使得四边形BMEP 是平行四边形?若存在,用t 表示点M 的坐标;若不存在,说明理由.
20XX 年乌鲁木齐市初中毕业生学业水平测试
数学试题参考答案及评分标准
一、选择题(本大题共10小题,每小题4分,共40分)
二、填空题(本大题共5小题,每小题4分,共20分)
11.0 12.55° 13. 1 14. 231y y y <<或132y y y >> 15.
115
三、解答题(本大题1-V 题,共9小题,共90分) 16.解:由(1)得:440x x +<<, ····································································· 2′
由(2)得:3351x x x -+><-, ······························································ 4′ ∴不等式组的解集是:1x <- ····································································· 6′ 17.解:原式=
()2
111
11
1a a a a a +--++-· ······································································· 3′ =
1111
a a -+- ·················································································· 4′ =22
1
a -- ························································································ 7′
当a ==2
2
2
1
-=-- ···················································· 9′ 18. 证明:(1)∵四边形ABCD 是平行四边形,∴A C AB CD ABC ADC ∠=∠=∠=∠,,
∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF ∠=∠ ························ 2′
∴()ABE CDF ASA △≌△ ······························································ 4′ (2)由ABE CDF △≌△,得AE CF = ···················································· 5′
在平行四边形ABCD 中,AD BC AD BC =∥, ∴DE BF DE BF =∥,
∴四边形EBFD 是平行四边形 ··························································· 6′ 若BD EF ⊥,则四边形EBFD 是菱形 ·················································· 8′
19.解:(1)由直线l :4
43
y x =-
+分别交x 轴、y 轴于点A B 、, 可知;()()3004A B ,,,
∵AOB △绕点O 顺时针旋转90°而得到A OB ''△ ∴AOB A OB ''△≌△
故()()0340A B ''-,,, ·
············································································· 2′
设直线A B ''的解析式为y kx b =+(0k k b ≠,,为常数)
∴有340b k b =-⎧⎨+=⎩解之得:343
k b ⎧
=⎪⎨⎪=-⎩
∴直线A B ''的解析式为3
34
y x =- ······························································ 5′ (2)由题意得:
334
443y x y x ⎧
=-⎪⎪⎨⎪=-+⎪⎩解之得:84251225x y ⎧=⎪⎪⎨⎪=-
⎪⎩
∴84122525C ⎛⎫- ⎪⎝⎭, ······································ 9′ 又7A B '=
∴184294
722525
A C
B S =
⨯⨯=△′ ····································································· 11′ 20.解:(1)在Rt AGB △中,45ABG ∠=° ∴AG BG =
∴AB 的坡度=1AG
BG
= ·············································································· 2′ (2)在Rt DEC △
中,∵tan 3
DE C EC ∠=
=
∴30C ∠=°
又∵10CD = ∴()1
5m 2
DE CD =
= ····················································· 5′ (3)由(1)知,5AG BG ==,在Rt AFG △中,30AFG ∠=°
tan AG AFG FG ∠=
,
5
5
FB =+ ······················································· 7′
解得5 3.66FB =≈ ·································································· 10′
答:改建后需占路面宽度约为3.66m. ··················································· 11′
21.解:(1)设从2010至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长
率为x ,由题意得:()2
518.45x += ··························································· 3′ 解得,1230% 2.3x x ==-,(不合题意舍去) ·············································· 6′
答:从2010至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率为30%. ········································································································ 7′
(2)这三年共投资()5518.45x +++
()5510.38.4519.95=+++=(亿元) ·
·············································· 10′
答:预计我市这三年用于城市建设基础设施维护和建设资金共19.95亿元 ··········· 11′ 22. 解:(1)21.6%36578.8479⨯=≈(天) ····················································· 2′
(2)()19.0% 2.7% 3.9%21.6%360-+++⨯⎡⎤⎣⎦°
226.08=°
226≈° ························································································ 5′ (3)设到20XX 年首府空气质量良好的天数比增加了x 天,由题意得:
()
9.0%36562.8%36585%365x +⨯+⨯> ············································· 8′
49.03x > ················································································· 10′ 由题意知x 应为正整数,∴50x ≥ ················································ 11′ 答:20XX 年首府空气质量良好的天数比首府空气质量良好的天数至少增加50天. ···················································································· 12′
23.解:(1)由二次函数图象的对称性可知2n =;y 的最大值为1. ··························· 2′
(2)由题意得:1420a b a b +=⎧⎨-=⎩,解这个方程组得:13
23a b ⎧
=⎪⎪⎨⎪=⎪⎩
故这个二次函数的解析式为212
33
y x x =+ ············································· 5′ ∵
1
03
> ∴y 没有最大值. ······························································ 6′ (3)由题意,得21
a b an bn +=⎧⎨+=⎩,整理得:()210an a n +-= ·························· 8′
∵0n ≠ ∴10an a +-=
故()11n a -=,
而1n ≠ 若y 有最小值,则需0a > ∴10n -> 即1n <
∴1n <时,y 有最小值. ··································································· 10′
24.解:(1)过点P 作PH x ⊥轴,垂足为H
∴2190∠=∠=° ∵EF CE ⊥ ∴34∠=∠ ∴COE EHP △∽△
∴
CO EH
OE HP
= ····································· 2′ 由题意知:5CO = 3OE = 2EH EA AH HP =+=+ ∴523HP HP
+= 得3HP = A
R
H
O
M C
y B
G
P
F
x
∴5EH = ···························································································· 3′ 在Rt COE △和Rt EHP △中
∴CE =
EP =故CE EP = ·························································································· 5′ (2)CE EP =仍成立.
同理.COE EHP △∽△ ∴
CO EH
OE HP
= ······················································· 6′ 由题意知:5CO = OE t = 5EH t HP =-+ ∴55t HP t HP
-+= 整理得()()55t HP t t -=- ∵点E 不与点A 重合 ∴50t -≠ ∴HP t = 5EH = ∴在Rt COE △和Rt EHP △中
CE =
EP = ∴CE EP =·
············································ 5′ (3)y 轴上存在点M ,使得四边形BMEP 是平行四边形. ·································· 9′
过点B 作BM EP ∥交y 轴于点M ∴590CEP ∠=∠=° ∴64∠=∠
在BCM △和COE △中
64BC OC
BCM COE ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴BCM COE △≌△ ∴BM CE = 而CE EP = ∴BM EP =
由于BM EP ∥ ∴四边形BMEP 是平行四边形. ···································· 11′ 故BCM COE △≌△可得CM OE t == ∴5OM CO CM t =-=-
故点M 的坐标为()05t -, ·
···································································· 12′。