【2020】最新苏教版高中数学苏教版必修三学案:疑难规律方法:第二章 统 计 -含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、差别明显选分层
例2 最近网络上流行一种“QQ农场”游戏,这种游戏通过虚拟软件模拟种植与收获的过程.为了解某小区不同年龄层次的居民对此游戏的态度(小区中居民的年龄具有一定的差别),现从中抽取100人进行调查,结果如下表:
对游戏的态度
喜欢
不喜欢
不了解
人数
35
35
30
请问随机抽取这100人较合理的抽样方法是________,调查结果得出后,若想从这100人中再选取20人进行座谈,较合理的抽样方法是____________.若这个小区共有2 000人,则每个人被抽到参加座谈的可能性为________.
(3)适用范围:由于抽签法和随机数表法都要对个体进行编号,还要逐个抽取,所以抽签法适用于总体中个体的数目比较少,样本容量比较小时;随机数表法适用于总体容量较大,样本容量不大时.
在充分理解简单随机抽样方法后可得如下结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,在整个抽样过程中各个个体被抽到的可能性相同;②简单随机抽样体现了抽样的客观性与公平性;③简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等可能抽样.
二、系统抽样
(1)系统抽样广泛应用于生活实例中,也是不放回抽样.当总体中的个体数较多时,可将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样.
(2)系统抽样与简单随机抽样的联系与区别:假设要从容量为N的总体中抽取容量为n的样本,如果遇到不是整数的情况,可以采用简单随机抽样的方法从总体中剔除几个个体.由此可见,系统抽样和简单随机抽样是密不可分的,同时,系统抽样和简单随机抽样也有区别,系统抽样适用于总体中的个体比较多、且个体之间差异不太明显时,另外系统抽样中的规则是预先人为确定的.
第四步,找出与162,277,354,378,384,263对应的果汁作为样本.
点评 当总体中的个体较多,制作号签比较复杂,并且把号签搅拌均匀比较困难时,可以选用随机数表法应注意以下两点:
(1)随机数表法要求对个体编号且每个个体的号码位数必须相同.如对100个个体编号时应从00编到99(或者从001编到100),而不能用1,2,…,100.可见在总体中的个体进行编号时要视总体中个体的数目而定,但必须保证所编号码的位数一致,不允许出现不同位数的号码.
2.频率分布直方图:能够非常直观的表明数据分布的形状,很好地反映数据的变化趋势,适用于样本数据较多的情况,但是从直方图本身得不到具体的数据内容.
3.频率分布折线图:连结频率分布直方图中各小长方形上端的中点,就可以得到相应的频率分布折线图.其优点是能够清晰地反映数据的变化趋势.如果样本容量不断增加,分组的组距不断减小,那么折线图便会趋近于总体密度曲线.总体密度曲线精确地反映了总体在各个范围内取值的百分比.
答案 系统抽样 0.01
点评 当总体中个体数目较多时,首先把个体编号,进行平均分组(若不能整除,则随机剔除多余的个体),然后采用简单随机抽样的方法从第一组中抽取一个个体,即可知道应抽取的其他编号的个体.
4 解读用样本估计总体
一、用样本的频率分布估计总体分布
1.频率分布表:反映具体数据落在各个区间的频率,但不够直观、形象,不利于分析数据分布的总体态势.
2.应用茎叶图进行统计时,注意重复出现的数据要重复记录,不能遗漏.
3.样本水平的高低由其平均数决定,样本数据的稳定性与方差和标准差有关.在平均数相差不大的情况下,可以进一步借助方差或标准差来比较优劣.
解析 由于总体中个体数目较少,所以宜采用简单随机抽样的方法进行抽样.每个城市被选中的可能性均相等,均为=0.4.
答案 简单随机抽样 0.4
点评 本题中个体总数较少,使用简单随机抽样中的抽签法即可.可以直接把10个城市名分别写在10个大小相同的纸条上,将纸条放在一个盒子里摇匀,随机抽出4个即可.在整个抽样过程中可以保证每个个体被抽到的可能性相等,也可以进一步计算出相应的值.
三、数字特征在频率分布直方图中的体现
在频率分布直方图中,最高的小矩形的底边中点的横坐标即为样本数据的众数的估计值,中位数左边和右边的小矩形的面积和相等(注:这样求出的中位数是近似值);平均数的估计值等于频率分布直方图中每个小矩形的面积与其底边中点的横坐标的乘积之和.
四、特别提示
1.两类估计都具有随机性,得出的结论不一定是总体的真正的分布、均值或方差.样本质量的高低也是影响正确估计总体的重要因素.
第二步,在随机数表中任选一个数作为开始,比如第6行第1个数,取出162作为抽取的6瓶果汁中的第一个代号(见课本后的附表随机数表);
第三步,继续向右读,每次读取三位,凡不在001~400中或重复的数跳过去不读,取到末尾时转到下一行从左到右继续读数,如此下去直到得出在001到400之间的6个三位数,分别为162,277,354,378,384,263;
4.茎叶图:适用于样本中的数据较少的情况.其优点是(1)没有原始数据的丢失,所有信息均可以从茎叶图中得到,并能展示数据的分布情况;(2)便于记录和表示.缺点是当样本数据较多或数据位数较多时,就会显得不太方便.因为每一个数据都要在图中占据一定的空间,如果数据很多,枝叶就会很长.
二、用样本的数字特征估计总体的数字特征
②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践应用中更为广泛.
总之,采用什么样的抽样方法要依据研究的总体中的个体情况来确定,合理的抽样方法可以真实地反映总体的情况.否则,对总体的情况可能会形成一个错误的认识,所以针对具体问题一定要科学、合理地选择抽样方法.
【2020】最新苏教版高中数学苏教版必修三学案:疑难规律方法:第二章 统 计 -含答案
编 辑:__________________
时 间:__________________
1 感悟随机抽样
抽样是统计分析的基础.在进行统计分析时首先要收集数据,但收集全部数据有时很困难,有时还带有破坏性,如灯泡使用寿命的调查、炸弹的可靠性的分析等,因此,“抽样”是很必要的.常用的抽样方法有简单随机抽样、系统抽样和分层抽样,下面一起体会一下这三种抽样方法.
解 (1)将30瓶果汁进行编号,号码为1,2,3,…,30;
(2)将1~30这30个编号写到大小、形状都相同的号签上;
(3)将写好的号签放入一个不透明的容器中,并搅拌均匀;
(4)从容器中每次抽取一个号签,连续不放回地抽取3次,并记录下上面的编号;
(5)所得号码对应的3瓶果汁就是要抽取的样本.
点评 抽签法是简单随机抽样的一种方法,一个抽样试验是否能用抽签法,关键看两点:一是制作号签是否方便;二是号签是否容易被“搅拌均匀”.本题中,总体中个体数(30)较少,制作号签比较方便,并且容易被“搅拌均匀”,所以可以采用抽签法.
点评 要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的上述四个特点.
例2 若将例1(2)中的字眼“一次性”改为“逐个”,则该例便为简单随机抽样.即从30瓶果汁中逐个随机抽取3瓶进行质量检查.请选用合适的抽样方法,写出抽样过程.
分析 简单随机抽样分为两种:抽签法和随机数表法.当总体容量和样本容量都较小时,可采用抽签法进行抽样.
(2)从30瓶果汁中一次性随机抽取3瓶进行质量检查.
(3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛.
(4)从装有编号为1~36的大小、形状都相同的号签的盒子中逐个不放回地抽出6个号签.
分析 简单随机抽样的定义,抓住以下特点来理解:
①它要求被抽取的样本所在总体的容量确定且有限;
②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④每个个体被抽到的可能性是相同的,是等可能抽样.
(2)选定开始读的数后,读数的方向可左、可右、可上、可下,即任意方向均可.读数的方向不同可能导致不同的结果,但这一点不影响样本的公平性和合理性.
3 辨析三种抽样方法的合理选取
一、简单随机宜少量
例1 据报道,20xx年7月22日的“日全食”较为理想的观测地点有上海、重庆、苏州、杭州、合肥、武汉、宜昌、成都、乐山、嘉兴这10个城市.某天文小组从这10个城市中随机抽取4个城市进行观测,宜采用的抽样方法是______________,每个城市被选中的可能性是______________.
3.平均数:与样本中的每一个数据都有关系,反映了更多关于数据总体的信息,比较可靠.但受极端值的影响较大.
4.极差:就是一组数据中最大数与最小数的差.
5.方差:用来刻画样本数据的波动情况,充分利用了所有的数据,但与原始数据的单位不一致.方差具有非负性.
6.标准差:方差的算术平方根,与原数据的单位一致,且标准差也具有非负性.
三、大量抽取选系统
例3 20xx年春节来临之际,某超市进行促销活动,为购买商品顾客分发了编号为0000~9999的奖券,超市计划从中抽取100张作为中奖号码,较合理的抽样方法是__________,每张奖券中奖的可能性为________.
解析 由于奖券数量较大,有10 000张奖券,所以宜采用系统抽样方法进行抽取.在抽样过程中,每张奖券被抽到的可能性是相等的,均为=0.01.
三、分层抽样
分层抽样也广泛应用于生活实例中,也是一种不放回抽样.当总体中的个体比较多、且个体之间有明显差异时,应用分层抽样能使样本更加真实地反映总体的情况.在各层进行抽样时采用简单随机抽样或者系统抽样,可见分层抽样与简单随机抽样、系统抽样也是密不可分的.
在充分理解分层抽样方法后可得如下结论:
①在各层中,按照各层在总体中所占的比例进行简单随机抽样,这样可以保证每个个体等可能地被抽取.
2 例析简单随机抽样
简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.当总体中的个体数较少且抽取的样本容量较小时,常采用简单随机抽样.下面让我们一同来看如下的例题:
例1 判断下面的抽样方法是不是简单随机抽样?
(1)从不确定个体数的总体中抽取20个个体作为样本.
一、简单随机抽样
最常用的简单随机抽样方法:抽签法和随机数表法.
(1)抽签法是常见的一种抽样方法,该法既保证了抽样的随机性,又保证了样本的代表性.
(2)随机数表法:使用随机数表时,要注意随机数表中数的随机性,同时为了保证抽样的随机性,开始数的选取一定要是随机的,并且读数的方向可以任意事先约定,还要使操作方便易行.
解析 因为小区居民的年龄存在明显差异,故抽取这100人宜采用分层抽样.根据调查结果,有三种明显不同的态度,因此,选取20人参加座谈,也宜采用分层抽样.在整
个抽样过程中,每个人被抽到的可能性是相同的,
均为=0.01.
答案 分层抽样 分层抽样 0.01
点评 分层抽样的过程是先把有差别的个体进行分层,在每一层中可以采用简单随机抽样或系统抽样的方法,这样也能保证每个个体被抽到的可能性相同.
1.众数:若一组数据中有一个或几个数据出现得最多,且出现的次数一样,那么这些数据都是这组数据的众数,因此一组数据的众数可能不止一个.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数.
2.中位数:将一组数据按大小顺序依次排列,处在最中间位置的一个数据(或中间两个数据的平均数)是该组数据的中位数.
将例2中的总体容量增大,我们该如何解决呢?比如例3.
例3 现在要考察某公司生产的2.5 L的果汁质量是否达标,欲从400瓶果汁中抽取6瓶进行质量检查.请选用合适的方法抽样,并写出抽样过程.
分析 当总体容量较大,而样本容量较小时,因制签麻烦,故不宜用抽签法,可采用随机数表法.
解 选用随机数表法.
步骤如下:第一步,先将400瓶果汁编号,可以编为001,002,…,400;
解 (1)不是简单随机抽样.因为总体的个体数是不确定的,从而不能保证每个个体等可能入样.
(2)不是简单随机抽样.因为简单随机抽样的定义要求的是逐个抽取.
(3)不是简单随机抽样.因为该例是指定个子最高的5名同学参加比赛,每个个体被抽到的可能性是不同的,不是等可能抽样.
(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回地、等可能地进行抽样.
相关文档
最新文档