2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步达标测试试题(无超纲)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第二学期第二十三章概率初步达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()
A.1
2B.
1
3
C.
2
3
D.
1
6
2、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是().
A.1
5
B.
2
5
C.
3
5
D.
4
5
3、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个.A.4 B.3 C.2 D.1
4、以下事件为随机事件的是()
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是4
5、下列成语中,描述确定事件的个数是()
①守株待兔;②塞翁失马;③水中捞月;④流水不腐;⑤不期而至;⑥张冠李戴;⑦生老病死.A.5 B.4 C.3 D.2
6、下列事件中,属于必然事件的是()
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
7、下列词语所描述的事件,属于必然事件的是()
A.守株待兔B.水中捞月C.水滴石穿D.缘木求鱼
8、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后
从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:
则袋中的红球个数可能有( )
A .16个
B .8个
C .4个
D .2个
9、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )
A .两张卡片的数字之和等于1
B .两张卡片的数字之和大于1
C .两张卡片的数字之和等于6
D .两张卡片的数字之和大于7
10、下列事件中,是必然事件的是( )
A .如果a 2=b 2,那么a =b
B .车辆随机到达一个路口,遇到红灯
C .2021年有366天
D .13个人中至少有两个人生肖相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从3,π11
这四个数中选一个数,选出的这个数是无理数的概率为___. 2、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:
在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.
3、某批青稞种子在相同条件下发芽试验结果如下表:
估计这批青稞发芽的概率是___________.(结果保留到0.01)
4、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
5、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为
_________.
三、解答题(5小题,每小题10分,共计50分)
1、九(1)班为准备学校举办“我的梦●美丽中国梦”演讲比赛,通过预赛共评选出甲、乙、丙三名男生和A、B两名女生共5名推荐人选.
(1)若随机选一名同学参加比赛,求选中男生的概率.
(2)若随机选一名男生和一名女生组成一组选手参加比赛,用树状图(或列表法)表示所有可能出现的结果,并求恰好选中男生甲和女生A的概率.
2、口袋里有除颜色外其它都相同的6个红球和4个白球.
)个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件(1)先从袋子里取出m(m1
A.
①如果事件A是必然事件,请直接写出m的值.
②如果事件A是随机事件,请直接写出m的值.
(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是4
,求m的值.
5
3、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种支付方式中选一种方式进行支付,“微信”“支付宝”“银行卡”这三种支付方式分别用“A”“B”“C”表示,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
4、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中一天是星期五的概率是多少?
(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?
5、如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等(指针停在分割线上再转一次).
(1)现随机转动转盘一次,停止后,指针指向1的概率为_______.
(2)小明和小华利用这个转盘做游戏,若采用下列游规则:随机转动转盘两次、停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为对双方公平吗?请用列表或画树状图的方法说明理由.
-参考答案-
一、单选题
1、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:1 3
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
2、B
【分析】
先找出滑冰项目图案的张数,再根据概率公式即可得出答案.
【详解】
解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是2
5
;
故选:B.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
3、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
∴估计摸出黑球的概率为0.667,
则摸出绿球的概率为10.6670.333
-=,
∴袋子中球的总个数为10.3333
÷≈,
∴由此估出黑球个数为312
-=,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
4、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是4π是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、C
【分析】
根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
解①守株待兔,是随机事件;
②塞翁失马,是随机事件;
③水中捞月,是不可能事件,是确定事件;
④流水不腐,是确定事件;
⑤不期而至,是随机事件;
⑥张冠李戴,是随机事件;
⑦生老病死,是确定事件.
综上所述,③④⑦是确定事件,共3个
故选C
【点睛】
本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
6、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.守株待兔是随机事件,故该选项不符合题意;
B.水中捞月是不可能事件,故该选项不符合题意;
C.水滴石穿是必然事件,故该选项符合题意;
D.缘木求鱼是不可能事件,故该选项不符合题意.
故选:C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
8、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为1601
= 8005
,
∴20个球中有白球20×1
5
=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
9、C
【分析】
将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.
【详解】
解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;
B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;
C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;
D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a 2=b 2,那么a b =±,原说法是随机事件,故A 不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B 不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C 不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D 符合题意,
故选:D .
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
二、填空题
1、12
【分析】
确定无理数的个数,利用概率公式计算.
【详解】
解:3,π11这四个数中无理数有π ∴选出的这个数是无理数的概率为2
142=
, 故答案为:1
2.
【点睛】
此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键.
2、0.95 1.9
【分析】
(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;
(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.
【详解】
解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;
(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).
故答案为:(1)0.95;(2)1.9.
【点睛】
本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.3、0.95
【分析】
利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.
【详解】
观察表格得到这批青稞发芽的频率稳定在
948
1000
0.95附近,
则这批青稞发芽的概率的估计值是0.95,
故答案为:0.95.
【点睛】
此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.
4、1 3
【分析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.
【详解】
解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小强平局的概率为:31 93 =,
故答案为:1
3
.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5、8
【分析】
首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.
【详解】
解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,
∴摸出红球的概率为0.2,
由题意,
2
0.2
2m
=
+
,
解得:8
m=,
经检验,8
m=是原方程的解,且符合题意,
三、解答题
1、(1)3
5
;(2)
1
6
【分析】
(1)根据简单概率公式计算即可;(2)画树状图求概率即可
【详解】
解:(1)共有5人,男生有3人,则随机选一名同学参加比赛,选中男生的概率=3
5
;
(2)画树状图为:
共有6种等可能的结果数,其中选中男生甲和女生A的结果数为1,
所以恰好选中男生甲和女生A的概率=1
6
.
【点睛】
本题考查了简单概率公式求概率,树状图法求概率,掌握求概率的方法是解题的关键.
2、(1)①4;②1或2或3;(2)2
m=
【分析】
(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;
(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为6
m+.再根据概率公式,即可求解.
【详解】
解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球, ∴ 4m = ;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, ∴此时有白球 1个或2个或3个,
即m 的值为1或2或3;
(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为6m +.根据题意得:
64105
m +=, ∴2m =.
【点睛】
本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.
3、13
【分析】
根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下:
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为31 93 =.
【点睛】
本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
4、(1)2
5
;(2)
1
4
【分析】
(1)由树状图得出共有20个等可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;
(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果.
【详解】
解:(1)根据题意画图如下:
由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,
∴甲同学随机选择两天,其中有一天是星期五的概率为82 205
=;
(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),
其中有一天是星期五的结果有1个,即(星期四,星期五),
∴乙同学随机选择连续的两天,其中有一天是星期五的概率是1
4
.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5、
(1)1 3
(2)不公平,理由见解析
【分析】
(1)利用概率公式直接进行计算即可;
(2)先画树状图,得到所有的等可能的结果数与积为偶数的结果数,再利用概率公式计算即可. (1)
解:随机转动转盘一次,停止后,指针指向1的概率为:1 . 3
故答案为:1 3
(2)
解:如图,画树状图如下:
由树状图可得:所有的等可能的结果数有9个,积为偶数的结果数有5个,
所以小明胜的概率为:
5
,
9
P小华胜的概率为:
4
,
9
而54
,
99
所以游戏不公平.
【点睛】
本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“画树状图的方法”是解本题的关键.。