(人教版)重庆九年级数学上册第二十五章《概率初步》经典练习卷(答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列事件中,是随机事件的是( ) A .明天河南有新冠肺炎输入病例 B .十三个人中,有人出生在同一个月 C .地球绕着太阳转
D .掷一次骰子,向上一面的点数是7
2.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( ) A .
15
B .
25
C .
35
D .
45
3.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )
A .
14
B .
34
C .
12
D .38
4.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( ) A .只有①正确
B .只有②正确
C .①②都正确
D .①②都错误
5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的
概率为
1
3
.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次 D .中奖次数不能确定
6.如图是一个圆形的地板图案,其中大圆直径恰好等于两个小圆直径的和.若在地板上任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是( ).
A .
1
2
B .
13
C .
14
D .
1π
7.下列事件是必然事件的是( ) A .阴天一定会下雨 B .购买一张体育彩票,中奖
C .打开电视机,任选一个频道,屏幕上正在播放新闻联播
D .任意画一个三角形,其内角和是180°
8.某校食堂每天中午为学生提供A 、B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( ) A .
12
B .
13
C .
14
D .
23
9.在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为( ) A .两次求助都用在第1题 B .两次求助都用在第2题 C .在第1第2题各用一次求助
D .无论如何使用通关概率都相同
10.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )
A .
19
B .
16 C .23 D .13
11.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字
1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( ) A .
118
B .
112
C .
19
D .
16
12.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则 A .P (A )>P (B )
B .P (A )<P (B )
C .P (A )=P (B )
D .无法确定
13.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()
A.①B.②C.①③D.②③
第II卷(非选择题)
请点击修改第II卷的文字说明
参考答案
14.下列事件发生的可能性为0的是( )
A.掷两枚骰子,同时出现数字“6”朝上
B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟
C.今天是星期天,昨天必定是星期六
D.小明步行的速度是每小时50千米
15.下列说法正确的是()
A.为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力
B.若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖
C.了解无锡市每天的流动人口数,采用抽样调查方式
D.“掷一枚硬币,正面朝上”是必然事件
二、填空题
16.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01)
每批粒数n800100012001400160018002000
发芽的频数m76294811421331151817101902
发芽的频率m
n
0.9530.9480.9520.9510.9490.9500.951
17.从﹣2,﹣1,0,1
3
,1,2这六个数字中,随机抽取一个数记为a,则使得关于x的
方程
2
1
3
ax
x
+
=
-
的解为非负数,且满足关于x的不等式组
1
2
321
x a
x
⎧
->
⎪
⎨
⎪-+≤
⎩
只有三个整数解的
概率是_____.
18.从2,-18,5中任取两个不同的数分别作为点的横纵坐标,点在第二象限的概率为
___.
19.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
20.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
21.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是____.
22.如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.
23.在一个不透明的布袋中装有红色、白色玻璃球共60除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在30%左右,则口袋中白色球可能有
______个.
24.某种油菜籽在相同条件下发芽试验的结果如下:
每批粒数100400800100020004000
发芽的频数8530065279316043204
发芽的频率0.8500.7500.8150.7930.8020.801
根据以上数据可以估计,该玉米种子发芽的概率为_____(精确到0.1).
25.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为__________.
26.在一个不透明的袋子中装有除颜色外完全相同的4个红球和2个白球,摇匀后随机摸出一个球,则摸出红球的概率为_____.
三、解答题
27.图1是一枚质地均匀的骰子,每个面上的点数分别是1,2,3,4,5,6,图2是一个正五边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面朝上的点数是几,就从图中的A点开始沿着逆时针方向连续跳动几个顶点,第二次从第一次的终点开始,按第一次的方法继续…
(1)随机掷一次骰子,则棋子跳动到点C处的概率是_________.
(2)随机掷两次骰子,用列表法求棋子最终跳动到点C处的概率.
28.20届年级组董老师为学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,A盘被分成面积相等的几个扇形,B盘中蓝色扇形区域所占的圆心角是120°.同学们同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色,赢得游戏.
(1)若小蕊同学转动一次A盘,求出她转出红色的概率;
(2)若小津同学同时转动A盘和B盘,请通过列表或者树状图的方式,求出她赢得游戏的概率.
29.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
30.某大型旅游景区分4个独立区域A、B、C、D,小虎一家用了两天时间游览两个区域:第1天从4个中随机选择1个,第2天从余下的3个中再随机选择一个,如果每个独立区域被选中的机会均等.
(1)请用树状图或列表的方法表示出所有可能出现的结果;
(2)求小虎一家第一天游览A区域,第二天游览B区域的概率;
(3)求C区域被选中的概率.。