时济乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时济乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列说法中:
①-1的平方根是±1;②(-1)2的平方根是±1;③实数按性质分类分为正实数,0和负实数;④-2是-8的立方根;其中正确的个数是()
A. 0
B. 1
C. 2
D. 3
【答案】D
【考点】平方根,立方根及开立方,实数及其分类
【解析】【解答】解:①-1没有平方根,因此①错误;
②(-1)2=1,(-1)2的平方根是±1,因此②正确;
③实数按性质分类分为正实数,0和负实数,因此③正确;
④-2是-8的立方根,因此④正确
正确的有②④③
故答案为:D
【分析】根据平方根,立方根的性质,及实数的分类,对各选项逐一判断即可。
2、(2分)下列计算正确的是()
A. B. C. D. (-2)3×(-3)2=72
【答案】B
【考点】实数的运算
【解析】【解答】A、,A不符合题意;
B、,B符合题意;
C、,C不符合题意;
D、(-2)3×(-3)2=-8×9=-72,D不符合题意.
故答案为:B
【分析】(1)由算术平方根的意义可得=3;
(2)由立方根的意义可得=-2;
(3)由立方根的意义可得原式=;
(4)由平方和立方的意义可得原式=-89=-72.
3、(2分)二元一次方程组的解是()
A. B. C. D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故答案为:B.
【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值
代入方程①,就可求出x的值,即可得出方程组的解。
4、(2分)若5x+19的立方根是4,则2x+7的平方根是()
A. 25
B. -5
C. 5
D. ±5
【答案】D
【考点】平方根,立方根及开立方
【解析】【解答】解:∵5x+19的立方根是4,
∴5x+19=64,解得x=9则2x+7=2×9+7=25,
∵25的平方根是±5故2x+7的平方根是±5.故答案为:D
【分析】根据立方根的意义,5x+19的立方根是4,故5x+19就是4的立方,从而列出方程,求解得出x的值;再代入2x+7算出结果,最后求平方根。
5、(2分)如图,直线AB,CD交于O,EO⊥AB于O,∠1与∠3的关系是()
A. 互余
B. 对顶角
C. 互补
D. 相等
【答案】A
【考点】余角、补角及其性质,对顶角、邻补角
【解析】【解答】∵EO⊥AB于O,∴∠EOB=90°,∴∠1+∠3=90°,则∠1与∠3的关系是互余.故答案为:A.
【分析】根据对顶角相等得到∠2=∠3,再由EO⊥AB于O,得到∠1与∠3的关系是互余.
6、(2分)估计30的算术平方根在哪两个整数之间()
A. 2与3
B. 3与4
C. 4与5
D. 5与6
【答案】D
【考点】估算无理数的大小
【解析】【解答】解:∵25<30<36,
∴5<<6,
故答案为:D.
【分析】由25<30<36,根据算术平方根计算即可得出答案.
7、(2分)利用加减消元法解方程组,下列做法正确的是()
A. 要消去z,先将①+②,再将①×2+③
B. 要消去z,先将①+②,再将①×3-③
C. 要消去y,先将①-③×2,再将②-③
D. 要消去y,先将①-②×2,再将②+③
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:利用加减消元法解方程组,要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③.
故答案为:A.
【分析】观察方程组的特点:若要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③,即可得出做法正确的选项。
8、(2分)已知同一平面上的两个角的两条边分别平行,则这两个角()
A. 相等
B. 互补
C. 相等或互补
D. 不能确定
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图:
①∠B和∠ADC的两边分别平行,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠B=∠ADC,
②∠B和∠CDE的两边分别平行,
∵∠ADC+∠CDE=180°,
∴∠B+∠CDE=180°.
∴同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
故答案为:C
【分析】首先根据题意作图,然后由平行线的性质与邻补角的定义,即可求得同一平面上的两个角的两条边分
别平行,则这两个角相等或互补。
9、(2分)如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()
A.180°n
B.(n+1)·180°
C.(n-1)·180°
D.(n-2)·180°
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……
∵A1B∥A n C,
∴A3E∥A2D∥…∥A1B∥A n C,
∴∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….
∴∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)·180°.
故答案为:C.
【分析】过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……根据平行的传递性得A3E∥A2D∥…∥A1B∥A n C,再由平行线的性质得∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….将所有式子相加即可得证.
10、(2分)下列命题不成立的是()
A. 等角的补角相等
B. 两直线平行,内错角相等
C. 同位角相等
D. 对顶角相等
【答案】C
【考点】余角、补角及其性质,对顶角、邻补角,平行线的性质
【解析】【解答】A、同角或等角的补角相等,故A不符合题意;
B、两直线平行,内错角相等,故B不符合题意;
C、同位角不一定相等,故C符合题意;
D、对顶角相等,故D不符合题意;
故答案为:C
【分析】根据两角互补的性质可对A作出判断;根据平行线的性质可对B、C作出判断;根据对顶角的性质可对D作出判断;即可得出答案。
11、(2分)下列说法正确的是()
A. 3与的和是有理数
B. 的相反数是
C. 与最接近的整数是4
D. 81的算术平方根是±9
【答案】B
【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小
【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;
B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;
C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;
D.∵81的算术平方根是9,故错误,D不符合题意;
故答案为:B.
【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;
B.相反数:数值相同,符号相反的数,由此可判断正确;
C.根据的大小,可知其最接近的整数是3,故错误;
D.根据算术平方根和平方根的定义即可判断对错.
12、(2分)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDA 的度数等于()
A. 70°
B. 100°
C. 110°
D. 120°
【答案】A
【考点】平行线的性质
【解析】【解答】解:∵DE∥AC,
∴∠CDE=∠C=50°,
又∠CDA+∠CDE+∠BDE=180°,
∴∠CDA=180°﹣50°﹣60°=70°,
故选A.
【分析】根据两直线平行,内错角相等,求出∠CDE的度数,再根据平角的定义,可得出∠CDA+∠CDE+∠BDE=180°,然后代入计算即可求解。
二、填空题
13、(1分)请你写出三个大于1的无理数:________.
【答案】,,π
【考点】无理数的认识
【解析】【解答】写出三个大于1的无理数:,,π,
故答案为:,,π.
【分析】无理数是指无限不循环小数,则符合题意的无理数不唯一,只要大于1即可。
14、(4分)红领巾广播站每周播音时间为120分钟,下面是每个栏目的时间分配图。
从图上看播音的时间最少的是________栏目,播音的时间最多的的________栏目。
《精品习作》每周播音时间占每周播音时间的________,播音时间是________分钟。
【答案】《英语栏目》;《故事天地》;30%;36
【考点】扇形统计图
【解析】【解答】从图上看播音的时间最少的是每日《英语栏目》,播音的时间《故事天地》,《精品习作》每周播音时间占每周播音时间的30%,播音时间为120×30%=36(分钟). 故答案为:《英语栏目》;《故事天地》;30%;36.
【分析】根据各个栏目播出时间占总时间的百分率即可得出哪个栏目播的时间长,哪个栏目播的时间短,用红领巾广播站每周播音时间乘精品习作占的百分率即可解答.
15、(1分)对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.
【答案】3
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:∵x◎y=ax+by,3◎2=7,4◎(﹣1)=13,
∴,①+②×2得,11a=33,解得a=3;把a=3代入①得,9+2b=7,解得b=﹣1,
∴2◎3=3×2﹣1×3=3.
故答案为:3.
【分析】由题意根据3◎2=7,4◎(﹣1)=13知,当x=3、y=2时可得方程3a+2b=7,;当x=4、-1时,可得方
程4a-b=13,解这个关于a、b的方程组可求得a、b的值,则当x=2、y=3时,2◎3 的值即可求解。
16、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
17、(1分)已知,那么=________。
【答案】-11
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:∵,且,
∴,
∴,
∴m=-3,n=-8,
∴m+n=-11.
故答案是:-11
【分析】根据几个非负数之和为0的性质,可建立关于m、n的方程组,再利用加减消元法求出方程组的解,然后求出m与n的和。
18、(1分)下边的框图表示解不等式3-5x>4-2x 的流程,其中“系数化为1”这一步骤的依据是________.
【答案】不等式的两边同时乘以或除以一个负数,不等式方向改变;(或不等式的基本性质)
【考点】不等式及其性质
【解析】【解答】解:根据不等式的性质,“系数化为1”这一步骤的依据是性质3:不等式的两边同时乘以或除以一个负数,不等式方向改变.
故答案:不等式的两边同时乘以或除以一个负数,不等式方向改变;(或不等式的基本性质)
【分析】不等式的性质①:不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变。
不等式的性质②:不等式的两边都乘以或除以同一个正数不等号的方向不变。
不等式的性质③:不等式的两边都乘以或除以同一个负数,不等式方向改变.据此作出判断即可。
三、解答题
19、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
20、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。
21、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
22、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
23、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。
(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,
∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。
【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。
(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。
24、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
25、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。
26、(5分)把下列各数填在相应的大括号里:
,,-0.101001,,― ,0.202002…, ,0,
负整数集合:(…);
负分数集合:(…);
无理数集合:(…);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,,…);
负分数集合:(-0.101001,― ,,…);无理数集合:(0.202002…,,…);【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。
实数包括有理数和无理数。
有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。