高考复习试卷习题资料之高考数学试卷文科7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习试卷习题资料之高考数学试卷(文科)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.(5分)设集合A={1,2,3},集合B={﹣2,2},则A∩B=()
A.∅B.{2} C.{﹣2,2} D.{﹣2,1,2,3}
2.(5分)一个几何体的三视图如图所示,则该几何体可以是()
A.棱柱B.棱台C.圆柱D.圆台
3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()
A.A B.B C.C D.D
4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()
A.¬p:∃x∈A,2x∈B B.¬p:∃x∉A,2x∈B C.¬p:∃x∈A,2x∉B D.¬p:∀x∉A,2x∉B
5.(5分)抛物线y2=8x的焦点到直线的距离是()
A.B.2 C.D.1
6.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()
A.B.C.D.
7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()
A.B.
C.D.
8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,
则a﹣b的值是()
A.48 B.30 C.24 D.16
9.(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A
是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()
A. B.C. D.
10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()
A.[1,e] B.[1,1+e] C.[e,1+e] D.[0,1]
二、填空题:本大题共5小题,每小题5分,共25分.
11.(5分)lg+lg的值是.
12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=.14.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.
15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和最小的点的坐标是.
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.
17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A﹣B)cosB﹣sin (A﹣B)sin(A+C)=﹣.
(Ⅰ)求sinA的值;
(Ⅱ)若a=4,b=5,求向量在方向上的投影.
18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行次数n 输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30 14 6 10 …………2100 1027 376 697 乙的频数统计表(部分)
运行次数n 输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30 12 11 7
…………
2100 1051 696 353
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.
19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:
,其中S为底面面积,h为高)
20.(13分)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C 交于M,N两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m 的函数.
21.(14分)已知函数,其中a是实数.设A(x1,f (x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
高考数学试卷(文科)
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.(5分)设集合A={1,2,3},集合B={﹣2,2},则A∩B=()
A.∅B.{2} C.{﹣2,2} D.{﹣2,1,2,3}
【分析】找出A与B的公共元素即可求出交集.
【解答】解:∵集合A={1,2,3},集合B={﹣2,2},
∴A∩B={2}.
故选:B.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
2.(5分)一个几何体的三视图如图所示,则该几何体可以是()
A.棱柱B.棱台C.圆柱D.圆台
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由三视图知,从正面和侧面看都是梯形,
从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,
则该几何体可以是圆台.
故选:D.
【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()
A.A B.B C.C D.D
【分析】直接利用共轭复数的定义,找出点A表示复数z的共轭复数的点即可.
【解答】解:两个复数是共轭复数,两个复数的实部相同,虚部相反,对应的点关于x轴对称.
所以点A表示复数z的共轭复数的点是B.
故选:B.
【点评】本题考查复数与共轭复数的关系,复数的几何意义,基本知识的考查.
4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()
A.¬p:∃x∈A,2x∈B B.¬p:∃x∉A,2x∈B C.¬p:∃x∈A,2x∉B D.¬p:∀x∉A,2x∉B
【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.
【解答】解:∵“全称命题”的否定一定是“存在性命题”,
∴命题p:∀x∈A,2x∈B 的否定是:
¬p:∃x∈A,2x∉B.
故选:C.
【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.
5.(5分)抛物线y2=8x的焦点到直线的距离是()
A.B.2 C.D.1
【分析】由抛物线y2=8x得焦点F(2,0),再利用点到直线的距离公式可得点F(2,0)到直线的距离.
【解答】解:由抛物线y2=8x得焦点F(2,0),
∴点F(2,0)到直线的距离d==1.
故选:D.
【点评】熟练掌握抛物线的性质和点到直线的距离公式是解题的关键.
6.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()
A.B.C.D.
【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.
【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,
∴函数的周期T满足=﹣=,
由此可得T==π,解得ω=2,
得函数表达式为f(x)=2sin(2x+φ)
又∵当x=时取得最大值2,
∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z)
∵,∴取k=0,得φ=﹣
故选:A.
【点评】本题给出y=Asin(ωx+φ)的部分图象,求函数的表达式.着重考查了三角函数的图象与性质、函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.
7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()
A.B.
C.D.
【分析】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.
【解答】解:根据题意,频率分布表可得:
分组频数频率
[0,5) 1 0.05
[5,10) 1 0.05
[10,15) 4 0.20
………
[30,35) 3 0.15
[35,40) 2 0.10
合计100 1.00
进而可以作频率直方图可得:
故选:A.
【点评】本题考查频率分布直方图的作法与运用,关键是正确理解频率分布表、频率分步直方图的意义并运用.
8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,
则a﹣b的值是()
A.48 B.30 C.24 D.16
【分析】先根据条件画出可行域,设z=5y﹣x,再利用几何意义求最值,将最小值转化为y 轴上的截距最大,只需求出直线,过可行域内的点B(8,0)时的最小值,过点A(4,4)时,5y﹣x最大,从而得到a﹣b的值.
【解答】解:满足约束条件的可行域如图所示
在坐标系中画出可行域,
平移直线5y﹣x=0,经过点B(8,0)时,5y﹣x最小,最小值为:﹣8,
则目标函数z=5y﹣x的最小值为﹣8.
经过点A(4,4)时,5y﹣x最大,最大值为:16,
则目标函数z=5y﹣x的最大值为16.
z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是:24.
故选:C.
【点评】借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
9.(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A 是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原
点),则该椭圆的离心率是()
A. B.C. D.
【分析】依题意,可求得点P的坐标P(﹣c,),由AB∥OP⇒kAB=kOP⇒b=c,从而可得答案.
【解答】解:依题意,设P(﹣c,y0)(y0>0),
则+=1,
∴y0=,
∴P(﹣c,),
又A(a,0),B(0,b),AB∥OP,
∴kAB=kOP,即==,
∴b=c.
设该椭圆的离心率为e,则e2====,
∴椭圆的离心率e=.
故选:C.
【点评】本题考查椭圆的简单性质,求得点P的坐标(﹣c,)是关键,考查分析与运算能力,属于中档题.
10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()
A.[1,e] B.[1,1+e] C.[e,1+e] D.[0,1]
【分析】根据题意,问题转化为“存在b∈[0,1],使f(b)=f﹣1(b)”,即y=f(x)的图象与函数y=f﹣1(x)的图象有交点,且交点的横坐标b∈[0,1].由y=f(x)的图象与y=f ﹣1(x)的图象关于直线y=x对称,得到函数y=f(x)的图象与y=x有交点,且交点横坐标b∈[0,1].因此,将方程化简整理得ex=x2﹣x+a,记F(x)=ex,G(x)
=x2﹣x+a,由零点存在性定理建立关于a的不等式组,解之即可得到实数a的取值范围.【解答】解:由f(f(b))=b,可得f(b)=f﹣1(b)
其中f﹣1(x)是函数f(x)的反函数
因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为
“存在b∈[0,1],使f(b)=f﹣1(b)”,
即y=f(x)的图象与函数y=f﹣1(x)的图象有交点,
且交点的横坐标b∈[0,1],
∵y=f(x)的图象与y=f﹣1(x)的图象关于直线y=x对称,
∴y=f(x)的图象与函数y=f﹣1(x)的图象的交点必定在直线y=x上,
由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],
根据,化简整理得ex=x2﹣x+a
记F(x)=ex,G(x)=x2﹣x+a,在同一坐标系内作出它们的图象,
可得,即,解之得1≤a≤e
即实数a的取值范围为[1,e]
故选:A.
【点评】本题给出含有根号与指数式的基本初等函数,在存在b∈[0,1]使f(f(b))=b 成立的情况下,求参数a的取值范围.着重考查了基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征等知识,属于中档题.
二、填空题:本大题共5小题,每小题5分,共25分.
11.(5分)lg+lg的值是1.
【分析】直接利用对数的运算性质求解即可.
【解答】解:==1.
故答案为:1.
【点评】本题考查对数的运算性质,基本知识的考查.
12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【分析】依题意,+=,而=2,从而可得答案.
【解答】解:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,
∴+=,
又O为AC的中点,
∴=2,
∴+=2,
∵+=λ,
∴λ=2.
故答案为:2.
【点评】本题考查平面向量的基本定理及其意义,属于基础题.
13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=36.【分析】由题设函数在x=3时取得最小值,可得f′(3)=0,解此方程即可得出a的值.
【解答】解:由题设函数在x=3时取得最小值,
∵x∈(0,+∞),
∴得x=3必定是函数的极值点,
∴f′(3)=0,
f′(x)=4﹣,
即4﹣=0,
解得a=36.
故答案为:36.
【点评】本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.
14.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.
【分析】已知等式左边利用二倍角的正弦函数公式化简,根据sinα不为0求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,所求式子利用二倍角的正切函数公式化简后,将tanα的值代入计算即可求出值.
【解答】解:∵sin2α=2sinαcosα=﹣sinα,α∈(,π),
∴cosα=﹣,sinα==,
∴tanα=﹣,
则tan2α===.
故答案为:
【点评】此题考查了二倍角的正弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和最小的点的坐标是(2,4).
【分析】如图,设平面直角坐标系中任一点P,利用三角形中两边之和大于第三边得PA+PB+PC+PD=PB+PD+PA+PC≥BD+A C=QA+QB+QC+QD,从而得到四边形ABCD对角线的交点Q即为所求距离之和最小的点.再利用两点式方程求解对角线所在的直线方程,联立方程组求交点坐标即可.
【解答】解:如图,设平面直角坐标系中任一点P,
P到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和为:PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,
故四边形ABCD对角线的交点Q即为所求距离之和最小的点.
∵A(1,2),B(1,5),C(3,6),D(7,﹣1),
∴AC,BD的方程分别为:,,
即2x﹣y=0,x+y﹣6=0.
解方程组得Q(2,4).
故答案为:(2,4).
【点评】本小题主要考查直线方程的应用、三角形的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.
【分析】等比数列的公比为q,由已知可得,a1q﹣a1=2,4,解方程可求q,a1,然后代入等比数列的求和公式可求
【解答】解:设等比数列的公比为q,
由已知可得,a1q﹣a1=2,4
联立可得,a1(q﹣1)=2,q2﹣4q+3=0
∴或q=1(舍去)
∴=
【点评】本题主要考查了等比数列的通项公式及等差中项等基础知识,考查运算求解的能力
17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A﹣B)cosB﹣sin
(A﹣B)sin(A+C)=﹣.
(Ⅰ)求sinA的值;
(Ⅱ)若a=4,b=5,求向量在方向上的投影.
【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;
(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小,然后求解向量在方向上的投影.
【解答】解:(Ⅰ)由,
可得,
即,
即,
因为0<A<π,
所以.
(Ⅱ)由正弦定理,,所以=,
由题意可知a>b,即A>B,所以B=,
由余弦定理可知.
解得c=1,c=﹣7(舍去).
向量在方向上的投影:=ccosB=.
【点评】本题考查两角和的余弦函数,正弦定理以及余弦定理同角三角函数的基本关系式等基本知识,考查计算能力转化思想.
18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行次数n 输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30 14 6 10 …………2100 1027 376 697 乙的频数统计表(部分)
运行次数n 输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30 12 11 7
…………
2100 1051 696 353
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.
【分析】(I)由题意可知,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,当x从6,12,18,24这4个数中产生时,输出y的值为3,从而得出输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;
(II)当n=2100时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.
【解答】解:(I)当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=;
当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=;
∴输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;
(II)当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:
输出y的值为1的
频率输出y的值为2的
频率
输出y的值为3的
频率
甲
乙
比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.
【点评】本题综合考查程序框图、古典概型及其概率计算公式等基础知识,考查运算求解能力,属于基础题.
19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D 的体积.(锥体体积公式:,其中S为底面面积,h为高)
【分析】(Ⅰ)在平面ABC内,过点P作直线l和BC平行,根据直线和平面平行的判定定理可得直线l与平面A1BC平行.
等腰三角形ABC中,根据等腰三角形中线的性质可得AD⊥BC,故l⊥AD.再由AA1⊥底面ABC,可得 AA1⊥l.再利用直线和平面垂直的判定定理可得直线l⊥平面ADD1A1 .
(Ⅱ)过点D作DE⊥AC,证明DE⊥平面AA1C1C.直角三角形ACD中,求出AD的值,可得DE 的值,从而求得=的值,再根据三棱锥A1﹣QC1D的体积==••DE,运算求得结果.
【解答】解:(Ⅰ)在平面ABC内,过点P作直线l和BC平行,由于直线l不在平面A1BC内,而BC在平面A1BC内,
故直线l与平面A1BC平行.
三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.
再由AA1⊥底面ABC,可得 AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1 .
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,
∵侧棱AA1⊥底面ABC,故三棱柱ABC﹣A1B1C为直三棱柱,
故DE⊥平面AA1C1C.
直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=.
∵===1,
∴三棱锥A1﹣QC1D的体积==••DE=×1×=.【点评】本题主要考查直线和平面平行、垂直的判定定理的应用,用等体积法求三棱锥的体积,属于中档题.
21.(14分)已知函数,其中a是实数.设A(x1,f (x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
【分析】(I)根据分段函数中两段解析式,结合二次函数及对数函数的性质,即可得出函数f(x)的单调区间;
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),再利用f(x)的图象在点A,B处的切线互相垂直时,斜率之积等于﹣1,得出(2x1+2)(2x2+2)=﹣1,最后利用基本不等式即可证得x2﹣x1≥1;
(III)先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出a=lnx2+()2﹣1,最后利用导数研究它的单调性和最值,即可得出a的取值范围.
【解答】解:(I)函数f(x)的单调减区间(﹣∞,﹣1),函数f(x)的单调增区间[﹣1,0),(0,+∞);
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),
函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=﹣1,
当x<0时,(2x1+2)(2x2+2)=﹣1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,
∴x2﹣x1=[﹣(2x1+2)+(2x2+2)]≥=1,
∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2﹣x1≥1;
(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y﹣(x+2x1+a)=(2x1+2)(x﹣x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y﹣lnx2=(x﹣x2);两直线重合的充要条件是,
由①及x1<0<x2得0<<2,由①②得a=lnx2+()2﹣1=﹣ln+()2﹣1,
令t=,则0<t<2,且a=t2﹣t﹣lnt,设h(t)=t2﹣t﹣lnt,(0<t<2)
则h′(t)=t﹣1﹣=,∴h(t)在(0,2)为减函数,
则h(t)>h(2)=﹣ln2﹣1,∴a>﹣ln2﹣1,
∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(﹣ln2﹣1,+∞).
【点评】本题以函数为载体,考查分段函数的解析式,考查函数的单调性,考查直线的位置关系的处理,注意利用导数求函数的最值.
20.(13分)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C 交于M,N两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m 的函数.
【分析】(Ⅰ)将直线l方程与圆C方程联立消去y得到关于x的一元二次方程,根据两函数图象有两个交点,得到根的判别式的值大于0,列出关于k的不等式,求出不等式的解集即可得到k的取值范围;
(Ⅱ)由M、N在直线l上,设点M、N坐标分别为(x1,kx1),(x2,kx2),利用两点间的距离公式表示出|OM|2与|ON|2,以及|OQ|2,代入已知等式中变形,再利用根与系数的关系求出x1+x2与x1x2,用k表示出m,由Q在直线y=kx上,将Q坐标代入直线y=kx中表示出k,代入得出的关系式中,用m表示出n即可得出n关于m的函数解析式,并求出m的范围即可.
【解答】解:(Ⅰ)将y=kx代入x2+(y﹣4)2=4中,得:(1+k2)x2﹣8kx+12=0(*),根据题意得:△=(﹣8k)2﹣4(1+k2)×12>0,即k2>3,
则k的取值范围为(﹣∞,﹣)∪(,+∞);
(Ⅱ)由M、N、Q在直线l上,可设M、N坐标分别为(x1,kx1),(x2,kx2),
∴|OM|2=(1+k2)x12,|ON|2=(1+k2)x22,|OQ|2=m2+n2=(1+k2)m2,
代入=+得:=+,
即=+=,
由(*)得到x1+x2=,x1x2=,
代入得:=,即m2=,
∵点Q在直线y=kx上,∴n=km,即k=,代入m2=,化简得5n2﹣3m2=36,
由m2=及k2>3,得到0<m2<3,即m∈(﹣,0)∪(0,),
根据题意得点Q在圆内,即n>0,
∴n==,
则n与m的函数关系式为n=(m∈(﹣,0)∪(0,)).
【点评】此题考查了直线与圆的位置关系,涉及的知识有:根的判别式,根与系数的关系,两点间的距离公式,以及函数与方程的综合运用,本题计算量较大,是一道综合性较强的中档题.
高考理科数学试题及答案
(考试时间:120分钟试卷满分:150分)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题
目
要
求
的。
1.
31i
i
+=+() A .12i + B .12i - C .2i + D .2i -
2. 设集合{}1,2,4A =,{}
2
40x x x m B =-+=.若{}1A
B =,则B =()
A .{}1,3-
B .{}1,0
C .{}1,3
D .{}1,5
3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百
八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏
4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某
几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π
5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪
-+≥⎨⎪+≥⎩
,则2z x y =+的最小值是()
A .15-
B .9-
C .1
D .9
6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共
有()
A .12种
B .18种
C .24种
D .36种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,
2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家
说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的
S =()A .2 B .3 C .4 D .5
9. 若双曲线C:22
221x y a b
-=(0a >,0b >)的一条渐
近线被圆()2
224x y -+=所截得的弦长为2,则C 的 离心率为()
A .2
B .3
C .2
D .
23
10. 若2x =-是函数2
1`
()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()
A.1-
B.32e --
C.35e -
D.1
11. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB
与1C B 所成角的余弦值为()
A .32
B .155
C .105
D .33
12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()
A.2-
B.32-
C. 4
3
- D.1-
二、填空题:本题共4小题,每小题5分,共20分。
13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽
到的二等品件数,则D X =. 14. 函数()23sin 3cos 4
f x x x =+-
(0,2x π⎡⎤
∈⎢⎥⎣⎦
)的最大值是. 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则
11
n
k k
S ==∑. 16. 已知F 是抛物线C:2
8y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为
F N 的中点,则F N =.
三、解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2
sin()8sin 2
B
A C +=. (1)求cos B
(2)若6a c += , ABC ∆面积为2,求.b
18.(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:
1.
设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;
2.
填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法
3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P (
)
0.050 0.010 0.001 k
3.841 6.635
10.828
2
2
()()()()()
n ad bc K a b c d a c b d -=
++++
19.(12分)
如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,
o 1
,90,2
AB BC AD BAD ABC ==
∠=∠= E 是PD 的中点.
(1)证明:直线//CE 平面PAB
(2)点M 在棱PC 上,且直线BM 与底面ABCD 所
成锐角为o 45 ,求二面角MABD 的余弦值
20. (12分)
设O 为坐标原点,动点M 在椭圆C :2
212
x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =
.
(1) 求点P 的轨迹方程;
(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)
已知函数3
()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;
(2)证明:()f x 存在唯一的极大值点0x ,且2
30()2e
f x --<<.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计
22.[选修44:坐标系与参数方程](10分)
在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.
(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2
C 的直角坐标方程;
(2)设点A 的极坐标为(2,
)3
π
,点B 在曲线2C 上,求OAB ∆面积的最大值.
23.[选修45:不等式选讲](10分)
已知3
3
0,0,2a b a b >>+=,证明: (1)3
3()()4a b a b ++≥; (2)2a b +≤.
参考答案
1.D
【解析】1是方程240x x m -+=的解,1x =代入方程得3m =
∴2430x x -+=的解为1x =或3x =,∴{}13B =,
3.B
【解析】设顶层灯数为1a ,2=q ,()7171238112
-==-a S ,解得13a =.
4.B
【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.
2211
π310π3663π
22=-=⋅⋅-⋅⋅⋅=V V V 总上
5.A
【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.
6.D
【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.
由此把4份工作分成3份再全排得23
43C A 36⋅=
7.D
【解析】四人所知只有自己看到,老师所说及最后甲说的话.
甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.
【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A
【解析】取渐近线b
y x a =
,化成一般式0bx ay -=,圆心()20,
= 得224c a =,24e =,2e =.
10.C
【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角
(异面线所成角为π02⎛
⎤ ⎥⎝
⎦,)
可知112MN AB =
,1122
NP BC ==, 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,1
2
MQ AC =
ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠
14122172⎛⎫
=+-⨯⨯⋅-= ⎪⎝⎭
,=AC
则MQ =
MQP △
中,MP = 则PMN △中,222
cos 2MN NP PM PNM MH NP
+-∠=⋅⋅
222
+-=
= 又异面线所成角为π02⎛
⎤ ⎥⎝⎦
,
.。