人教全国各地中考模拟试卷数学分类:平行四边形综合题汇编含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.
(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)
(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.
①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.
②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,
【解析】
试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;
(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得
EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
③同②的方法可证.
试题解析:(1)∵AC,BD是正方形的对角线,
∴OA=OC=OB,∠BAD=∠ABC=90°,
∵OE⊥AB,
∴OE=1
2 AB,
∴AB=2OE,
(2)①AF+BF=2OE
证明:如图2,过点B作BH⊥OE于点H
∴∠BHE=∠BHO=90°
∵OE⊥MN,BF⊥MN
∴∠BFE=∠OEF=90°
∴四边形EFBH为矩形
∴BF=EH,EF=BH
∵四边形ABCD为正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠HOB=∠OBH+∠HOB=90°
∴∠AOE=∠OBH
∴△AEO≌△OHB(AAS)
∴AE=OH,OE=BH
∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.
②AF﹣BF=2OE
证明:如图3,延长OE,过点B作BH⊥OE于点H
∴∠EHB=90°
∵OE⊥MN,BF⊥MN
∴∠AEO=∠HEF=∠BFE=90°
∴四边形HBFE为矩形
∴BF=HE,EF=BH
∵四边形ABCD是正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠BOH=∠OBH+∠BOH
∴∠AOE=∠OBH
∴△AOE≌△OBH(AAS)
∴AE=OH,OE=BH,
∴AF﹣BF
=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE
③BF﹣AF=2OE,
如图4,作OG⊥BF于G,则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,
∴BF﹣AF=2OE.
2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出
PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH ,
又∵∠A=∠BQP=90°,BP=BP ,
在△ABP 和△QBP 中,
{90APB BPH
A BQP BP BP
∠=∠∠=∠=︒=,
∴△ABP ≌△QBP (AAS ),
∴AP=QP ,AB=BQ ,
又∵AB=BC ,
∴BC=BQ .
又∠C=∠BQH=90°,BH=BH ,
在△BCH 和△BQH 中,
{90BC BQ
C BQH BH BH
=∠=∠=︒=,
∴△BCH ≌△BQH (SAS ),
∴CH=QH .
∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH 的周长是定值.
(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .
又∵EF 为折痕,
∴EF ⊥BP .
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP .
又∵∠A=∠EMF=90°,
在△EFM 和△BPA 中,
{EFM ABP
EMF A FM AB
∠=∠∠=∠=,
∴△EFM ≌△BPA (AAS ).
∴EM=AP .
设AP=x
在Rt △APE 中,(4-BE )2+x 2=BE 2.
解得BE=2+28
x , ∴CF=BE-EM=2+28
x -x , ∴BE+CF=24
x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,
∴AP=2.
考点:几何变换综合题.
3.操作:如图,边长为2的正方形ABCD ,点P 在射线BC 上,将△ABP 沿AP 向右翻折,得到△AEP ,DE 所在直线与AP 所在直线交于点F .
探究:(1)如图1,当点P 在线段BC 上时,①若∠BAP=30°,求∠AFE 的度数;②若点E 恰为线段DF 的中点时,请通过运算说明点P 会在线段BC 的什么位置?并求出此时∠AFD 的度数.
归纳:(2)若点P 是线段BC 上任意一点时(不与B ,C 重合),∠AFD 的度数是否会发生变化?试证明你的结论;
猜想:(3)如图2,若点P 在BC 边的延长线上时,∠AFD 的度数是否会发生变化?试在图中画出图形,并直接写出结论.
【答案】(1)①45°;②BC 的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.
【解析】
试题分析:(1)当点P 在线段BC 上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE 度数,在三角形AFD 中,利用内角和定理求出所求角度数即可;②由E 为DF 中点,得到P 为BC 中点,如图1,连接BE 交AF 于点O ,作EG ∥AD ,得EG ∥BC ,得到AF
垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设
∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.
试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣
30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:
如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,
DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,
∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣
∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,
在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且
∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,
作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,
∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.
考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.
4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF的长.
【答案】(1)证明见解析(2)23
【解析】
(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,
∵点E为CD的中点,∴DE=EC,
在△BCE与△FDE中,
FBC BFD
DCB CDF
DE EC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BCE≌△FDE,∴DF=BC,
又∵DF∥BC,∴四边形BCDF为平行四边形,
∵BD=BC,∴四边形BCFD是菱形;
(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,
在Rt△BAD中,AB=223
BD AD
-=,
∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22
AB AF
+=23.
5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.
【答案】(1)见解析;(2)S 平行四边形ADBC =2732. 【解析】 【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=
12AB ,BE=12
AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.
(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;
【详解】
解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,
∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又
∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形; (2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=3
3,∴S 平行四边形BCFD =3×33=93,S △ACF =12×3×33=932,S 平行四边形ADBC =2732
. 【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
6.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.
(1)求证:四边形ABDF 是菱形.
(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.
【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .
【解析】
【分析】
(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.
【详解】
(1)如图1中,∵∠BCD=∠BDC,
∴BC=BD,
∵△ABC是等边三角形,
∴AB=BC,
∵AB=AF,
∴BD=AF,
∵∠BDC=∠AEC,
∴BD∥AF,
∴四边形ABDF是平行四边形,
∵AB=AF,
∴四边形ABDF是菱形.
(2)解:如图2中,∵BA=BC,BD平分∠ABC,
∴BD垂直平分线段AC,
∴DA=DC,
∴△DAC是等腰三角形,
∵AF∥BD,BD⊥AC
∴AF⊥AC,
∴∠EAC=90°,
∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,
∴∠DAE=∠DEA,
∴DA=DE,
∴△DAE是等腰三角形,
∵BC=BD=BA=AF=DF,
∴△BCD,△ABD,△ADF都是等腰三角形,
综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.
【点睛】
本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.
7.问题情境
在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.
特例探究
(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;
(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸
(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.
【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2α. 【解析】
【分析】
(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;
(2)结论:3.只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan
2α.证明方法类似;
【详解】
(1) 如图1中,连接CM .
∵∠ACD=90°,AM=MD,
∴MC=MA=MD,
∵BA=BC,
∴BM垂直平分AC,
∵∠ABC=90°,BA=BC,
∠ABC=45°,∠ACB=∠DCE=45°,
∴∠MBE=1
2
∵AB∥DE,
∴∠ABE+∠DEC=180°,
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME=3MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴MC=MA=MD.
∵BA=BC,
∴BM垂直平分AC.
∵∠ABC=120°,BA=BC,
∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.∴∠MBE=1
2
∵AB∥DE,
∴∠ABE+∠DEC=180°,
∴∠DEC=60°,
∴∠DCE=∠DEC=60°,
∴△CDE 是等边三角形,
∴EC =ED .
∵MC =MD ,
∴EM 垂直平分CD ,EM 平分∠DEC ,
∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.
在Rt △BME 中,∵∠MEB =30°,
∴ME =3MB .
(3) 如图3中,结论:EM=BM•tan 2
α.
理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,
所以EM=BM•tan
2
α. 【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
8.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF ,把纸片展平;②沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处,再折出PB 、PC ,最后用笔画出△PBC(图1).
(1)求证:图1中的
PBC 是正三角形: (2)如图2,小明在矩形纸片HIJK 上又画了一个正三角形IMN ,其中IJ=6cm ,
且HM=JN .
①求证:IH=IJ
②请求出NJ 的长;
(3)小明发现:在矩形纸片中,若一边长为6cm ,当另一边的长度a 变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a 的取值范围.
【答案】(1)证明见解析;(2)①证明见解析;②12-63(3)33<a <43,a >43
【解析】
分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可;
(2)①利用“HL”证Rt △IHM ≌Rt △IJN 即可得;②IJ 上取一点Q ,使QI=QN ,由Rt △IHM ≌Rt △IJN 知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x ,则IQ=QN=2x 、QJ=3x ,根据IJ=IQ+QJ 求出x 即可得;
(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF
∴PB=PC
∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处
∴PB=BC
∴PB=PC=BC
∴△PBC 是正三角形:
(2)证明:①如图
∵矩形AHIJ
∴∠H=∠J=90°
∵△MNJ 是等边三角形
∴MI=NI
在Rt △MHI 和Rt △JNI 中
MI NI MH NJ =⎧⎨=⎩
∴Rt △MHI ≌Rt △JNI (HL )
∴HI=IJ
②在线段IJ 上取点Q ,使IQ=NQ
∵Rt△IHM≌Rt△IJN,
∴∠HIM=∠JIN,
∵∠HIJ=90°、∠MIN=60°,
∴∠HIM=∠JIN=15°,
由QI=QN知∠JIN=∠QNI=15°,∴∠NQJ=30°,
设NJ=x,则IQ=QN=2x,
QJ=22=3
QN NJ
x,
∵IJ=6cm,
∴2x+3x=6,
∴x=12-63,即NJ=12-63(cm).(3)分三种情况:
①如图:
设等边三角形的边长为b,则0<b≤6,则tan60°=
3=
2
a
b,
∴a=3
2
b
,
∴0<b≤63=33;
②如图
当DF与DC重合时,DF=DE=6,
∴a=sin60°×DE=63
2
=33,
当DE与DA重合时,a=
6
43 sin603
==
︒,
∴33<a<43;
③如图
∵△DEF是等边三角形∴∠FDC=30°
∴DF=
6
43 cos303
2
==
︒
∴a>3
点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.
9.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以
△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF.
理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.
在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
考点:四边形的综合知识.
10.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.
(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;
(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;
(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.
【答案】(1)见解析;
(2)EF⊥BC仍然成立;
(3)EF=BC
【解析】
试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和
AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.
试题解析:(1)连接AH,如图1,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等边三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2,
∴AH==BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(2)EF⊥BC仍然成立,EF=BC,如图2,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,
∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(3)如图3,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=kBC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2,∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,∴EF=BC.
考点:四边形综合题.。