中考数学—相似的综合压轴题专题复习附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.
(1)如图1,当点M在线段ED上时,求证:MN= EM;
(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.
【答案】(1)证明::∵ °, ° ,
∴ °
∵ ,
∴
∵∥ ,
∴
∴ °,
∴
过点作于点 ,则 .
在中,
∴
∴
(2)解:在中,,
∴
∵
a.当点在线段上时,过点作于点 ,
在中,
由(1)可知:
,
∴
∴
∴
b.当点在线段延长线上时,过点作于点在中, ,
在中, ,
∴ ,
∴
(3)解:连接 ,交于点 .
∵为的中点
∴ ,
∴ .
∵ ,
∴ ,
∴ ,
∴ ,
∴ .
∵∥
∴ ,
∴ ,
,
∵ ,
∴ ,
又∵ ,
∴∽ ,
∴,即 ,
∴
【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;
(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;
②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可
求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性
质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G
根据所得的比例式即可求解.
,
2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.
【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得
解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)
(2)解:如图1,过F作FG⊥x轴于点G,
设F(x, x2+2x+6),则FG= ,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,
∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,
∴
当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),
当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),
综上可知F点的坐标为(-1,)或(-3,)
(3)解:如图2,
不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上
∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,
∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),
∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6
解得k1= 或k2=
∴满足条件的点Q有两个,Q1(2,)或Q2(2,).
【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。
(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。
(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,
点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。
3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC= AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN MC的值.
【答案】(1)证明:∵OA=OC,∴∠A=∠ACO,
又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,
又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,
即OC⊥CP,
∵OC是⊙O的半径,∴PC是⊙O的切线
(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,
∴
(3)解:连接MA,MB,
∵点M是弧AB的中点,∴弧AM=弧BM,∴∠ACM=∠BCM,
∵∠ACM=∠ABM,∴∠BCM=∠ABM,
∵∠BMN=∠BMC,∴△MBN∽△MCB,∴,∴ BM2=MN⋅MC ,
又∵AB是⊙O的直径,弧AM=弧BM,
∴∠AMB=90°,AM=BM,
∵AB=4,∴,
∴ MN⋅MC=BM2=8 .
【解析】【分析】(1)根据等边对等角得出∠A=∠ACO,运用外角的性质和已知条件得出∠A=∠ACO=∠PCB,再根据直径所对的圆周角是直角得出∠PCB+∠OCB=90°,进而求解.(2)根据等边对等角得出∠A=∠P,再根据第一问中的结论求解即可,
(3)连接MA,MB,根据同弧或等弧所对的圆周角相等得出∠ACM=∠ABM,∴∠BCM=∠ABM,证出△MBN∽△MCB,得出比例式进而求解即可.
4.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
【答案】(1)解:把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,
∴抛物线解析式为y=﹣ x2+ x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x轴交抛物线于点D,
∴D点的横坐标为3,
当x=3时,y=﹣ ×9+ ×3+4=5,
∴D点坐标为(3,5)。
(2)解:在Rt△OBC中,BC= =5,
设M(0,m),则BN=CM=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);
当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);
综上所述,M点的坐标为(0,)或(0,)。
(3)解:连接DN,AD,如图,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),
∴DN+AN的最小值=AD= ,
∴AM+AN的最小值为.
【解析】【分析】(1)将A(﹣3,0),C(0,4)代入函数解析式构造方程组解出a,c 的值可得抛物线解析式;由AC=BC,CO⊥AB,根据等腰三角形的“三线合一”定理,可得OB=OA=3,而BD⊥x轴交抛物线于点D,则D点的横坐标为3,当x=3时求得y的值,即可得点D的坐标。
(2)当△CMN是直角三角形时,有两种情况:∠CMN=90°,或∠CNM=90°,则可得△CMN∽△COB,或△CMN∽△CBO,由对应边成比例,设M(0,m),构造方程解答即可。
(3)求AM+AN的最小值,一般有两种方法:解析法和几何法;解析法:用含字母的函数
关系式表示出AM+AN的值,根据字母的取值范围和函数的最值来求;几何法:将点A,M,N三点移到一条直线上;此题适用于几何法:观察图象不难发现,AC=BD=5,CM=BN,且∠BCO=∠DBC,连接AD,可证得△ACM≌△DBN,则AM=DN,而DN+AN≥AD (当且仅当点A、N、D共线时取等号),求AD的长即可。
5.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【答案】(1)解:∵PD平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE
(2)解:如图,过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵PD平分∠APB,AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC= ,
∴cos∠BDF=cos∠APC= ,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=DF,
∴四边形ADFE是菱形,此时点F即为M点,
∵cos∠BAC=cos∠APC= ,
∴sin∠BAC= ,
∴,
∴DG= ,
∴菱形ADME的面积为:DG•AE=2× = .
【解析】【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得
AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC= ,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
6.如图,抛物线与轴交于点,与轴交于点 .在线段上有一动点(不与重合),过点作轴的垂线交于点,交抛物线于点,过点作于点 .
(1)求直线的函数解析式;
(2)求证:;并求出当为何值时,和的相似比为 .
【答案】(1)解:令:,则,解得:,
(舍)∴
令,得,∴
设直线:,把,分别代入上式得:
解之得:
∴
(2)证明:∵
又∵
∴
∵,,,
∴,,
∵∴
∴,(舍)
【解析】【分析】(1) 设直线:,求出A、B点坐标,代入求出k,b即可.(2)
利用两组对应角相等证明三角形相似,结合函数解析式,分别表示出AN、PN的长,再根据相似比列式计算即可.
7.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若 = ,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【答案】(1)解:如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BAC=∠GBC,
∴∠GBC=∠BDO,
∵CD是⊙O的直径,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切。
(2)解:过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM= ∠AOC,
∵
∴∠ABC= ∠AOC=∠COM,
又∵∠EFB=∠OMC=90°,
∴△BEF∽△OCM,
∴,
∵CM= AC,
∴,
又∵,
∴
(3)解:由(2)可知=,则BE=10.
∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC= =8 ,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴, = ,
∴可设EF=x,则EC=2x、FC= x,
∴BF=8 ﹣ x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8 ﹣ x)2,
解得:x=6± ,
∵6+ >8,舍去,
∴x=6﹣,
∴EC=12﹣2 ,
∴OE=8﹣(12﹣2 )=2 ﹣4
【解析】【分析】(1)连接OB,则需要证明∠GBO=∠GBC+∠OBC=90°;由CD是⊙O的
直径,则∠DBO+∠OBC=90°,即需要证明∠GBC=∠BDO,由同弧所对的圆周角相等,可知∠BAC=∠BDC,而∠BAC=∠GBC,∠BDC=∠DBO,则可证得∠GBC=∠BDO。
(2)因为已知=,求,其中EF,BE是△BEF的两条边,而AC,OC是△AOC的两条边,但△BEF和△AOC不相似,则可构造两三角形相似,因为△BEF是直角三角形,则可过
点O作OM⊥AC于点M,连接OA,即构造△BEF∽△OCM,从而可求得。
(3)由(2)得的值及OC=8求出BE;由PD=OD,且∠PBO=90°,根据“直角三角形斜边上的中线长等于斜边长的一半”可得BD=OD=8,由勾股定理可求得BC的长,则△DOB是等边三角形,则在直角三角形ECF中存在特殊角30度,不妨设EF=x,则CE=2x,CF=x。
在Rt△BEF中,由勾股定理可得BE2=EF2+BF2,构造方程解答即可。
8.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C 与点E是对应顶点)的点E的坐标.
【答案】(1)解:
(2)解:存在,
理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-
4x2,即2x2+x-2=0,x= 或(舍),
∵0< ,∴存在内接正方形,此时其边长为
(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .
①如图(1)
当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得
,得DE= ,因D(0,-3),∴E();
由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,
∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,
∴,有,∴, .
因,∴,
又,在Rt△DE'M中,DM= ,
∴OM=1,得
∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;
如图(2)
当△DBC~△ADE时,有∠BDC=∠DAE,,
即,得AE= .
当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.
由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,
在Rt△AOP中,由得,解得,则有PA= ,PO= ,
因AE= ,∴PE= ,
在△AEQ中,OP∥EQ,
∴,得,又,
∴QE=2,∴E(),
当E'在直线DA右侧时,
因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',
则AE'∥OD,∴E'(1,),
则使得△DBC~△ADE的点E的坐标为或 .
综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,
即(0, ,)或或或
【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得
解得∴二次函数;
∵二次函数经过点A(1,0),D(0,-3)代入得
解得∴二次函数 .
【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.。