高考数学异构异模复习第十二章概率与统计12-3-2正态分布撬题理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学异构异模复习考案 第十二章 概率与统计 12.3.2 正态分布撬题 理
1.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )
A .2386
B .2718
C .3413
D .4772
(附:若X ~N (μ,σ2),则 P (μ-σ<X ≤μ+σ)=0.6826,
P (μ-2σ<X ≤μ+2σ)=0.9544.)
答案 C
解析 由题意可得,P (0<x ≤1)=12P (-1<x ≤1)=0.3413,设落入阴影部分的点的个数为n ,则P =S 阴影S 正方形
=0.34131=n 10000
,则n =3413,选C. 2.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)
A .4.56%
B .13.59%
C .27.18%
D .31.74%
答案 B
解析 由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12
×27.18%=13.59%.故选B.
3.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A .P (Y ≥μ2)≥P (Y ≥μ1)
B .P (X ≤σ2)≤P (X ≤σ1)
C .对任意正数t ,P (X ≤t )≥P (Y ≤t )
D .对任意正数t ,P (X ≥t )≥P (Y ≥t )
答案 C
解析 由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ2
2)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ2
1)
的密度曲线较Y ~N (μ2,σ2
2)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )≤P (Y ≥t ),C 正确,D 错误.
4.已知随机变量ξ服从正态分布N (0,1),若P (ξ>1)=a ,a 为常数,则P (-1≤ξ≤0)=________.
答案 12
-a 解析 由正态曲线的对称轴为ξ=0,又P (ξ>1)=a ,故P (ξ<-1)=a ,所以P (-1≤ξ≤0)=1-2a 2=12-a ,即答案为12
-a .
5.某班有50名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________.
答案 10
解析 由题意,知P (ξ>110)=
1-2P ξ2=0.2,所以该班学生数学成绩在110分以上的人数为0.2×50=10.。

相关文档
最新文档