为什么初二数学只能考70分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么初⼆数学只能考70分
初中数学重中之重,⽆论是在中考,还是在⾼考,都直接关系孩⼦未来升学的成败。
接下来⼩编整理了初⼆数学学习相关内容,希望能帮助到您。
为什么初⼆数学只能考70分
从⼩学⼀年级就开始学习数学,可到了初中,很多孩⼦也还只是会简单的加减乘除,稍微复杂⼀点的都得依靠计算器。
这种孩⼦⼀般来说是⼩学基础没有打好,在99乘法表这⼀块没有⼤量练习巩固,到了初中,往往常见的1-20的平⽅数也都背不熟,更别提快速⼼算了。
因为数学跟不上,很多孩⼦上了初中成绩⼀落千丈。
当看到孩⼦满是红叉的数学考卷,⼀做起来数学作业就得磨蹭到深夜,做⼀题忘⼀题,许多家长往往会认为孩⼦贪玩、学习不认真不努⼒、数学太难学......
其实这个阶段的数学难度并不⼤,所以,影响孩⼦学习成绩的,主要还是态度,或者说学习习惯和思维⽅式。
现在⼿机已经成为了我们⽇常⽣活中最重要的电⼦设备,对成年⼈来说如此,对孩⼦们来说,⼿机的吸引⼒更⼤。
⼩说,游戏,淘宝,视频⽹站,社交APP,⽆⼀不是精⼒⿊洞。
合理限制孩⼦们使⽤⼿机的时间是很有必要的,这样才能分配更多的精⼒和时间到学习上来。
那么在这个前提下,如何才能学好数学呢?
学不好数学的原因⼤致有以下⼏条:
1. 蒙,猜,凭感觉做题的坏习惯 – 数学是⼀门极为严谨的学科。
如果评选⼀门学科的严谨性,那么数学绝对是当之⽆愧的第⼀,没有之⼀。
数学本⾝是极为美妙的公理演绎体系(axiom-deduction system),换句话说,只要构建数学各个分⽀的基⽯ – 公理是正确的(+定义⽆⽭盾),那么其所有的结论(定理)都必须是正确的。
⽽数学解题也是如此,每⼀道题⽬的求解在逻辑上必须是完美的:
(1)对于求证题(判断题),只要已知和定理是正确的,那么被证明的命题⼀定是正确的;
(2)对于求解题,求出来的解⼀定是符合题⽬条件的所有解,既没有增根也不应该失根。
因此我们在数学学习和解题中必须⼗分重视严谨性这⼀点,具体就是要做到每⼀步都要有理有据
学数学不能靠感觉,不允许说“我觉得…”,“我以为…”,每⼀步都要有理有据。
这⼀点其实从初中平⾯⼏何开始就⼗分强调了:
所有初中学⽣⼀开始学平⾯⼏何的时候,教材会要求同学们在每⼀步后⾯⽤括号把这⼀步的理由(利⽤了什么定理,定义)写下来,例如:
括号⾥⾯写出来的“对顶⾓相等”或者“ASA(⾓边⾓定理)”就是这⼀步的理由。
当同学们对这种理性思维开始习惯了,慢慢的教材也就不再对此进⾏要求。
然后遗憾的是,很多同学并没有形成这种理性思维,即每⼀步都有理有据的习惯。
他们在解题的时候继续凭感觉,肆意妄为,说得难听些,这样的孩⼦恐怕连数学的门都还没有⼊。
因此,如果你有乱猜,凭感觉做题的坏习惯:
1) 从今天开始,⽼⽼实实地每⼀步⽤括号把理由写到后⾯,哪怕做题慢⼀些,也要把这个习惯养成;
2) 从今天开始,你的错题只有可能是粗⼼做错或者概念不清做错,绝对不允许是因为乱猜出错。
等这个习惯开始养成,你看待数学会有第⼀个质变 – 原来数学是如此严谨的,是如此美的东西。
你开始理解难怪数学可以拿到满分,⽽语⽂却很难(例如作⽂的好坏就有⼀定的主观性)。
你也开始意识到理性思维的作⽤。
这对你今后,⽆论是中学阶段的物理,化学等的学习还是到了⼤学,研究⽣阶段对⾦融,⼯程等的学习都⼗分重要。
2. 基础不扎实,不会⽤数学语⾔来学习概念,定理
尽管初中阶段的⼤多数定义和定理并不复杂,同学们从现在就应该养成精读并⽤数学语⾔准确理解概念和定理的习惯,这对于⼤家后续在⾼中和⼤学数学的学习⼗分重要。
⾸先要翻译,就是在解题的时候把中⽂翻译成数学语⾔,同时在合适的时候在不同的数学语⾔之间进⾏互译。
没有了良好的基础,这⼀招就成了空中楼阁,正所谓巧妇难为⽆⽶之炊。
如何检验⾃⼰的基础概念是否扎实?
费曼学习法
这是⼤物理学家费曼提出来的学习⽅法。
现阶段,不要求⼤家使⽤类⽐等思维⽅式深层次地理解每⼀个概念背后的逻辑然后表达得连⼀个⼩学⽣也听得懂,你只需要这样做:
⽤⾃⼰的话,在⼀分钟内把概念或者定理复述⼀遍。
然后利⽤微信录⾳,QQ录⾳等录下来,之后对⽐你讲的和教科书上的内容。
如果⼀致,那么就说明你懂了,如果不⼀致,或者说不清楚,说不出来,那么不好意思,你这个概念掌握得⽐较差。
⼤儒王阳明先⽣的“知⾏合⼀”四个字,知⽽不⾏就是未知。
在你运⽤这些概念之前,最起码的“⾏”就是能够说得出来,连说都说不出来,谈什么知呢?
3. 盲⽬做题,刷题,不去体悟数学思维 – 解决问题之道
最近这⼏年的中考题,⾄少在平⾯⼏何上,⼀些中考的压轴题并不简单(⾄少不⽐⾼考题⽬简单),对数学思维也有了⼀定的要求。
4. 不会从错误中学习
我先定义以下什么是错题:
1. 做错的题(包括3种:粗⼼,概念不清,以及逻辑问题,这三者⼀定要严格区分开来)
2. 不会做的题
3. 做得慢,没有在规定时间做完的题
这些都是你的错题。
很多同学遇到错题,就扫⼀遍答案,看懂了,然后?然后就没有然后了。
这样的学习,是在浪费题⽬和时间。
时间久了,你表⾯上很努⼒,其实不过只是在重复做⽆⽤功罢了。
很多同学很努⼒,但是他们的进步曲线是平的,如下图:
他们⽆⾮是不断地跌落在同样的坑⾥⾯吧了。
说得直⽩些,这个叫做伪勤奋。
请记住:错误是⼀个⼈最⼤的学习之源!
⽅法都是从错误(⾃⼰的+别⼈的)中学来的。
正如孟⼦所⾔,闻过⽽喜。
那么如何从错误中学习呢?我们可以参考下⾯这个反馈环。
遇到错误,⾸先的就是要找原因。
如果有做不出来的题,你要问⾃⼰:
1. 为什么我做不出来,是基础知识点和数学思维哪⼀点没有掌握好?
2. 我能够不看答案,模仿⽼师的思维,把这⼀题⽤多种⽅法解出来吗?
3. 我能⽤⽼师没说过的⽅法求解出来吗?
这样不断反思,你每⼀题就会得到进步。
1题,2题…10题,100题,扎实的数学基础+数学思维不就是你的囊中之物了吗?何愁考试考不好?
5. 知⾏合⼀
知⽽不⾏就是不知!⼀部分同学说:⽼师你讲得太好了,我⼀定努⼒跟着学习。
⼀个⽉以后问他,你研究了⼏道错题呀?⽤了费曼学习法把每个概念⽤⾃⼰的话说⼀遍了吗?
回答:……
你现在明⽩你为什么数学成绩提不⾼了吗?
⼋年级数学学习⽅法指导
多看⼀些例题。
细⼼的朋友会发现,⽼师在讲解基础内容之后,总是给我们补充⼀些课外例、习题,这是⼤有裨益的,我们学的概念、定理,⼀般较抽象,要把它们具体化,就需要把它们运⽤在题⽬中,由于我们刚接触到这些知识,运⽤起来还不够熟练,这时,例题就帮了我们⼤忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于⽼师补充的例题⼗分有限,所以我们还应⾃⼰找⼀些来看,看例题
深刻理解概念。
概念是数学的基⽯,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,⽽忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,⼜是运⽤到何处的,只有这样,才能更好地运⽤它来解决问题。
学数学⽅法
要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。
后者只做不思,不能起到巩固概念,拓宽思路的作⽤,⽽且有“副作⽤”:把已学过的知识搅得⼀塌糊涂,理不出头绪,浪费时间⼜收获不⼤,我们所说的“多做练习”,是要⼤家在做了⼀道新颖的题⽬之后,多想⼀想:它究竟⽤到了哪些知识,是否可以多解,其结论是否还可以加强、推⼴,等等,还要真正掌握⽅法,切实做到以下三点,才能
使“多做练习”真正发挥它的作⽤。
必须熟悉各种基本题型并掌握其解法。
课本上的每⼀道练习题,都是针对⼀个知识点出的,是最基本的题⽬,必须熟练掌握;课外的习题,也有许多基本题型,其运⽤⽅法较多,针对性也强,应该能够迅速做出。
许多综合题只是若⼲个基本题的有机结合,基本题掌握了,不愁解不了它们。
在解题过程中有意识地注重题⽬所体现的出的思维⽅法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出⼀定的思维⽅法,如果我们有意识地注重这些思维⽅法,时间长了头脑中便形成了对每⼀类题型的“通⽤”解法,即正确的思维定势,这时在解这⼀类的题⽬时就易如反掌了;同时,掌握了更多的思维⽅法,为做综合题奠定了⼀定的基础。
多做综合题。
综合题,由于⽤到的知识点较多,颇受命题⼈青睐。
做综合题也是检验⾃⼰学习成效的有⼒⼯具,通过做综合题,可以知道⾃⼰的不⾜所在,弥补不⾜,使⾃⼰的数学⽔平不断提⾼。
“多做练习”要长期坚持,每天都要做⼏道,时间长了才会有明显的效果和较⼤的收获。