上海民办嘉一联合中学人教版(七年级)初一上册数学期末测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海民办嘉一联合中学人教版(七年级)初一上册数学期末测试题及答案
一、选择题
1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
2.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )
A .3∠和5∠
B .3∠和4∠
C .1∠和5∠
D .1∠和4∠ 3.有一个数值转换器,流程如下:
当输入x 的值为64时,输出y 的值是( )
A .2
B .2
C 2
D 324.下列说法中正确的有( )
A .连接两点的线段叫做两点间的距离
B .过一点有且只有一条直线与已知直线垂直
C .对顶角相等
D .线段AB 的延长线与射线BA 是同一条射线
5.下列因式分解正确的是()
A .2
1(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=- D .22(2)(1)a a a a --=-+
6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )
A .97
B .102
C .107
D .112
7.若21(2)0x y -++=,则2015()x y +等于( )
A .-1
B .1
C .20143
D .20143-
8.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )
A .48°
B .42°
C .36°
D .33°
9.﹣3的相反数是( )
A .1
3- B .13 C .3- D .3
10.下列式子中,是一元一次方程的是( )
A .3x+1=4x
B .x+2>1
C .x 2-9=0
D .2x -3y=0
11.如果+5米表示一个物体向东运动5米,那么-3米表示( ).
A .向西走3米
B .向北走3米
C .向东走3米
D .向南走3米
12.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )
A .a =3
2b B .a =2b C .a =52b D .a =3b
二、填空题
13.=38A ∠︒,则A ∠的补角的度数为______.
14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段
AC =________cm.
16.已知23,9n m n a a -==,则m a =___________.
17.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.
18.若α与β互为补角,且α=50°,则β的度数是_____.
19.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.
20.当x= 时,多项式3(2-x )和2(3+x )的值相等.
21.若2a +1与212
a +互为相反数,则a =_____. 22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.
24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.
三、压轴题
25.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.
请根据上述规定回答下列问题:
(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=
12
AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.
27.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.
①当OB 平分EOD ∠时,求旋转角度α;
②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.
28.已知线段30AB cm =
(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?
(2)如图1,几秒后,点P Q 、两点相距10cm ?
(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.
29.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;
(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).
(4)直接写出点B 为AC 中点时的t 的值.
30.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ).
(1)当甲追上乙时,x = .
(2)请用含x 的代数式表示y .
当甲追上乙前,y = ;
当甲追上乙后,甲到达C 之前,y = ;
当甲到达C 之后,乙到达C 之前,y = .
问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.
(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
31.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在
∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.
(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;
(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).
32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
【详解】
∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,
∴原点在点P 与N 之间,
∴这四个数中绝对值最小的数对应的点是点N .
故选B .
2.A
解析:A
【解析】
【分析】
两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.
【详解】
A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,
B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,
C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,
D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,
故选:A.
【点睛】
本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.
3.C
解析:C
【解析】
【分析】
把64代入转换器,根据要求计算,得到输出的数值即可.
【详解】
,是有理数,
∴继续转换,
,是有理数,
∴继续转换,
∵2,是无理数,
∴输出,
故选:C.
【点睛】
本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数
的算术平方根;注意有理数和无理数的区别.
4.C
解析:C
【解析】
【分析】
分别利用直线的性质以及射线的定义和垂线定义分析得出即可.
【详解】
A .连接两点的线段的长度叫做两点间的距离,错误;
B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C .对顶角相等,正确;
D .线段AB 的延长线与射线BA 不是同一条射线,错误.
故选C .
【点睛】
本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
5.D
解析:D
【解析】
【分析】
分别利用公式法以及提取公因式法对各选项分解因式得出答案.
【详解】
解:A 、21x +无法分解因式,故此选项错误;
B 、()am an a m n +=+,故此选项错误;
C 、244m m +-无法分解因式,故此选项错误;
D 、22(2)(1)a a a a --=-+,正确;
故选:D .
【点睛】
此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.
6.B
解析:B
【解析】
【分析】
观察图形,正确数出个数,再进一步得出规律即可.
【详解】
摆成第一个“H”字需要2×3+1=7个棋子,
第二个“H”字需要棋子2×5+2=12个;
第三个“H”字需要2×7+3=17个棋子;
第n 个图中,有2×(2n+1)+n=5n+2(个).
∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.
故B.
【点睛】
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .
7.A
解析:A
【解析】
(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1.
故选A
8.A
解析:A
【解析】
【分析】
首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.
【详解】
解:OB 平分AOC ∠,18AOB ∠=︒,
236AOC AOB ∴∠=∠=︒,
又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.
故选:A .
【点睛】
本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.
9.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
10.A
解析:A
【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x2−9=0是一元二次方程,故本选项错误;
D. 2x−3y=0是二元一次方程,故本选项错误。

故选A.
11.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
12.B
解析:B
【解析】
【分析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
二、填空题
13.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
38A ∠=,
∴A ∠的补角的度数为:18038142-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
14.-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.
【详解】
解:根据如图所示:
当输入的是的时候,,
此时结果
解析:-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.
【详解】
解:根据如图所示:
当输入的是1-的时候,1(3)21-⨯--=,
此时结果1>-需要将结果返回,
即:1(3)25⨯--=-,
此时结果1<-,直接输出即可,
故答案为:5-.
【点睛】
本题考查程序设计题,解题关键在于数的比较大小和读懂题意.
15.2或14
【解析】
【分析】
由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.
【详解】
解:当点C在线段AB上时,由线段的和差,得
AC=AB-BC=8
解析:2或14
【解析】
【分析】
由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.
【详解】
解:当点C在线段AB上时,由线段的和差,得
AC=AB-BC=8-6=2cm;
当点C在线段AB的延长线上时,由线段的和差,得
AC=AB+BC=8+6=14cm;
故答案为2或14.
点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.
16.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
17.81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,
解析:81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,
故答案为:81.
【点睛】
本题考查了方位角及其计算,掌握方位角的概念是解题的关键.
18.130°.
【解析】
【分析】
若两个角的和等于,则这两个角互补,依此计算即可.
【详解】
解:与互为补角,


故答案为:.
【点睛】
此题考查了补角的定义.补角:如果两个角的和等于(平角),
解析:130°.
【解析】
【分析】
若两个角的和等于180 ,则这两个角互补,依此计算即可.
【详解】
解:α与β互为补角,
180αβ∴+=︒,
180********βα∴=︒-=︒-︒=︒.
故答案为:130︒.
【点睛】
此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.
19.-20.
【解析】
【分析】
把所求代数式化成的形式,再整体代入的值进行计算便可.
【详解】
解:,

故答案为:.
【点睛】
本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式
解析:-20.
【解析】
【分析】
把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.
【详解】
解:5m n -=,
335m n ∴-+-
3()5m n =---
355=-⨯-
155=--
20=-,
故答案为:20-.
【点睛】
本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.
20.【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
解析:【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
21.﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】
根据题意得:
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:
解析:﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.
【详解】
根据题意得:a2a1
10 22
+
++=
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:﹣1
【点睛】
本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.
22.17
【解析】
【分析】
【详解】
解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
解析:17
【解析】
【分析】
【详解】
解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
23.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
24.404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.
【详解】
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有
解析:404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即
可.
【详解】
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有5×3-1=14个黑棋子;
图4有5×4-1=19个黑棋子;

图n有5n-1个黑棋子,
当5n-1=2019,
解得:n=404,
故答案:404.
【点睛】
本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.
三、压轴题
25.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,
∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
26.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,
∴n=AC+BC=2+6=8.
(2)如图所示:
∵点D是数轴上点A、B的“5节点”,
∴AC+BC=5,
∵AB=4,
∴C在点A的左侧或在点A的右侧,
设点D表示的数为x,则AC+BC=5,
∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E在BA延长线上时,
∵不能满足BE=1
2 AE,
∴该情况不符合题意,舍去;
②当点E 在线段AB 上时,可以满足BE=12AE ,如下图,
n=AE+BE=AB=4;
③当点E 在AB 延长线上时,
∵BE=
12
AE , ∴BE=AB=4, ∴点E 表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
【点睛】
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.
【解析】
【分析】
(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;
(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12
×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.
【详解】
解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,
∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;
故选④;
(2)①因为COD 60∠=,
所以EOD 180COD 18060120∠∠=-=-=.
因为OB 平分EOD ∠, 所以11EOB EOD 1206022
∠∠==⨯=. 因为AOB 45∠=,
所以αEOB AOB 604515∠∠=-=-=.
②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2120α-=-.
解得α105=.
当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2α120
-=-.
解得α125=.
综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.
【点睛】
本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.
28.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .
【解析】
【分析】
(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.
【详解】
解:(1)设经过ts 后,点P Q 、相遇.
依题意,有2330t t +=,
解得:6t =.
答:经过6秒钟后,点P Q 、相遇;
(2)设经过xs ,P Q 、两点相距10cm ,由题意得 231030x x ++=或231030x x +-=,
解得:4x =或8x =.
答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;
(3)点P Q 、只能在直线AB 上相遇,
则点P 旋转到直线AB 上的时间为:
()120430s =或()1201801030
s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;
或10306y =-,
解得 2.4y =,
答:点Q 的速度为7/cm s 或2.4/cm s .
【点睛】
本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.
29.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.
【解析】
【分析】
(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;
(2)先求出对称点,即可得出结果;
(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;
(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.
【详解】
(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.
∵b 是最小的正整数,∴b =1.
故答案为﹣2,1,7.
(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.
故答案为4.
(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.
故答案为3t +3,5t +9,2t +6.
(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.
【点睛】
本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
30.问题一、(1)
32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011
. 【解析】
【分析】
问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。

【详解】
问题一:(1)当甲追上乙时,甲的路程=乙的路程+3
所以,863x x =+ 23x =
32
x = 故答案为
32. (2) 当甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;
所以,63832y x x x =+-=-.
当甲追上乙后,甲到达C 之前,路程差=甲所行的路程-3-乙所行的路程;
所以,83623y x x x =--=-.
当甲到达C 之后,乙到达C 之前,路程差=总路程-3-乙所行的路程;
所以,1636136y x x =--=-.
问题二:(1)由题意AB 为钟表外围的一部分,且∠AOB=30°
可知,钟表外围的长度为31236cm ⨯=
分针OD 的速度为336605cm min ÷=
时针OE 的速度为136020
cm min ÷= 故OD 每分钟转动3
5
cm ,OE 每分钟转动120cm . (2)4点时时针与分针的路程差为4312cm ⨯=
设x 分钟后分针与时针第一次重合。

由题意得,
3112520x x =+ 解得,24011x =
. 即24011
分钟后分针与时针第一次重合。

【点睛】
本题考查了一元一次方程中的行程问题,解题的关键是要读懂题目的意思,根据题目给出的条件找出等量关系,列出方程求解即可。

31.(1)见解析;(2)∠OQP=180°+
12x°﹣12y°或∠OQP=12x°﹣12
y°. 【解析】
【试题分析】(1)分下面两种情况进行说明;
①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,
②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,
(2)分两种情况讨论,如图3和图4.
【试题解析】
(1)分两种情况:
①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,
证明:∵四边形AOBP 的内角和为(4﹣2)×180°=360°,
∴∠APB=360°﹣∠MON ﹣∠PAO ﹣∠PBO ;
②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,
证明:延长AP交ON于点D,
∵∠ADB是△AOD的外角,
∴∠ADB=∠PAO+∠AOD,
∵∠AP B是△PDB的外角,
∴∠APB=∠PDB+∠PBO,
∴∠APB=∠MON+∠PAO+∠PBO;
(2)设∠MON=2m°,∠APB=2n°,
∵OC平分∠MON,
∴∠AOC=∠MON=m°,
∵PQ平分∠APB,
∴∠APQ=∠APB=n°,
分两种情况:
第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,
∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,
∴∠OQP=180°+x°﹣y°;
第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,
即∠OQP+n°=m°+x°,
∴2∠OQP+2n°=2m°+2x°①,
∵∠APB=∠MON+∠PAO+∠PBO,
∴2n°=2m°+x°+y°②,
①﹣②得2∠OQP=x°﹣y°,
∴∠OQP=x°﹣y°,
综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.
32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

相关文档
最新文档