萍乡市安源中学2018-2019学年高二9月月考数学试题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
萍乡市安源中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 2. 直径为6的球的表面积和体积分别是( )
A .144,144ππ
B .144,36ππ
C .36,144ππ
D .36,36ππ 3. 若集合
,则
= ( )
A
B
C D
4. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π
D .72π
5. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .123cm
C .243cm
D .26cm
6. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b
a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 7. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 8. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 9. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )
A.83 B .4 C.163
D .203
10.下列函数中,定义域是R 且为增函数的是( )
D.y x =
A.x
y e -= B.3
y x = C.ln y x = 11.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在
双曲线上,满足
120PF PF ⋅=,
若12PF F ∆ )
C.
1
D. 1 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
12.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________. 14.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
15.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.
16.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
18.在ABC ∆中已知2a b c =+,2
sin sin sin A B C =,试判断ABC ∆的形状.
19.已知函数()()x
f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.
(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦
及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.
20.函数。
定义数列如下:是过两点的直线
与轴交点的横坐标。
(1)证明:;
(2)求数列
的通项公式。
21.(本小题满分10分)选修4-1:几何证明选讲
如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.
(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2
.
22.某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;
(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于
,则在哪段时间实验室需要降温?
萍乡市安源中学2018-2019学年高二9月月考数学试题解析(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C 【
解
析
】
考点:三角形中正余弦定理的运用. 2. 【答案】D 【解析】
考点:球的表面积和体积. 3. 【答案】B 【解析】
4. 【答案】
【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,
又V 四棱锥P -ABCD =1
3
S 矩形ABCD ·PO
=13abR ≤23R 3. ∴2
3
R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 5. 【答案】D 【解析】
考
点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 6. 【答案】A
【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单
调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
7. 【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 8. 【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C. 9. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面
为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=20
3,故选D.
10.【答案】B
【解析】
试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3
y x
=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.
11.【答案】D
【解析】∵120PF PF ⋅=,∴12PF
PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,
2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径
12122PF PF F F r c +-=
=,外接圆半径R c =.1
2
c c =,整理,得
2()4c
a
=+1e =,故选D. 12.【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1
考点:两条直线的位置关系.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】(,0)(4,)-∞+∞
【解析】
试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方
即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2
a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是
{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.
考点:换主元法解决不等式恒成立问题.
【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简
洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2
a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围. 14.【答案】4
3
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式. 15.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×9
2×c =200,∴c =4.
答案:4
16.
【答案】【解析】
试题分析:因为ABC ∆
中,2,60AB BC C ===︒
2
sin A
=,1sin 2A =,又
BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1
2
ABC S AB BC ∆=
⨯⨯=. 考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2
b 、2
a 时,往往用余弦定理,而题设中如果边和正
弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式
1sin 2ab C ,12ah ,1()2a b c r ++,4abc R
等等. 三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 18.【答案】ABC ∆为等边三角形. 【解析】
试题分析:由2
sin sin sin A B C =,根据正弦定理得出2
a bc =,在结合2a
b
c =+,可推理得到a b c ==,即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.
19.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,
1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时
1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.
【解析】
(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;
当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2
()(2)(2)f x f k e ==-最小值;
当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1
()(1)k f x f k e
-=-=-最小值.
(3)()(221)x
g x x k e =-+,∴'()(223)x
g x x k e =-+,
由'()0g x =,得32
x k =-
,
当3
2x k <-
时,'()0g x <; 当3
2
x k >-时,'()0g x >,
∴()g x 在3(,)2k -∞-上递减,在3
(,)2
k -+∞递增,
故323
()()22
k g x g k e -=-=-最小值,
又∵35,22k ⎡⎤
∈⎢⎥⎣⎦
,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,
∴()g x λ≥对[]0,1x ∀∈恒成立等价于32
()2k g x e λ-
=-≥最小值;
又32
()2k g x e λ-
=-≥最小值对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
恒成立.
∴3
2
min (2)k e
k --≥,故2e λ≤-.1
考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的. 20.【答案】 【解析】(1)为
,故点
在函数
的图像上,故由所给出的两点
,可知,直线
斜率一定存在。
故有
直线
的直线方程为
,令
,可求得
所以
下面用数学归纳法证明
当
时,
,满足
假设时,成立,则当
时,
21.【答案】(1)证明见解析;(2)证明见解析.
【
解
析
】
11
11]
试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,
∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形
又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥
又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2
,由(1)知PH 是线段AF 的垂直平分线,
∴PF PA =,从而PC PB PF ⋅=2
(10分)
考点:与圆有关的比例线段. 22.【答案】
【解析】(1)∵f (t )=10﹣=10﹣2sin (
t+
),t ∈[0,24),
∴≤t+<
,故当
t+
=
时,函数取得最大值为10+2=12,
当
t+
=
时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。
(2)由题意可得,当f (t )>11时,需要降温,由(Ⅰ)可得f (t )=10﹣2sin (t+),
由10﹣2sin (
t+
)>11,求得sin (
t+
)<﹣,即
≤
t+
<
,
解得10<t <18,即在10时到18时,需要降温。