《一元二次方程解法》练习题(基础)

合集下载

解一元二次方程练习题(配方法)

解一元二次方程练习题(配方法)

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x三、用公式解法解下列方程。

1、0822=--x x2、22314y y -= 3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x四、 用因式分解法解下列一元二次方程。

1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x五、用适当的方法解下列一元二次方程。

1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y 9、03072=--x x10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、()b a x a b x +-=-232215、022=-+-a a x x16、3631352=+x x 17、()()213=-+y y 18、)0(0)(2≠=++-a b x b a ax19、03)19(32=--+a x a x 20、012=--x x 21、02932=+-x x22、02222=+-+a b ax x 23、 x 2+4x -12=0 24、030222=--x x25、01752=+-x x 26、1852-=-x x 27、02332222=+---+n mn m nx mx x28、3x 2+5(2x+1)=0 29、x x x 22)1)(1(=-+ 30、1432+=x x31、y y 2222=+ 32、x x 542=- 33、04522=--x x34、()1126=+x x . 35、030222=--x x 36、x 2+4x -12=037、032=-+x x 38、12=+x x 39、y y 32132=+40、081222=+-t t 41、1252+=y y 42、7922++x x =0一元二次方程解法练习题六、用直接开平方法解下列一元二次方程。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次方程基础练习50题含详细答案

一元二次方程基础练习50题含详细答案

一元二次方程基础练习50题含详细答案一、单选题1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .42.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-3.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( ) A .0B .2C .0或2D .-24.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或105.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2-B .3-C .4D .6-6.若关于x 的一元二次方程(k+2)x 2﹣3x+1=0有实数根,则k 的取值范围是( ) A .k <14且k≠﹣2 B .k≤14C .k≤14且k≠﹣2 D .k≥147.下列方程有实数根的是 A .4x 20+=B 1=-C .2x +2x −1=0D .x 1x 1x 1=-- 8.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.59.已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3B .﹣2C .3D .610.已知x =2是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .﹣3B .3C .0D .0或311.若2x =是关于x 的一元二次方程220180ax bx --=的一个解,则2035-2a +b 的值( ) A .17B .1026C .2018D .405322值( ) A .0B .1或2C .1D .213.把方程x(x+2)=5(x-2)化成一般式,则a 、b 、c 的值分别是( ) A .1,-3,10B .1,7,-10C .1,-5,12D .1, 3,214.关于x 的方程(m+1)21m x ++4x+2=0是一元二次方程,则m 的值为( )A .m 1=﹣1,m 2=1B .m=1C .m=﹣1D .无解15.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .-1或2B .-1C .2D .016.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为( ) A .1B .2C .-1D .-217.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A .1B .﹣1C .0D .﹣218.如果﹣1是方程x 2﹣3x+k=0的一个根,则常数k 的值为( ) A .4B .2C .﹣4D .﹣219.下列方程中,关于x 的一元二次方程是( ) A .x 2+2y=1B .211x x+﹣2=0 C .ax 2+bx+c=0 D .x 2+2x=120.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A .1B .﹣1C .0D .无法确定21.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( ) A .2B .1C .-1D .-222.若关于x 的方程2230mx x -+=有实数根,则m 的取值范围是( ) A .m≤13B .m≤13-C .m≥13D .m≤13,且m≠0 23.方程()24310mm x x m ++++=是关于x 的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±24.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( ) A .-2B .2C .4D .-325.下列方程是一元二次方程的是( ) A .21x+x 2=0 B .3x 2﹣2xy=0 C .x 2+x ﹣1=0D .ax 2﹣bx=0A .2B .0C .0或2D .0或﹣227.方程3x 2﹣8x ﹣10=0的二次项系数和一次项系数分别为( ) A .3和8B .3和﹣8C .3和﹣10D .3和1028.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为 A .2B .3C .4D .829.若关于x 的方程(a +1)x 2+2x ﹣1=0是一元二次方程,则a 的取值范围是( ) A .a ≠﹣1B .a >﹣1C .a <﹣1D .a ≠030.若关于x 的一元二次方程()2210k x x k -+-=的一个根为1,则k 的值为( ) A .1-B .0或1C .1D .031.下列方程中一定是一元二次方程的是( ) A .5x 2-2x+2=0 B .ax 2+bx+c=0 C .2x+3=6D .(a 2+2)x 2-2x+3=032.若2x =-是关于x 的一元二次方程22502x mx m -+=的一个根,则m 的值为( ) A .1或4 B .-1或-4C .-1或4D .1或-4二、填空题33.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 34.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =_____. 35.已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______. 36.a 是方程224x x =+的一个根,则代数式242a a -的值是_______.37.已知x=2是关于x 的方程240x x m -+=的一个根,则m =____________. 38.若a 是方程x 2-2x-2015=0的根,则a 3-3a 2-2013a+1=____________. 39.一元二次方程290x 的解是__.40.已知关于x 的方程x 2+3x ﹣m=0的一个解为﹣3,则它的另一个解是_____. 41.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____. 42.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .43.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.45.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.46.设m 是一元二次方程x 2﹣x ﹣2019=0的一个根,则m 2﹣m +1的值为___. 47.若a 是方程2320x x --=的根,则2526a a +-=_____.48.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是______.49.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab 的值是____________.50.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.参考答案1.B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 2.D 【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案. 【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, ∴210a -=,10a -≠, 则a 的值为:1a =-. 故选D . 【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 3.A 【解析】试题分析:根据一元一次方程的定义知m 2﹣1=0,且﹣m ﹣1≠0,据此可以求得代数式|m ﹣1|的值.解:由已知方程,得(m 2﹣1)x 2﹣(m+1)x+2=0.∵方程(m 2﹣1)x 2﹣mx ﹣x+2=0是关于x 的一元一次方程, ∴m 2﹣1=0,且﹣m ﹣1≠0, 解得,m=1,则|m ﹣1|=0. 故选A .点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 4.B 【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根, ∴22﹣4m+3m=0,m=4, ∴x 2﹣8x+12=0, 解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 5.A 【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值 【详解】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2. 故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 6.C 【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(-3)2-4(k+2)•1≥0,求出即可. 【详解】∵关于x 的一元二次方程(k+2)x 2-3x+1=0有实数根,∴k+2≠0且△=(-3)2-4(k+2)•1≥0, 解得:k≤14且k≠-2, 故选C . 【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键. 7.C 【解析】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B =−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C . 8.B 【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值. 【详解】把0x =代入()22110a x x a -++-=,得:210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程,∴10a -≠, 即1a ≠, ∴a 的值是1-, 故选:B .本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠. 9.A 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系. 10.A 【分析】直接把x =2代入已知方程就得到关于m 的方程,再解此方程即可. 【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解, ∴4+2m +2=0, ∴m =﹣3. 故选:A . 【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可. 11.B 【分析】把x=2代入方程得2a-b=1009,再代入 20352a b -+,可求得结果. 【详解】因为x 2=,是关于x 的一元二次方程2ax bx 20180--=的一个解, 所以,4a-2b-2018=0, 所以,2a-b=1009,所以,20352a b -+=2035-(2a-b )=2035-1009=1026. 故选B.本题主要考查一元二次方程的根的意义.12.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.13.A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式. 14.B【解析】【分析】根据一元二次方程未知数项的最高次数是2,可得m2+1=2且m+1≠0,计算即可求解. 【详解】因为一元二次方程的最高次数是2,所以m2+1=2,解得m=﹣1或1,又因为m+1≠0,即m≠﹣1,所以m =1,故选B. 【点睛】本题主要考查一元二次方程的概念:只含有一个未知数(一元),且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程,掌握这个概念是解决此题的关键. 15.B 【分析】首先把x=1代入22(2)40m x x m -+-=,解方程可得m 1=2,m 2=-1,再结合一元二次方程定义可得m 的值 【详解】解:把x=1代入22(2)40m x x m -+-=得:2m 2+4m --=0,2m m 20++=-,解得:m 1=2,m 2=﹣1∵22(2)40m x x m -+-=是一元二次方程, ∴m 20-≠ , ∴m 2≠, ∴1m =-, 故选:B . 【点睛】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0. 16.D 【分析】将n 代入方程,提公因式化简即可. 【详解】解:∵()n n 0≠是关于x 的方程2x mx 2n 0++=的根, ∴2n mn 2n 0++=,即n(n+m+2)=0, ∵n 0,≠∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n是解题关键.17.A【详解】试题分析:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选A.考点:一元二次方程的解.18.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.19.D【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.【详解】解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.20.B【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B21.A【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得,k=2.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.22.A【分析】分m=0和m≠0两种情况求解即可. 当m=0时,方程是一元一次方程,一定有实根;当m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【详解】当m≠0时,∵a=m,b=−2,c=3 且方程有实数根,∴△=b2−4ac=4−12m≥0∴m≤1 3 .当m=0 时,方程为一元一次方程,仍有解,故m的取值范围是m≤1 3 .故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 23.B【分析】根据次数最高项的次数是2,且次数最高项的系数不为0列式求解即可.【详解】由题意得,2m=,且20m+≠,解之得,2m=.故选B.【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义解答即可.24.A【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【详解】设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.考点:根与系数的关系.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.【详解】A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.26.A【解析】试题分析:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选A.考点:一元二次方程的解.27.B【解析】【分析】分别确定2x和x的系数,注意符号不要遗漏.【详解】解:由题意得,二次项系数是3,一次项系数为-8,故选择B.【点睛】遗漏系数的符号是本题的易错点.28.C试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=4.考点:根与系数的关系.29.A【分析】根据一元二次方程的定义可得a +1≠0,即可得出答案.【详解】解:由题意得:a +1≠0,解得:a ≠﹣1.故选A .【点睛】本题考查的是一元二次方程的定义:只有一个未知数,并且未知数的最高次数是2次的整式方程.30.D【分析】把x=1代入()2210k x x k -+-=得以k 为未知数的一元二次方程,解方程求得k 值,再由二次项系数不为0 即可解答.【详解】把x=1代入()2210k x x k -+-=得k-1+1-k 2=0,解得k 1=0,k 2=1, 而k-1≠0,所以k=0.故选D .【点睛】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k 的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.31.D【解析】【分析】根据一元二次方程的定义进行判断即可得.【详解】A. 5x 2-2x+2=0,不是整式方程,故不符合题意; B. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故不符合题意;C. 2x+3=6是一元一次方程,故不符合题意;D. (a 2+2)x 2-2x+3=0是一元二次方程,故符合题意,故选D.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程是整式方程,含有一个未知数,含有未知数的项的次数最高为2次是解题的关键.32.B【分析】把2x =-代入关于x 的方程22502x mx m -+=,得到2450m m ++=,解关于m 的方程即可.【详解】解:∵2x =-是关于x 的一元二次方程22502x mx m -+=的一个根, ∴2450m m ++=解得121,4m m =-=-故选B .【点睛】本题考查一元二次方程根的定义和一元二次方程的解法,理解方程根的定义得到关于m 的方程是解题关键.33.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.34.﹣2【分析】根据一元二次方程的解的定义把x =2代入x 2+mx +2n =0得到4+2m +2n =0得n +m =−2,然后利用整体代入的方法进行计算.【详解】∵2(n≠0)是关于x 的一元二次方程x 2+mx +2n =0的一个根,∴4+2m +2n =0,∴n +m =−2,故答案为−2.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.35.6.【解析】试题分析:∵m 是关于x 的方程2230x x --=的一个根,∴2230m m --=,∴223m m -=,∴224m m -=6,故答案为6.考点:一元二次方程的解;条件求值.36.8【分析】直接把a 的值代入得出224a a -=,进而将原式变形得出答案.【详解】解:∵a 是方程224x x =+的一个根,∴224a a -=,∴22422(2)248a a a a -=-=⨯=.故答案为8.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.37.1【分析】把x =2代入方程得到关于m 的方程,然后解关于m 的方程即可.【详解】解:把x =2+代入方程得2(24(20m -++=,解得m =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.38.-2014【分析】由题意得:222015,a a -=拆项,运用因式分解方法变形求解.【详解】由题意得:222015,a a -=则:a 3-3a 2-2013a+1=22a(2)20131a a a a ---+()22=20152013121201512014a a a a a --+=--+=-+=-.故答案为-2014.【点睛】考核知识点:因式分解的运用.拆项分组是关键.39.x 1=3,x 2=﹣3.【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.40.0【解析】【分析】设方程的另一个解是n ,根据根与系数的关系可得出关于n 的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n ,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax 2+bx+c=0(a≠0)的两根之和等于﹣b a 、两根之积等于c a是解题的关键. 41.﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x +m 2﹣1=0得m 2﹣1=0,解得m=±1, 而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.42.15.【详解】解:29180x x -+=,得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1543.x=-4,x=-1【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.故答案为:x1=-4,x2=-1.【点睛】本题考查方程解的定义.注意由两个方程的特点进行简便计算.44.2【解析】试题分析:∵关于x的方程230-+=的一个根是1,∴1﹣3×1+m=0,解得,m=2,x x m故答案为2.考点:一元二次方程的解.45.2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.【详解】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a . 46.2020.【分析】把x=m 代入方程计算即可求解.【详解】解:把x =m 代入方程得:m 2﹣m ﹣2019=0,即m 2﹣m =2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 47.1【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1. 故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.48.5试题解析:∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②,①+②,得2(a 2-5a )=0,∵a >0,∴a=5.考点:一元二次方程的解.49.1【分析】把x=1代入x 2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x 2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a 2+b 2+2ab=(a+b )2=(﹣1)2=1.50.1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【详解】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.故答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.。

配方法解一元二次方程基础练习30题含详细答案

配方法解一元二次方程基础练习30题含详细答案
配方得: ,
即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40

一元二次方程的解法(二)配方法—巩固练习

一元二次方程的解法(二)配方法—巩固练习

一元二次方程的解法(二)配方法—巩固练习【基础练习】 一、选择题1.用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( ) A .(x +2)2=1 B .(x +2)2=7 C .(x +2)2=13 D .(x +2)2=19 2.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对 4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 5.把方程x 2+3=4x 配方,得( )A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( ) A .2±10 B .-2±14 C .-2+10 D .2-10二、填空题 7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2. 8.用配方法将方程x 2-6x+7=0化为(x +m )2=n 的形式为 .9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程 (1)(2)221233x x +=14.已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值; (2)判断三角形的形状.【提高练习】 一、选择题1.一元二次方程x 2﹣6x ﹣5=0配方组可变形为( )A .(x ﹣3)2=14B .(x ﹣3)2=4C .(x +3)2=14D .(x +3)2=4 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x +=D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( )A .8B .6C .3D .2 4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定 二、填空题 7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2. 8.把代数式x 2﹣4x ﹣5化为(x ﹣m )2+k 的形式,其中m ,k 为常数, 则4m+k= .9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,•所以方程的根为_________.11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.已知.则的值为 .三、解答题13. 用配方法解方程.(1)解方程:x 2﹣2x=4. (2)解方程:x 2﹣6x ﹣4=0.14.分解因式44x +.15.当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值.【基础答案与解析】 一、选择题 1.【答案】B .【解析】x 2+4x=3,x 2+4x +4=7,(x +2)2=7. 2.【答案】C ;【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭.3.【答案】C ; 【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±; 4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ; 5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1. 6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-2±14.二、填空题 7.【答案】(1)4;2; (2)9;3; (3)16;4. 【解析】配方:加上一次项系数一半的平方. 8.【答案】(x ﹣3)2=2.【解析】移项,得x 2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x 2﹣6x +9=﹣7+9, (x ﹣3)2=2. 9.【答案】±3; 【解析】2239m ==.∴ 3m =±. 10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1; 故答案为:﹣1,1. 【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3, ∴=4.三、解答题13.【答案与解析】 (1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5 x-2=5± x 1=2+5x 2=2-5 (2)221233x x +=226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x +=1744x +=±132x =22x =- 14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0, ∴(a ﹣2)2+(b+3)2=0, ∴a ﹣2=0,b+3=0, ∴a=2,b=﹣3, ∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-=又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥, ∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.【提高答案与解析】 一、选择题 1.【答案】A .【解析】x 2﹣6x ﹣5=0,x 2﹣6x=5,x 2﹣6x +9=5+9,(x ﹣3)2=14,故选:A . 2.【答案】C ;【解析】选项C :2890x x ++=配方后应为2(4)7x +=.3.【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5,∴ m+n=5﹣3=2.故选D .4.【答案】D ; 【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.5.【答案】A ;【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.故选A. 6.【答案】A .【解析】由t 是方程的根得at 2+bt+c=0,M=4a 2t 2+4abt+b 2=4a(at 2+bt)+b 2= b 2-4ac=△.故选A.二、填空题7.【答案】(1)49;23x -; (2)24p ;2p x +.【解析】配方:加上一次项系数一半的平方.8.【答案】﹣1;【解析】x 2﹣4x ﹣5=x 2﹣4x+4﹣4﹣5=(x ﹣2)2﹣9, ∴ m=2,k=﹣9,∴ 4m+k=4×2﹣9=﹣1.故答案为﹣1.9.【答案】4;【解析】4x 2-ax+1=(2x-b)2化为4x 2-ax+1=4x 2-4bx+b 2, 所以241a bb =-⎧⎨=⎩- 解得41a b =⎧⎨=⎩或41a b =-⎧⎨=-⎩所以4ab =.10.【答案】(x-1)2=5;15± .【解析】方程两边都加上1的平方得(x-1)2=5,解得x=15±.11.【答案】;2或6.【解析】3x 2-2x-3=0化成;即2(-)232aa =-,a=2或6.12.【答案】5; 【解析】原式三、解答题13.【答案与解析】 解:(1)配方x 2﹣2x +1=4+1 ∴(x ﹣1)2=5 ∴x=1±∴x 1=1+,x 2=1﹣.(2015•大连)解方程:x 2﹣6x ﹣4=0.(2)解:移项得x 2﹣6x=4, 配方得x 2﹣6x +9=4+9, 即(x ﹣3)2=13, 开方得x ﹣3=±, ∴x 1=3+,x 2=3﹣. 14. 【答案与解析】4222224()22222x x x x +=++-g g g g22222(2)(2)(22)(22)x x x x x x =+-=++-+.15. 【答案与解析】解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4 =(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0, ∴x 2+4x+4y 2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.。

一元二次方程解法练习题

一元二次方程解法练习题

一元二次方程的解法练习题1.方程x2-mx+n=0的两个根一个是-1,另一个是1,则m=____,n=____.2.方程x2+5x+2t-1=0,有一个根是-1,则t=____.3.方程(3x-4)2=(4x-3)2的根为____.4.方程(x+1)2=(x-1)2的根为____.5.方程x2-9a2-12ab-4b2=0的根x1=____,x2=____.6.方程4(x-2)2=(x-1)2的根为____.7.方程x2+2ax-b2+a2=0的解为____.8.方程0.25(x+1)2=0.09(x-1)2的解为_____.9.方程(x2-x)2=36的解为____.10.方程(3x-1)(x+2)=20的解为____.11.方程3x2-x+1=0的两根为( )12.方程x2-2x+2=0的根为( )C.无实根;13.方程x2+2x-3=0的两根为 [ ].A.x1=3x2=1; B.x1=-3,x2=1;C.x1=-3,x2=-1; D.x1=3,x2=-1.14.方程x2-6x-3=0的两根为 [ ].15.方程x2+2x-1=0的两根为 [ ].16.方程x2-2x+1-k(x2-1)=0(k≠1)的解为[ ].17.方程0.09(x+0.3)2=0.36的根为 [ ].A.x1=-1.7,x2=-2.3; B.x1=1.7,x2=2.3;C.x1=1.7,x2=-2.3; D.x1=-1.7,x2=2.3.18.方程3x2-2=4x的根为 [ ].19.用直接开平方法解下列方程:(1)x2=8; (2)3x2=0; (3)3x2-4x-7=0; (4)4(1-x)2-9=0.20、用配方法解下列方程:(1)x2-4x-1=0; (2).3x2+21x-1=0;21、用公式法解下列方程:(1)6x2-13x-5=0; (2)(x+2)2=2x+4;22、用因式分解法解下列方程:(1)(x+1)2-2=0; (2)(x+2)2=2x+4;(3)x2=5x; (4)x2-5x+2=0.23、用适当方法解下列方程:(1)(x-1)(2+x)=4;(2)(x+3)2=3(4x+3); (3)(2x+1)2-3(2x+1)+2=0;(4)2x2-mx=m2.24、x为何值时,下列各组两个代数式的值相等?(1)x(3x-2)和4(2-3x); (2)32x-和232x+41-x;(3)x2和x; (4)2x2-2m2和mx.一元二次方程根的判别式和根与系数的关系练习题1.关于x的方程x2-2mx-m-1=0实根的情况是()A.有两个不相等的实数根; B.有两个相等的实数根;C.没有实数根; D.不能确定。

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2 =648、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=014、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=017、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x 01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

(完整版)一元二次方程100道计算题练习(附答案)

(完整版)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程(直接开方法配方法)练习题100道1.用适当的数填空:①、x2+6x+9=(x+3)2;②、x2-5x+4=(x-2)2;③、x2+2x+1=(x+1)2;④、x2-9x+81=(x-9)22.将一元二次方程x2-2x-4=0用配方法化成(x-1)2=5的形式为,所以方程的根为x=1±√5.3.若x2+6x+m2是一个完全平方式,则m的值是±3.4.把方程x2+3=4x配方,得(x-2)2=1.5.用配方法解方程x2+4x=10的根为x=-2±2√3.6.用配方法解下列方程:2)x2+8x-9=0,解为x=-4±√13;3)x2+12x-15=0,解为x=-6±√51;4)2x2+3x-1=0,解为x=1/2或x=-1.7.用直接开平方法解下列一元二次方程:1)4x2-1=0,解为x=±1/2;7)x2+4x-1=0,解为x=-2±√5.8.用配方法解下列一元二次方程:1)y-6y+9=0,解为y=3;2)3x2-2x-1=0,解为x=1/3或x=-1;4)2x2+3x-1=0,解为x=1/2或x=-1;5)3x2+2x-7=0,解为x=-1±√10;6)-4x2-8x+1=0,解为x=1/2或x=-1/4;7)x2-6x-6=0,解为x=3±√15.27.解方程x2-4x+3=0.28.解方程x2-6x-3=0.29.解方程2x2-8x+3=0.30.解方程3x2-4x+1=0.31.解方程x2-6x+1=0.32.解方程2x2-4x+1=0.33.解方程x2+5x-3=0.34.解方程x2+2x-4=0.35.解方程2x2-4x+1=0.37.化简方程5(x2+17)=6(x2+2x)。

38.解方程4x2-8x+1=0.39.解方程2x2+1=3x。

40.解方程x2+x-2=0.41.解方程x2-6x+1=0.42.解方程x2-8x+5=0.43.解方程x2+3x-4=0.44.解方程3x2+8x-3=0.45.解方程x2+8x=2.46.解方程x2+3x+1=0.47.解方程2x2-3x+1=0.48.解方程x2-4x-6=0.49.解方程x2-8x+1=0.50.解方程x2+4x+1=0.51.解方程x2-4x+1=0.52.解方程x2-6x-7=0.53.解方程x2-6x-5=0.54.解方程2x2+1=3x。

一元二次方程50道题

一元二次方程50道题

一元二次方程50道题一、基础形式类(1 - 10题)1. 解方程x^2+3x + 2 = 0。

这个方程就像是一个小迷宫,我们得找到让这个等式成立的x的值哦。

2. 求解方程x^2-5x + 6 = 0。

这就好比是给x找一个合适的家,让这个等式舒舒服服的。

3. 解一元二次方程x^2+x - 6 = 0。

这个方程像是一个小谜题,x是那个神秘的答案呢。

4. 求方程x^2-3x - 4 = 0的解。

感觉就像在数字的森林里找宝藏,宝藏就是x的值。

5. 解方程x^2+2x - 3 = 0。

这个方程是一个等待我们破解的小密码,密码就是x 的正确数值。

6. 求解x^2-4x + 3 = 0。

这就像是一场数字的捉迷藏,x躲在某个地方,我们要把它找出来。

7. 解一元二次方程x^2+4x + 3 = 0。

这个方程像是一个数字的小盒子,我们要打开它找到x。

8. 求方程x^2-2x - 8 = 0的解。

就像是在数字的海洋里捞针,针就是x的值。

9. 解方程x^2+5x - 14 = 0。

这个方程是一个数字的小挑战,看我们能不能征服它找到x。

10. 求解x^2-6x + 8 = 0。

这就像给x安排一个合适的位置,让这个等式完美成立。

二、含系数类(11 - 20题)11. 解2x^2+3x - 2 = 0。

这个方程里2就像是x的一个小跟班,我们要一起找到合适的x。

12. 求解3x^2-5x + 2 = 0。

3在这儿可有点小威风,不过我们可不怕,照样能找到x。

13. 解一元二次方程 - x^2+2x + 3 = 0。

这个负号就像个小捣蛋鬼,但我们能搞定它找到x。

14. 求方程4x^2-4x + 1 = 0的解。

4这个家伙让方程看起来有点复杂,不过没关系。

15. 解方程 - 2x^2-3x + 1 = 0。

这个负2就像个小乌云,我们要拨开乌云见x。

16. 求解5x^2+2x - 3 = 0。

5在这里就像个大力士,不过我们要指挥它来找到x。

一元二次方程基础练习题

一元二次方程基础练习题

一元二次方程一、选择题1.在下列方程中,一元二次方程的个数是()A.1个 B.2个 C.3个D.4个①3x2+7=0 ②a x2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=02.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 Bp>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为______,一次项系数为______,常数项为________. 2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合题1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3,判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) a x2+bx+c=04,方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?5,下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.6,.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值。

7,你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 8,关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为(). A.3 B.-3 C.±3 D.无实数根二、填空题1.若8x2-16=0,则x的值是_________.一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-33.如果m x2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或9二、填空题1.方程x2+4x-5=0的解是________.2.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是(). A.1 B.2 C.-1 D.-2二、填空题1.如果x2+4x-5=0,则x=_______.2.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.三.用配方法解方程.(1)9y 2-18y-4=0 (2)x 2一、选择题1.用公式法解方程4x 2-12x=3,得到( ).A .x=32-±B .x=32±.x=32-± D .x=32±22的根是( ).A .x 1x 2.x 1=6,x 2C .x 1x 2.x 1=x 2 3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).A .4B .-2C .4或-2 D-4或2二、填空题1.一元二次方程a x 2+bx+c=0(a ≠0)的求根公式是________,条件是________.2.当x=______时,代数式x 2-8x+12的值是-4.3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____. 4,用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 212=0 (4)4x 2-3x+2=0一、选择题1.以下是方程3x 2-2x=-1的解的情况,其中正确的有( ).A .∵b 2-4ac=-8,∴方程有解B .∵b 2-4ac=-8,∴方程无解C .∵b 2-4ac=8,∴方程有解D .∵b 2-4ac=8,∴方程无解2.一元二次方程x 2-ax+1=0的两实数根相等,则a 的值为( ).A .a=0B .a=2或a=-2C .a=2D .a=2或a=03.已知k ≠1,一元二次方程(k-1)x 2+kx+1=0有根,则k 的取值范围是( ).A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.一、选择题1.下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2 D.x2=x 两边同除以x,得x=12.下列命题①方程k x2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x 与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有(). A.0个 B.1个 C.2个 D.3个3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().A.-12B.-1 C.12D.12.已知(x+y)(x+y-1)=0,求x+y的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册《一元二次方程解法》练习题
一、填空题
1.一元二次方程的一般形式是____ ______.其解为1x =__________,2x =____________.
2.将方程x x 2)1(2=+化成一般形式为___ _______.其二次项是__________, 一次项是__________,常数项是__________.
3.方程)0(02≠=+a c ax 的解的情况是:当0>ac 时_________;当0=ac 时___________;当0<ac 时___________.
4.填写适当的数使下式成立:①++x x 62______=2)3(+x ②-2x ______1+x =2)1(-x ③++x x 42______=+x (______2)
5.关于x 的方程5)3(72=---x x m m
是一元二次方程,则m =_________. 6.05222=--x x 的根为1x =_________,2x =_________.
7.方程0652=+-x x 与0442
=+-x x 的公共根是_________. 8.32-是方程012=-+bx x 的一个根,则b =_________,另一个根是_________. 9.已知方程02=++c bx ax 的一个根是-1,则c b a +-=___________.
10.已知012722=+-y xy x ,那么x 与y 的关系是_________.
二、选择题
11.下列方程中,不是一元二次方程的是( )
A.0722=+x
B.013222=++x x
C.04152=++
x
x D.01)1(232=+++x x x 12.方程0)1()23(22=++--x x x 的一般形式是( ) A.0552=+-x x B.0552=++x x C.0552=-+x x D.052=+x
13.方程06)23(2=+++x x 的解是( ) A.6,121=
=x x B.6,121-=-=x x C.3,221==x x D.3,221-=-=x x 14.方程0)()(=-+-x b b x ax 的根是( )
A.a x b x ==21,
B.a x b x 1,21=
= C.b
x a x 1,21== D.2221,a x b x == 15.一元二次方程022=--m x x ,用配方法解该方程,配方后的方程为( ) A.1)1(22+=-m x B.1)1(2
-=-m x C.m x -=-1)1(2 D.1)1(2+=-m x 16.已知9=xy ,3-=-y x ,则223y xy x ++的值为( )
A.27
B.9
C.54
D.18
17.若一元二次方程04)15(3)2(222=-+++-m x m x m 的常数项是0,则m 为( )
A.2
B.±2
C.-2
D.-10
18.若代数式652
++x x 与1+-x 的值相等,则x 的值为( )
A.5,121-=-=x x
B.1,621=-=x x
C.3,221-=-=x x
D.1-=x
19.已知1562+-=x x y ,若0≠y ,则x 的取值情况是( )
A.61≠
x 且1≠x B.21≠x C.31≠x D.21≠x 且3
1≠x 20.方程)3(5)3(2+=+x x x 的根是( ) A.25=x B.3-=x 或25=x C.3-=x D.2
5-=x 或3=x 三、解答与证明
21.用配方法解下列方程
(1)0152=-+x x (2)01422=+-x x (3)
0364
12=+-x x
22.用公式法解下列各方程
(1)01252=-+x x (2)061362=++y y (3)7962=++x x
23.用因式分解法解下列方程
(1)022=+x x (2)2
2)12()1(-=+x x (3)4122=+-x x
24.如果一个一元二次方程的一次项系数等于二次项系数与常数项之和, 则此方程必有一根是-1.。

相关文档
最新文档