高中物理选修3-1《电磁感应》章节测试卷解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修3-1《电磁感应》章节测试卷解析版
一、选择题(共17小题)
1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化
B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化
C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化
D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化
【分析】产生感应电流的条件:闭合回路的磁通量发生变化或闭合电路的一部分导体在磁场中做切割磁感线运动,导体中有感应电流。
解:A、将绕在磁铁上的线圈与电流表组成一闭合回路,回路中没有磁通量的变化,不能产生感应电流,观察到电流表没有变化,故A错误;
B、在一通电线圈旁放置一连有电流表的闭合线圈,回路中没有磁通量的变化,不能产生
感应电流,观察到电流表没有变化,故B错误;
C、将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁的过程中有
感应电流产生,但是之后,再到相邻房间去观察时,回路中已经没有磁通量的变化,此时观察到的电流表没有变化,故C错误;
D、绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,回
路中的磁通量发生变化,能观察电流表的变化,故D正确。
故选:D。
【点评】解决本题关键要准确把握产生感应电流的一般条件:闭合回路的磁通量发生变化,电路必须闭合。
2.如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内。
左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化。
规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab﹣t图象可能正确的是()
A.
B.
C.
D.
【分析】由图乙可知,电流为周期性变化的电流,故只需分析0.5T0内的感应电流即可;
通过分析电流的变化明确磁场的变化,根据楞次定律即可得出电动势的图象。
解:在第一个0.25T0时间内,通过大圆环的电流为顺时针增加的,由楞次定律可判断内球内a端电势高于b端,因电流的变化率逐渐减小故内环的电动势逐渐减小,同理可知,在0.25T0~0.5T0时间内,通过大圆环的电流为顺时针逐渐减小;则由楞次定律可知,a 环内电势低于b端,因电流的变化率逐渐变大,故内环的电动势变大;故只有C正确;
故选:C。
【点评】本题考查楞次定律的应用,要注意明确楞次定律解题的基本步骤,正确掌握并理解“增反减同”的意义,并能正确应用;同时解题时要正确审题,明确题意,不要被复杂的电路图所迷或!
3.如图,光滑平行金属导轨固定在水平面上,左端由导线相连,导体棒垂直静置于导轨上构成回路。
在外力F作用下,回路上方的条形磁铁竖直向上做匀速运动。
在匀速运动过程中外力F做功W F,磁场力对导体棒做功W1,磁铁克服磁场力做功W2,重力对磁铁
做功W G,回路中产生的焦耳热为Q,导体棒获得的动能为E K.则()
A.W1=Q B.W2﹣W1=Q C.W1=E K D.W F+W G=Q+E K 【分析】分别选磁铁和导体棒为研究对象,根据动能定理列方程,对系统根据能量守恒知W2﹣W1=Q。
解:A、根据题意,由动能定理知:导体棒:W1=E k①,故A错误,C正确
B、根据能量守恒知W2﹣W1=Q②,故B正确;
D、对磁铁有:W F+W G﹣W2=0③,由①②③得W F+W G=E k+Q,故D正确;
故选:BCD。
【点评】此题考查动能定理和能量守恒,一对磁场力做功之和为系统产生的焦耳热。
4.如图所示,abcd为水平放置的平行“匸”形光滑金属导轨,间距为l,导轨间有垂直与导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则下列说法中错误的是()
A.电路中感应电动势的大小为
B.电路中感应电流的大小为
C.金属杆所受安培力的大小为
D.金属杆的热功率为
【分析】根据E=BLv,L是有效的切割长度,求解感应电动势。
根据闭合电路欧姆定律求感应电流的大小。
由F=BIL求安培力,由功率公式求解金属杆的热功率。
解:A、电路中感应电动势为:E=B sinα•v=Blv,故A错误。
B、电路中感应电流的大小为:I==,故B正确。
C、金属杆所受安培力的大小为:F=BI•=,故C错误。
D、金属杆的热功率为:P=EI=sinθ,故D错误。
本题选择不正确的,
故选:ACD。
【点评】本题考查导体切割磁感线中的电动势和安培力公式的应用,要注意明确E=BLv 和F=BIL均为导轨宽度,即导线的有效切割长度。
5.如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动,现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。
在圆盘减速过程中,以下说法正确的是()
A.处于磁场中的圆盘部分,靠近圆心处电势高
B.所加磁场越强越易使圆盘停止转动
C.若所加磁场反向,圆盘将加速转动
D.若所加磁场穿过整个圆盘,圆盘将匀速转动
【分析】将金属圆盘看成由无数金属幅条组成,根据右手定则判断感应电流的方向,从而判断电势的高低,形成感应电流,再根据左手定则,即可求解。
解:A、将金属圆盘看成由无数金属幅条组成,根据右手定则判断可知:圆盘上的感应电流由边缘流向圆心,所以靠近圆心处电势高,所以A正确;
B、根据右手定则可知,产生的电动势为BLv,所以所加磁场越强,产生的电动势越大,
电流越大,受到的安培力越大,越易使圆盘停止转动,所以B正确;
C、若所加磁场反向,只是产生的电流反向,根据楞次定律可知,安培力还是阻碍圆盘的
转动,所以圆盘还是减速转动,所以C错误;
D、若所加磁场穿过整个圆盘时,圆盘在切割磁感线,产生感应电动势,相当于电路断开,
则不会产成感应电流,没有安培力的作用,圆盘将匀速转动,所以D正确;
故选:ABD。
【点评】本题关键要掌握右手定则、安培定则,并能正确用来分析电磁感应现象,对于这两个定则运用时,要解决两个问题:一是什么条件下用;二是怎样用。
6.如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ɛ;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为ɛ′.则等于()
A.B.C.1D.
【分析】本题根据感应电动势公式E=BLv,L是有效的切割长度,分析感应电动势的关系.
解:设金属棒的长度为L。
左侧的金属棒有效的切割长度为L,垂直切割磁感线,产生的感应电动势为ɛ=BLv 右侧的金属棒有效的切割长度为L,垂直切割磁感线,产生的感应电动势为ɛ′=
B Lv
则=
故选:B。
【点评】本题关键要准确理解公式E=BLv中L的含义,知道L是有效的切割长度,即速度垂直方向上金属棒的长度.
7.如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在△t 时间内,磁感应强度的方向不变,大小由B 均匀地增大到3B.在此过程中,线圈中产生的感应电动势为()
A.B.C.D.
【分析】由法拉第电磁感应定律求出感应电动势,注意线圈的有效面积是正方形面积的一半.
解:由法拉第电磁感应定律得:
线圈中产生的感应电动势E=n=n•=n•=
故选:B。
【点评】本题属于感生问题,运用法拉第电磁感应定律时,要注意要用有效面积求感应电动势.
8.如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来。
若要缩短上述加热时间,下列措施可行的有()
A.增加线圈的匝数B.提高交流电源的频率
C.将金属杯换为瓷杯D.取走线圈中的铁芯
【分析】由题意可知电器的工作原理,则根据原理进行分析可得出缩短加热时间的方法。
解:A、由题意可知,本题中是涡流现象的应用;
即采用线圈产生的磁场使金属杯产生感应电流;从而进行加热的,则由法拉第电磁感应定律可知,增加线圈的匝数、提高交流电的频率均可以提高发热功率;则可以缩短加热时间;故AB正确;
C、将杯子换作瓷杯不会产生涡流;则无法加热水;故C错误;
D、取走铁芯磁场减弱,则加热时间变长;故D错误;
故选:AB。
【点评】本题考查涡流的应用,要注意明确涡流现象其实就是电磁感应的,由法拉第电磁感应定律可知涡流现象的强弱。
9.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。
导线框以某一初速度向右运动。
t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。
下列v﹣t图象中,可能正确描述上述过程的是()
A.B.C.D.
【分析】线圈以一定的初速度进入匀强磁场,由于切割磁感线,所以出现感应电流,从而产生安培阻力,导致线圈做加速度减小的减速运动。
当完全进入后,没有磁通量变化,所以没有感应电流,不受到安培力,因此做匀速直线运动,当出现磁场时,磁通量又发生变化,速度与进入磁场相似。
解:线圈以一定初速度进入磁场,则感应电动势为:E=BLv
闭合电路欧姆定律,则感应电流为:
安培力为:
由牛顿第二定律为:F=ma
则有:
由于v 减小,所以a也减小,当完全进入磁场后,不受到安培力,所以做匀速直线运动,当出磁场时,速度与时间的关系与进入磁场相似。
而速度与时间的斜率表示加速度的大小,因此D正确,ABC错误;
故选:D。
【点评】属于力与电综合题,并强调速度与时间的斜率表示加速度的大小,而由牛顿第二定律来确定加速度如何变化。
10.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。
现使线框
保持图中所示位置,磁感应强度大小随时间线性变化。
为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为()
A.B.C.D.
【分析】根据转动切割感应电动势公式,,求出感应电动势,由欧姆定律求解感应电流.根据法拉第定律求解磁感应强度随时间的变化率.
解:若要电流相等,则产生的电动势相等。
设切割长度为L,而半圆的直径为d,
从静止开始绕过圆心O以角速度ω匀速转动时,线框中产生的感应电动势大小为
①
根据法拉第定律得②
①②联立得
故ABD错误,C正确,
故选:C。
【点评】本题关键要掌握转动切割感应电动势公式和法拉第电磁感应定律.11.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a开始下落.已知磁场上下边界之间的距离大于水平面a、b之间的距离.若线圈下边刚通过水平面b、c(位于磁场中)和d时,线圈所受到的磁场力的大小分别为F b、F c和F d,则()
A.F d>F c>F b B.F c<F d<F b C.F c>F b>F d D.F c<F b<F d
【分析】对线圈的运动过程进行分析.
通过边框切割磁感线产生的感应电动势大小去判断感应电流的大小.
通过安培力的大小与哪些因素有关去解决问题.
解:线圈从a到b做自由落体运动,在b点开始进入磁场切割磁感线所以受到安培力F b,由于线圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流,在c处不受安培力,但线圈在重力作用下依然加速,因此从d 处切割磁感线所受安培力必然大于b处。
故选:D。
【点评】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解.
注意线圈全部进入磁场后,就不受安培力,因此线圈会做加速运动.
12.如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()
A.
B.
C.
D.
【分析】线圈cd与示波器连接,在每个时间段内电流不随时间变化,则根据法拉第电磁感应定律,产生感应电流的磁场均匀变化,由此判断线圈ab电流的变化。
解:因为线圈cd中每个时间段内电流大小不变化,则每个时间段内产生的感应电动势不变;
根据法拉第电磁感应定律得:E=N S,
电流为:,
则线圈ab中每个时间段内电流的磁场均匀变化。
正确反应这一关系的图象只有C.故C 正确,A、B、D错误。
故选:C。
【点评】解决本题的关键掌握法拉第电磁感应定律,知道磁场均匀变化时,产生的感应电动势大小不变。
13.如图为无线电充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S,若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa﹣φb是()
A.恒为
B.从0均匀变化到
C.恒为
D.从0均匀变化到
【分析】穿过线圈的磁感应强度均匀增加,故感应电动势为定则;根据法拉第电磁感应定律列式求解感应电动势即可。
解:穿过线圈的磁感应强度均匀增加,故产生恒定的感应电动势,根据法拉第电磁感应定律,有:
E=n=nS=nS
根据楞次定律,如果线圈闭合,感应电流的磁通量向左,故感应电动势顺时针(从右侧看),故φa<φb,故:
φa﹣φb=
故选:C。
【点评】本题综合考查了法拉第电磁感应定律和楞次定律,注意感应电流的磁场总是阻碍引起感应电流的原因。
14.纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,
磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是()
A.B.
C.D.
【分析】根据右手定则判断方向,然后根据分析大小变化即可做出选择.解:由右手定则可判,开始时感应电动势为正,故D错误;
设经时间t导体杆转过的角度为α,则α=ωt,导体杆有效切割长度为L=2Rsinωt。
由可知,E=2BR2ωsin2ωt,B、R、ω不变,切割的有效长度随时间先增大后减小,且做非线性、非正弦的变化,经半个周期后,电动势的方向反向,故ABD错误,C正确;
故选:C。
【点评】电磁感应与图象的结合问题,近几年高考中出现的较为频繁,在解题时涉及的内容较多,同时过程也较为复杂;故在解题时要灵活,可以先利用右手定则或楞次定律判断方向排除法,在选择其他合适的解法等解答.
15.如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为0.1Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4﹣0.2t)T,图示磁场方向为正方向,框、挡板和杆不计形变.则()
A.t=1s时,金属杆中感应电流方向从C到D
B.t=3s时,金属杆中感应电流方向从D到C
C.t=1s时,金属杆对挡板P的压力大小为0.1N
D.t=3s时,金属杆对挡板P的压力大小为0.2N
【分析】根据楞次定律,并由时刻来确定磁场的变化,从而判定感应电流的方向;根据法拉第电磁感应定律,结合闭合电路欧姆定律,及安培力表达式,与力的合成与分解,并由三角知识,即可求解.
解:A、当t=1s时,则由磁感应强度随时间变化规律是B=(0.4﹣0.2t)T,可知,磁场在减小,根据楞次定律可得,金属杆中感应电流方向从C到D,故A正确;
B、同理,当t=3s时,磁场在反向增加,由楞次定律可知,金属杆中感应电流方向从C
到D,故B错误;
C、当在t=1s时,由法拉第电磁感应定律,则有:E==0.2×12×=0.1V;
再由欧姆定律,则有感应电流大小I==1A;则t=1s时,那么安培力大小F=B t IL =(0.4﹣0.2×1)×1×1=0.2N;
由左手定则可知,安培力垂直磁场方向斜向上,则将安培力分解,那么金属杆对挡板P 的压力大小N=Fcos60°=0.2×0.5=0.1N,故C正确;
D、同理,当t=3s时,感应电动势仍为E=0.1V,电流大小仍为I=1A,由于磁场的方
向相反,由左手定则可知,安培力的方向垂直磁感线斜向下,
根据力的合成,则得金属杆对H的压力大小为N′=F′cos60°=0.2×0.5=0.1N,故D 错误;
故选:AC。
【点评】考查楞次定律与法拉第电磁感应定律的应用,掌握左手定则的内容,注意磁场随着时间变化的规律,及理解力的平行四边形定则的应用.
16.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中。
一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,
不计摩擦。
在PQ从靠近ad处向bc滑动的过程中()
A.PQ中电流先增大后减小
B.PQ两端电压先减小后增大
C.PQ上拉力的功率先减小后增大
D.线框消耗的电功率先减小后增大
【分析】本题分段过程分析:当PQ从左端滑到ab中点的过程和从ab中点滑到右端的过程,抓住PQ产生的感应电动势不变。
导体棒由靠近ab边向dc边匀速滑动的过程中,产生的感应电动势不变,外电路总电阻先增大后减小,由欧姆定律分析PQ两端的电压如何变化;
由题意,PQ上外力的功率等于电功率,由P=,分析功率的变化;
当PQ从左端滑到ab中点的过程中,由于总电阻增大,则干路电流减小,PQcb回路的电阻减小,通过cb的电流增大,可知ab中电流减小;当PQ从ab中点滑到右端的过程中,干路电流增大,PQda回路的电阻增大,PQ两端的电压减小,可知ab中电流减小;
根据矩形线框总电阻与PQ电阻的关系,分析其功率如何变化。
当矩形线框的总电阻等于PQ的电阻时,线框的功率最大。
解:根据右手定则可知,PQ中电流的方向为Q→P,画出该电路的等效电路图如图,
其中R1为ad和bc上的电阻值,R2为ab上的电阻与cd上的电阻的和,电阻之间的关系满足:R1+R2+R1=3R,由题图可知,
当导体棒向右运动的过程中,开始时的电阻值:
当导体棒位于中间位置时,左右两侧的电阻值是相等的,此时:
,
可知当导体棒向右运动的过程中,开始时的电阻值小于中间位置处的电阻值,所以当导
体棒向右运动的过程中电路中的总电阻先增大后减小。
A、导体棒由靠近ad边向bc边匀速滑动的过程中,产生的感应电动势E=BLv,保持不
变,外电路总电阻先增大后减小,由欧姆定律分析得知电路中的总电流先减小后增大,即PQ中电流先减小后增大。
故A错误。
B、PQ中电流先减小后增大,PQ两端电压为路端电压,U=E﹣IR,可知PQ两端的电
压先增大后减小。
故B错误;
C、导体棒匀速运动,PQ上外力的功率等于回路的电功率,而回路的总电阻R先增大后
减小,由P=得知,PQ上外力的功率先减小后增大。
故C正确。
D、由以上的分析可知,导体棒PQ上的电阻始终大于线框的电阻,当导体棒向右运动的
过程中电路中的总电阻先增大后减小,根据闭合电路的功率的分配关系与外电阻的关系可知,当外电路的电阻值与电源的内电阻相等时外电路消耗的电功率最大,所以可得线框消耗的电功率先增大后减小。
故D错误。
故选:C。
【点评】本题一要分析清楚线框总电阻如何变化,抓住PQ位于ad中点时线框总电阻最大,分析电压的变化和电流的变化;二要根据推论:外电阻等于电源的内阻时电源的输出功率最大,分析功率的变化。
17.如图所示,边长为L、不可形变的正方形导线框内有半径为r的圆形磁场区域,其磁感应强度B随时间t的变化关系为B=kt(常量k>0).回路中滑动变阻器R的最大阻值为R0,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2=.闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势,则()
A.R2两端的电压为
B.电容器的a极板带正电
C.滑动变阻器R的热功率为电阻R2的5倍
D.正方形导线框中的感应电动势为kL2
【分析】这是电磁感应与电路结合,左侧的导体框相当于电源.要先用电磁感应求出产生的感应电动势,然后由闭合电路欧姆定律来分析电路中电压,再由焦耳定律分析电阻电热.而至于电容器的极板电性,需要可依据感应电动势的正负极,有右手定则可以判定,电路左侧的变化磁场在正方形导体内产生逆时针电流,由此可知导体框相当于一个上负下正的电源,所以电容器a极板带负电.
解:A:有法拉第电磁感应,由此可以知道D错。
R2与R是并联,并联滑动变阻器的阻值为,可知并联电阻为,则滑动变阻器所在支路的电阻为,外电路的总电阻为:,故R2两端电压为:,所以A正确;
B:电路左侧的变化磁场在正方形导体内产生逆时针电流,由此可知导体框相当于一个上负下正的电源,所以电容器a极板带负电。
C:设干路电流为I则通过滑动变阻器左半部分的电流为I,通过其右半部分的电流为,由于此部分与R2并联而且电阻值相等,因此通过R2的电流也为,由P=I2R知:滑动变阻器热功率为,R2的热功率为:,
所以滑动变阻器R的热功率为电阻R2的5倍。
故C正确。
D:由A的分析知D错。
故选:AC。
【点评】本题考查的事电磁感应与电路结合,重点在于电路分析,这部分题目比较多,应该熟悉其操作方法即一般的电路问题的基本思路都是:由电动势和总电阻得电流,再由电流分析电路中各个元件的电压,然后还可以由支路电压分析支路电流或者由电流分析电压.还可以由此分析各个元件的电热功率,基本千篇一律.
二、填空题(共1小题)
18.如图,一无限长通电直导线固定在光滑水平面上,金属环质量为0.02kg,在该平面上以v0=2m/s、与导线成60°角的初速度运动,其最终的运动状态是匀速直线运动,环中最多能产生0.03J的电能.
【分析】金属环周围有环形的磁场,金属环向右上运动,磁通量减小,根据“来拒去留”
可知,所受的安培力与运动方向相反,使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,最终金属环的运动状态为匀速沿导线运动,速度为原来速度的沿导线方向上的分量.
解:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力与运动方向相反,使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向合力为零,故为匀速直线运动.
由题意知:
沿导线方向分速度v1=v0•cos60°=2×=1m/s
根据动能定理解得:
=Q
代入数值解得:
Q=﹣0.03J
故环中最多产生0.03J的电能;
故答案为:匀速直线运动,0.03J
【点评】此题考查法拉第电磁感应定律的应用及动能定理或者是能量守恒的应用,题目单一但是并不简单,需要知识的活学活用.
三、解答题(共12小题)
19.做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流,某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0cm,线圈导线的截面积A=0.80cm2,电阻率ρ=1.5Ω•m,。