八年级数学(下)学期 第二次 质量检测测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )
A .33
B .27
C .43
D .223+
2.如图,在矩形ABCD 中,25,4,BC AB O ==为边AB 的中点,P 为矩形ABCD 外一动点,且90APC ∠=,则线段OP 的最大值为( )
A .53+
B .35+
C .452-
D .231+
3.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( )
①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.
A .①⑥
B .①②④⑥
C .①②③④
D .①②④⑤⑥
4.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的
边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )
A .331(3,)26++
B .333(3,)218++
C .331(3,)26++
D .333(3,)218
++ 5.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )
A .2
B .125
C .3
D .4
6.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )
A .(-8,0)
B .(0,8)
C .(0,2)
D .(0,16)
7.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2
=
△;(4)2EF 的最小值为2.其中正确的有( ).
A .4个
B .3个
C .2个
D .1个 8.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为
( )
A .2
B .2
C .1.5
D .3
9.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )
A .3
B .2
C .23
D .4
10.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )
A .1个
B .2个
C .3个
D .4个
二、填空题
11.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.
12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.
13.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则
2020C =______.
14.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:
①可以得到无数个平行四边形EGFH ;
②可以得到无数个矩形EGFH ;
③可以得到无数个菱形EGFH ;
④至少得到一个正方形EGFH .
所有正确结论的序号是__.
15.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.
16.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.
17.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .
18.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.
19.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落
在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.
20.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.
三、解答题
21.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;
(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;
②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).
22.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.
(2)若AB =1,BC =2,求四边形AGFP 的周长.
23.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .
(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;
(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;
(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =
132,DB =5,则△ABC 的面积为 .(直接写出答案)
24.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .
(1)求证:,PG PC PG PC ⊥=.
简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;
(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC
的值,写出你的猜想并加以证明;
(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且
60
∠=∠=︒.若点A B E
ABC BEF
、、在一条直线上,如图2,则CP=________;若点、、在一条直线上,如图3,则CP=________.
A B G
25.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.
(1)当t=1时,求BF的长度;
(2)在点E运动的过程中,求D、F两点之间距离的最小值;
(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.
26.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.
(1)求证:BP=CQ;
(2)若BP =13
PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.
27.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.
(1)如图1,①∠BEC=_________°;
②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;
(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.
28.问题背景
若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.
初步思考
(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,
EB EC =,45EBC ∠=︒,DBC △为等边三角形.
①点A 与点______关于BC 互为顶针点;
②点D 与点______关于BC 互为勾股顶针点,并说明理由.
实践操作
(2)在长方形ABCD 中,8AB =,10AD =.
①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)
思维探究
②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.
29.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .
(1)求证:四边形DEBF 是平行四边形;
(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.
30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.
(1)求BQ 的长(用含t 的代数式表示);
(2)当四边形ABQP 是平行四边形时,求t 的值;
(3)当325
t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=23,BC=4,求EC的长.
【详解】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B
,
此时CE的长就是GB+GC的最小值;
∵MN∥AD,
∴HM=1
2 AE,
∵HB⊥HM,AB=4,∠A=60°,
∴MB=2,∠HMB=60°,
∴HM=1,
∴AE'=2,
∴E点与E'点重合,
∵∠AEB=∠MHB=90°,
∴∠CBE=90°,
在Rt△EBC中,3BC=4,
∴7,
故选A.
【点睛】
本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.2.B
解析:B
【分析】
连接AC,取AC的中点E,根据矩形的性质求出AC,OE,再根据直角三角形斜边上的中线
等于斜边的一半可得
1
2
PE AC
,然后根据三角形的任意两边之和大于第三边可得O、
E、P三点共线时OP最大.【详解】
解:如图,连接AC ,取AC 的中点E ,
∵矩形ABCD 中,25, 4BC AB ==,O 为AB 的中点,
2216,52
AC AB BC OE BC ∴=+==
= ∵AP ⊥CP , 116322
PE AC ∴==⨯=, 由三角形的三边关系得,O 、E 、P 三点共线时OP 最大, 此时 53OP =最大
故选:B .
【点睛】
本题考查了矩形的性质、三角形的三边关系、勾股定理、中位线定理.能正确构造辅助线,并根据三角形三边关系确定OP 最大值是解题关键.
3.D
解析:D
【分析】
先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.
【详解】
①∵四边形ABCD 是平行四边形,
∴AB ∥DC,AB=DC,
∴∠BAC=∠ADC,
在△ABE 和△DFC 中
BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩
∴△ABE≌△DFC(SAS ),
∴BE=DF,
故①正确.
②∵△ABE≌△DFC,
∴∠AEB=∠DFC,
∴∠BEF=∠DFE,
∴BE∥DF,
故②正确.
③根据已知的条件不能推AB=DE ,故③错误.
④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,
∵四边形ABCD 是平行四边形,
∴DO=BO,OA=OC,
∵AE=CF,
∴OE=OF,
∴四边形BEDF 是平行四边形,
故④正确.
⑤∵BN⊥AC,DM⊥AC,
∴∠BNO=∠DMO=90°,
在△BNO 和△DMO 中
∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩
△ADE △ABE ∴△BNO ≌△DMO (AAS )
∴BN=DM
11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯
∴△ADE △ABE S =S ,
故⑤正确.
⑥∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
故⑥正确.
故答案是D.
【点睛】
本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.
4.C
解析:C
【分析】
根据两直线平行,同位角相等可得∠B 3C 3O=∠B 2C 2O=∠B 1C 1O=60°,然后利用三角形全等可得B 2E 2=E 1E 2=D 1E 1=E 3C 2,E 2C 2=E 3E 4=B 3E 4,解直角三角形求出OC 1、C 1E 、E 1E 2、E 2C 2、C 2E 3、E 3E 4、E 4C 3,再求出B 3C 3,过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,先求出A 3M ,再解直角三角形求出A 3N 、C 3N ,然后求出ON ,再根据点A 3在第一象限写出坐标即可.
【详解】
解∵B 1C 1∥B 2C 2∥B 3C 3,
∴∠B 3C 3O =∠B 2C 2O =∠B 1C 1O =60°,
∵正方形A 1B 1C 1D 1的边长为1,B 1C 1=C 1D 1,∠B 1C 1D 1=90°,
∴∠C 1B 1O=∠D 1C 1E 1=30°,
∴△C 1B 1O ≌△D 1C 1E 1;
∴B 1O=C 1E 1,OC 1=D 1E 1,
同理可得B 2E 2=E 1E 2=D 1E 1=E 3C 2;E 2C 2=E 3E 4=B 3E 4;
111122223111111222OC D E E E B E C E B C ∴=====
=⨯= 11113331222C E D C ==⨯= 2234342231332E C E E B E B E ====⨯= 433433316
E C B E ==⨯= 3343112263
B C E C ∴==⨯= 过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,
则332323333331133333A M A D D B C B C +=+=+=+= 333333312926
A N A M ===
33131329218
C M A M +===
343131233186C N E M C M ⎛⎫∴=-=⨯-= ⎪ ⎪⎝⎭
111122223343ON OC C E E E E C C E E E C N =++++++
111113
222626662
'=+++++++= ∵点A 3在第一象限,
∴点A 3的坐标是32⎭
. 故选C.
【点睛】
本题考查正方形的性质,坐标与图形性质,全等三角形的判定与性质,30°角的直角三角形.熟练掌握有30°角的直角三角形各边之间的数量关系是解决本题的关键.
5.A
解析:A
【分析】
根据AB=5,AE=4,BE=3,可以确定△ABE 为直角三角形,延长BE 构建出直角三角形,在利用勾股定理求出EF 的平方即可.
【详解】
∵四边形ABCD 是正方形,
∴AB=BC=CD=AD=5,
如图,延长BE 交CF 于点G ,
∵AB=5,AE=4,BE=3,
∴AE 2+BE 2=AB 2,
∴△ABE 是直角三角形,
同理可得△DFC 是直角三角形,
∵AE=FC=4,BE=DF=3,AB=CD=5,
∴△ABE≌△CDF,
∴∠BAE=∠DCF,
∵∠ABC=∠AEB=902,
∴∠CBG=∠BAE,
同理可得,∠BCG=∠CDF=∠ABE,
△ABE≌△BCG,
∴CG=BE=3,BG=AE=4,
∴EG=4-3=1,GF=4-3=1,
∴EF 2=EG 2+GF 2=1+1=2
故选择:A
【点睛】
此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.
6.D
解析:D
【分析】
根据题意和图形可看出每经过一次变化,都顺时针旋转45°2,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.
【详解】
解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°2 ∵从A 到3A 经过了3次变化,
∵45°×3=135°,1×32=2,
∴点3A 所在的正方形的边长为2,点3A 位置在第四象限,
∴点3A 的坐标是(2,-2),
可得出:1A 点坐标为(1,1),
2A 点坐标为(0,2),3A 点坐标为(2,-2),
4A 点坐标为(0,-4),5A 点坐标为(-4,-4),
6A (-8,0),A 7(-8,8),8A (0,16),
故选D.
【点睛】
本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.
7.A
解析:A
【分析】
根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且
ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2
=△;再根据勾股定理求得EF ,即可得到答案. 【详解】
∵ACB 90∠=︒,2AC BC ==
∴AB ==∴A B 45∠=∠=︒
∵点D 是AB 的中点
∴CD AB ⊥
,且1AD BD CD AB 2
===
=∴DCB 45∠=︒
∴A DCF ∠∠=,
在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩
∴ADE ≌()CDF SAS
∴DE DF =,ADE CDF ∠∠=
∵CD AB ⊥
∴ADC 90∠=︒
∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒
∴DEF 是等腰直角三角形
∵ADE ≌CDF
∴ADE 和CDF 的面积相等
∵D 为AB 中点
∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;
当DE AC ⊥,DF BC ⊥时,2EF 值最小
根据勾股定理得:222
EF DE DF =+
此时四边形CEDF 是正方形
即EF CD ==∴22EF 2==
∴正确的个数是4个
故选:A .
【点睛】
本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.
8.D
解析:D
【分析】
设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.
【详解】
设BC x =,
四边形ABCD 是矩形,
90,B AD BC x ∴∠=︒==,
由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,
OA OC x ∴==,
四边形AECF 是菱形,
AE CE ∴=,
在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩
,
()AOE COE SSS ∴≅,
90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,
∴点,,A O C 共线,
2AC OA OC x ∴=+=,
在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,
解得x =
x =
即BC =
故选:D . 【点睛】
本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.
9.C
解析:C
【分析】
作点B 关于对角线AC 的对称点,该对称点与D 重合,连接DM ,则PB 与PM 之和的最小值为DM 的长;由菱形的面积可求出BD=4,由题意可证△BCD 是等边三角形,由等边三角形的性质可得DM ⊥BC ,CM=BM=2,由勾股定理可求
【详解】
解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;
∵菱形ABCD的面积为3,对角线AC长为3,
∴BD=4,
∵BC=CD,∠BCD=60°,
∴△BCD是等边三角形,
∴BD=BC=4,
∵M是BC的中点,
∴DM⊥BC,CM=BM=2,
在Rt△CDM中,CM=2,CD=4,
∴2216423
-
CD CM-=
故选:C.
【点睛】
本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.
10.B
解析:B
【分析】
连接BD,先证明△BOC是等边三角形,得出BO=BC,又FO=FC,从而可得出FB⊥OC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形,故③正确;先在Rt△BCF 中,可求出BC的长,再在Rt△BCM中求出BM的长,从而可知④错误,最后可得到答案.
【详解】
解:连接BD,
∵四边形ABCD是矩形,
∴AC=BD,AC、BD互相平分,
∵O为AC中点,∴BD也过O点,
∴OB=OC,
∵∠COB=60°,
∴△OBC是等边三角形,∴OB=BC,
又FO=FC,BF=BF,
∴△OBF≌△CBF(SSS),
∴△OBF 与△CBF 关于直线BF 对称,
∴FB ⊥OC ,∴①正确;
∵∠OBC=60°,∴∠ABO=30°,
∵△OBF ≌△CBF ,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF ,
∵AB ∥CD ,∴∠OCF=∠OAE ,
∵OA=OC ,易证△AOE ≌△COF ,∴OE=OF ,
∵OB=OD ,
∴四边形EBFD 是平行四边形.
又∠EBO=∠OBF ,OE=OF ,
∴OB ⊥EF ,∴四边形EBFD 是菱形,
∴③正确;
∵由①②知△EOB ≌△FOB ≌△FCB ,
∴△EOB ≌△CMB 错误,
∴②错误;
∵FC=2,∠OBC=60°,∠OBF=∠CBF ,
∴∠CBF=30°,∴BF=2CF=4,∴3,
∴CM=123BM=3,故④错误. 综上可知其中正确结论的个数是2个.
故选:B .
【点睛】
本题考查矩形的性质、菱形的判定、等边三角形的判定和性质、全等三角形的判定和性质、含30°的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
二、填空题
11.218
cm 【分析】
根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的
14,根据正方形的面积就可以求出结论. 【详解】
解:如图:
∵正方形ABCD的对角线相交于点O,
∴△AEO与△CFO关于O点成中心对称,∴△AEO≌CFO,
∴S△AEO=S△CFO,
∴S△AOD=S△DEO+S△CFO,
∵对角线长为1cm,
∴S正方形ABCD=1
11
2
⨯⨯=
1
2
cm2,
∴S△AOD=1
8
cm2,
∴阴影部分的面积为1
8
cm2.
故答案为:1
8
cm2.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO≌CFO是关键.
12.①③④
【分析】
由矩形的性质可得AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC,可判断①;通过证明
△DCG≌△BEG,可得∠BGE=∠DGC,BG=DG,即可判断②③;过点G作GH⊥CD于H,设AD=4x=DF,AB=3x,由勾股定理可求BD=5x,由等腰直角三角形的性质可得
HG=CH=FH=1
2
x,DG=GB=
52
2
x,由三角形面积公式可求解,可判断④.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴∠F=∠FAD,
∴AD=DF,
∴BC=DF,故①正确;
∵∠EAB=∠BEA=45°,
∴AB=BE=CD ,
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF 是等腰直角三角形,
∵点G 为EF 的中点,
∴CG=EG ,∠FCG=45°,CG ⊥AG ,
∴∠BEG=∠DCG=135°,
在△DCG 和△BEG 中,
===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩
,
∴△DCG ≌△BEG (SAS ).
∴∠BGE=∠DGC ,BG=DG ,
∵∠BGE <∠AEB ,
∴∠DGC=∠BGE <45°,
∵∠CGF=90°,
∴∠DGF <135°,故②错误;
∵∠BGE=∠DGC ,
∴∠BGE+∠DGA=∠DGC+∠DGA ,
∴∠CGA=∠DGB=90°,
∴BG ⊥DG ,故③正确;
过点G 作GH ⊥CD 于H ,
∵34
AB AD =, ∴设AD=4x=DF ,AB=3x ,
∴CF=CE=x ,22AB AD x +,
∵△CFG ,△GBD 是等腰直角三角形,
∴HG=CH=FH=12x ,DG=GB=522
x ,
∴S △DGF =
12×DF×HG=x 2,S △BDG =12DG×GB=254x 2, ∴254BDG FDG S S =,故④正确;
故答案为:①③④. 【点睛】
本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.
13.20181
2
【分析】
根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .
【详解】
∵点E 是BC 的中点,ED ∥AB ,EF ∥AC
∴DE 、EF 是△ABC 的中位线
∵等边△ABC 的边长为1
∴AD=DE=EF=AF =12 则1C =1422
⨯= 同理可求得:2C =1,3C =12
发现规律:规律为依次缩小为原来的12 ∴2020C =20181
2
故答案为:
201812.
【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.
14.①③④
【分析】
由“AAS ”可证△AOE ≌△COF ,△AHO ≌△CGO ,可得OE =OF ,HO =GO ,可证四边形EGFH 是平行四边形,由EF ⊥GH ,可得四边形EGFH 是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA ”可证△BOG ≌△COF ,可得OG =OF ,可证四边形EGFH 是正方形,可判断④正确,即可求解.
【详解】
解:如图,
∵四边形ABCD 是菱形,
∴AO=CO,AD∥BC,AB∥CD,
∴∠BAO=∠DCO,∠AEO=∠CFO,
∴△AOE≌△COF(AAS),
∴OE=OF,
∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,
∵AD∥BC,
∴∠DAO=∠BCO,∠AHO=∠CGO,
∴△AHO≌△CGO(AAS),
∴HO=GO,
∴四边形EGFH是平行四边形,
∵EF⊥GH,
∴四边形EGFH是菱形,
∵点E是AB上的一个动点,
∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,
故①③正确;
若四边形ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;
∠BOG+∠BOF=∠COF+∠BOF=90°,
∴∠BOG=∠COF;
在△BOG和△COF中,
∵
BOG COF BO CO
GBO FCO ∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△BOG≌△COF(ASA);
∴OG=OF,
同理可得:EO=OH,
∴GH=EF;
∴四边形EGFH是正方形,
∵点E是AB上的一个动点,
∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.
【点睛】
本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.
15.102︒
【分析】
根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.
【详解】
连接BD,BF,
∵四边形ABCD是菱形,
∴AD=CD,
∴∠DAC=∠DCA.
∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA,
∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,
∵∠CDF=27°,
∴3∠DAC+27°=180°,则∠DAC=51°,
∴∠DAB=2∠DAC=102°.
故答案为:102°.
【点睛】
本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.
16.4
2
a
-3
3
【分析】
先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即a 最小,可计算a的值,从而得结论.
【详解】
∵四边形ABCD是矩形,
∴∠B=90°,
∵∠ACB=30°,BC=23,
∴AB=2,AC=4,
∵AG=a,
∴CG=4a
-,
如图1,过G作MH⊥BC于H,交AD于M,
Rt△CGH中,∠ACB=30°,
∴GH=1
2
CG=
4
2
a
-
,
则点G到BC边的距离为4
2
a
-
,
∵HM⊥BC,AD∥BC,
∴HM⊥AD,
∴∠AMG=90°,
∵∠B=∠BHM=90°,
∴四边形ABHM是矩形,∴HM=AB=2,
∴GM=2﹣GH=
4
2
2
a
-
-=
2
a
,
∴S△ADG
113
23
222
a a
AD MG
=⋅=⨯=,
当a最小时,△ADG的面积最小,
如图2,当GE⊥BC时,AG最小,即a最小,
∵FG是AE的垂直平分线,∴AG=EG,
∴4
2
a
a -
=,
∴
4
3
a=,
∴△ADG的面积的最小值为3423
3
⨯=,
故答案为:4
2
a
-
,
23
.
【点睛】
本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG的面积最小时点G的位置是解答此题的关键.
17.101
-
【分析】
探究点E的运动轨迹,寻找特殊位置解决问题即可.
【详解】
如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,
在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,
∴DE=10﹣1-5=4(cm),
如图2中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=10﹣1﹣3=6(cm),
如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=
DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),
∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).
101.
【点睛】
本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
18.5
【分析】
先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12
MN FC =
即可. 【详解】
∵四边形ABCP 是边长为4的正方形,//EF BC ,
∴四边形BCEF 是矩形,
∵1PE =,
∴3CE =,
连接FM FC 、,如图所示:
∵四边形ABCP 是正方形,
∴=45BAC ∠ ,AFG 是等腰直角三角形,
∵M 是AG 的中点,即有AM MG = ,
∴FM AG ⊥,FMC 是直角三角形,
又∵N 是FC 中点,12MN FC =
, ∵225FC BF BC =+=
∴ 2.5MN =,
故答案为:2.5 .
【点睛】
本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.
19.207
【分析】
根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.
【详解】
解:∵将△CDP 沿DP 折叠,点C 落在点E 处,
∴DC =DE =5,CP =EP .
在△OEF 和△OBP 中,
90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩
, ∴△OEF ≌△OBP (AAS ),
∴OE =OB ,EF =BP .
设EF =x ,则BP =x ,DF =DE -EF =5-x ,
又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,
∴AF =AB -BF =2+x .
在Rt △DAF 中,AF 2+AD 2=DF 2,
∴(2+x )2+32=(5-x )2,
∴x =67 ∴AF =2+
67=207 故答案为:
207
【点睛】 本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
20.4
【分析】 根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,
由DM=
122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.
【详解】
解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,
当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,
∴AM=DM=122
AD =, ∴BM=3
∵2222223)16AM BM AB +=+==,
∴△ABM 是直角三角形,即∠AMB=90°;
∵BM 是△ABD 的中线,
∴△ABD 是等边三角形,
∴BD=AB=AD=4.
故答案为:4.
【点睛】
本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.
三、解答题
21.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2
【分析】
(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;
(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;
②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.
【详解】
(1)证明:∵ 四边形ABCD 是平行四边形,
∴ CF ∥ED ,
∴ ∠FCG =∠EDG ,
∵ G 是CD 的中点,
∴ CG =DG ,
在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴ △FCG ≌△EDG (ASA ),
∴ FG =EG ,
∵ CG =DG ,
∴ 四边形CEDF 是平行四边形;
(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,
理由是:过A 作AM ⊥BC 于M ,
∵∠B=60°,
∴∠BAM=30°,
∵AB=3,
∴BM=1.5,
∵四边形ABCD 是平行四边形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM ,
在△MBA 和△EDC 中,
BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩
,
∴△MBA ≌△EDC(SAS),
∴∠CED=∠AMB=90°,
∵四边形CEDF是平行四边形,
∴四边形CEDF是矩形;
②∵四边形CEDFCEDF是菱形,
∴CD⊥EF,DG=CG=1212CD=1.5,
∵∠CDE=∠B=60∘∠B=60∘,
∴∠DEG=30°,
∴DE=2DG=3,
∴AE=AD-DE=5-3=2,
故答案为:2.
【点睛】
此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.
22.(1)四边形AGFP是菱形,理由见解析;(2)四边形AGFP的周长为:252
【分析】
(1)根据矩形的性质和菱形的判定解答即可;
(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.
【详解】
解:(1)四边形AGFP是菱形,理由如下:
∵四边形ABCD是矩形,
∴∠BAP=90°,
∵PF⊥BD,PA=PF,
∴∠PBA=∠PBF,
∵AE⊥BD,
∴∠PBF+∠BGE=90°,
∵∠BAP=90°,
∴∠PBA+∠APB=90°,
∴∠APB=∠BGE,
∵∠AGP=∠BGE,
∴∠APB=∠AGP,
∴AP=AG,
∵PA=PF,
∴AG=PF,
∵AE⊥BD,PF⊥BD,
∴AE ∥PF ,
∴四边形AGFP 是平行四边形,
∵PA =PF ,
∴平行四边形AGFP 是菱形;
(2)在Rt △ABP 和Rt △FBP 中,
∵PB =PB ,PA =PF ,
∴Rt △ABP ≌Rt △FBP (HL ),
∴AB =FB =1,
∵四边形ABCD 是矩形,
∴AD =BC =2,
∴BD =22125+=,
设PA =x ,则PF =x ,PD =2﹣x ,PF =5﹣1,
在Rt △DPF 中,DF 2+PF 2=PD 2,
∴222(51)(2)x x -+=-
解得:x =512
-, ∴四边形AGFP 的周长为:4x =4×
51252-=-. 【点睛】
此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,解题的关键是熟练掌握所学的知识定理进行解题.
23.(1)BC ⊥CF ,CF +CD =BC ;(2)CF ⊥BC ,CF ﹣CD =BC ,证明详见解析;(3)
494
. 【分析】
(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF =BD ,据此即可证得;
(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD =CF ,即可得到CF ﹣CD =BC ;
(3)先证明△BAD ≌△CAF ,进而得出△FCD 是直角三角形,根据直角三角形斜边上中线的性质即可得到DF 的长,再求出CD ,BC 即可解决问题.
【详解】
(1)如图1中,。