赣县区第二中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赣县区第二中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.下面各组函数中为相同函数的是()
A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=
C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=
2.与椭圆有公共焦点,且离心率的双曲线方程为()
A.B.
C.D.
3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数
4.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()
A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}
5.过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()
A.B.C. D.
6.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为()
A.0.35 B.0.25 C.0.20 D.0.15
7. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4 8. 下列函数在(0,+∞)上是增函数的是( )
A .
B .y=﹣2x+5
C .y=lnx
D .y=
9. 若函数f (x )=ax 2
+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .2
10.某程序框图如图所示,该程序运行后输出的S 的值是( )
A .﹣3
B .﹣
C .
D .2
11.已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为2
π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .
6π B .3π C .2
π
D .23π
12.下列命题中正确的是( )
A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题
B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”
C .“
”是“
”的充分不必要条件
D .命题“∀x ∈R ,2x >0”的否定是“

二、填空题
13.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .
14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 . 15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 16.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .
17.若等比数列{a n }的前n 项和为S n ,且,则= .
18.(
﹣2)7
的展开式中,x 2
的系数是 .
三、解答题
19.已知(
+)n 展开式中的所有二项式系数和为512,
(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.
20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2
y
y a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
21.已知函数x
x x f --
-=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+
(1)求A B ,B A C R ⋂)(;
(2)若B C B =,求实数a 的取值范围.
22.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2
,以直线AD 为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.
23.已知,数列{a n}的首项
(1)求数列{a n}的通项公式;
(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.
24.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.
赣县区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;
对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;
对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;
对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;
故选:D.
【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.2.【答案】A
【解析】解:由于椭圆的标准方程为:
则c2=132﹣122=25
则c=5
又∵双曲线的离心率
∴a=4,b=3
又因为且椭圆的焦点在x轴上,
∴双曲线的方程为:
故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.
3.【答案】B
【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”
可得题设为:a,b,c中恰有一个偶数
∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.
故选B.
【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.
4.【答案】B
【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,
∴集合M,N对应的韦恩图为
所以N={1,3,5}
故选B
5.【答案】A
【解析】解:若直线斜率不存在,此时x=0与圆有交点,
直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,
即kx﹣y﹣2=0,
若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,
则圆心到直线的距离d≤1,
即≤1,即k2﹣3≥0,
解得k≤﹣或k≥,
即≤α≤且α≠,
综上所述,≤α≤,
故选:A.
6.【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B.
7.【答案】D
【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,
设AB的中点为E,过A、E、B分别作准线的垂线,
垂足分别为C、G、D,EF交纵轴于点H,如图所示:
则由EG为直角梯形的中位线知,
EG====5,
∴EH=EG﹣1=4,
则AB的中点到y轴的距离等于4.
故选D.
【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.8.【答案】C
【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;
对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;
对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;
对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.
故选:C.
【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.
9.【答案】A
【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[﹣2,2],
函数的最大值为:5.
故选:A.
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
10.【答案】B
【解析】解:由程序框图得:第一次运行S==﹣3,i=2;
第二次运行S==﹣,i=3;
第三次运行S==,i=4;
第四次运行S==2,i=5;
第五次运行S==﹣3,i=6,
…S的值是成周期变化的,且周期为4,
当i=2015时,程序运行了2014次,2014=4×503+2,
∴输出S=﹣.
故选:B.
【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.
11.【答案】A
【解析】
考点:三角函数的图象性质.
12.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;
命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
二、填空题
13.【答案】8.
【解析】解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10,
∴x=8,
故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
14.【答案】2
【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,
∴点(0,1)到圆心O(0,0)的距离d=1,
∴点(0,1)在圆内.
如图,|AB|最小时,弦心距最大为1,
∴|AB|min=2=2.
故答案为:2.
15.【答案】12
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
16.【答案】③.
【解析】解:由y=f'(x)的图象可知,
x∈(﹣3,﹣),f'(x)<0,函数为减函数;
所以,①在区间(﹣2,1)内f(x)是增函数;不正确;
②在区间(1,3)内f(x)是减函数;不正确;
x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,
③在x=2时,f(x)取得极大值;
而,x=3附近,导函数值为正,
所以,④在x=3时,f(x)取得极小值.不正确.
故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
17.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S 4﹣S 2)2
=S 2(S 6﹣S 4), ∴(5S 2﹣S 2)2
=S 2(S 6﹣5S 2),
解得S 6=21S 2,

=
=

故答案为:

【点评】本题考查等比数列的求和公式和等比数列的性质,用S 2表示S 4和S 6是解决问题的关键,属中档题.
18.【答案】﹣280
解:∵(﹣2)7
的展开式的通项为
=.

,得r=3.
∴x 2的系数是.
故答案为:﹣280.
三、解答题
19.【答案】
【解析】解:(1)对(+)n ,所有二项式系数和为2n
=512,
解得n=9;
设T r+1为常数项,则:
T r+1=C 9r =C 9r 2r


﹣r=0,得r=3,
∴常数项为:C 9323
=672; (2)令x=1,得(1+2)9=39

【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.
20.【答案】
【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.
由|2|21x m ≤+,得11
22
m x m --
≤≤+,……………………2分
所以,由122m +
=,解得3
2
m =.……………………4分 (2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22
y
y a x x --+≤+,
由题意知max (|21||23|)22
y
y a x x --+≤+.……………………6分
21.【答案】(1){}210A B x =<<U ,(){}
2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或9
22
a ≤≤。

【解析】
试题分析:(1)由题可知:30
70
x x -≥⎧⎨->⎩,所以37x ≤<,因此集合{}37A x x =≤<,画数轴表示出集合A ,
集合B ,观察图形可求,{}210A B x =<<U ,观察数轴,可以求出{}
37R C A x x x =<≥或,则
(){}2310R C A B x x x =<<≤<I
或7;(2)由B C B =U 可得:C B ⊆,分类讨论,当B φ=时,
21a a ≥+,解得:1a ≤-,当B φ≠时,若C B ⊆,则应满足21
22110a a a a <+⎧⎪
≥⎨⎪+≤⎩,即1292
a a a ⎧
⎪>-⎪≥⎨⎪⎪≤
⎩,所以922a ≤≤,因此满足
B C B =U 的实数a 的取值范围是:1a ≤-或9
22
a ≤≤。

试题解析:(1):由3070
x x -≥⎧⎨->⎩得:
37x ≤<
A={x|3x<7}≤
A B {x |2x 10}=<<, B A C R
⋂)(={x|2<x<3x<10}
≤或7
(2)当B=φ时,21,a -1a a ≥+≤
当B φ≠时,2122110
a a a a <+⎧⎪≥⎨⎪+≤⎩

922a ≤≤ 即-1a ≤或922
a ≤≤。

考点:1.函数的定义域;2.集合的运算;3.集合间的关系。

22.【答案】
【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体, 其表面积为
S=×4π×2×
2=8
π, 或
S=×4π×2
+×(4π×
2
﹣2
π×

+×2
π×
=8
π;
(2)作ME ⊥AC ,EF ⊥BC ,连结FM ,易证FM ⊥BC , ∴∠MFE 为二面角M ﹣BC ﹣D 的平面角, 设∠CAM=θ,∴ EM=2sin θ,
EF=,
∵tan ∠MFE=1,
∴,∴
tan
=




CM=2

【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
23.【答案】
【解析】解:(Ⅰ),


数列是以1为首项,4为公差的等差数列.…

则数列{a n}的通项公式为.…
(Ⅱ).…①
.…②
②﹣①并化简得.…
易见S n为n的增函数,S n>2012,
即(4n﹣7)•2n+1>1998.
满足此式的最小正整数n=6.…
【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.
24.【答案】
【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,
∴∠CDB=30°,
∵EC=DE,∴∠DCE=30°,∠BCE=90°,
∴EC⊥BC,
又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,
∴EC⊥平面ABC,∴EC⊥AB.
(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,
∵AC=AB,∴AO⊥BC,
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,
∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,
以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,
设DE=2,则A(0,0,1),B(0,,0),
C(0,﹣,0),D(3,﹣2,0),
∴=(0,﹣,﹣1),=(3,﹣,0),
设平面ACD的法向量为=(x,y,z),
则,取x=1,得=(1,,﹣3),
又平面BCD的法向量=(0,0,1),
∴cos<>==﹣,
∴二面角A﹣CD﹣B的余弦值为.
【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.。

相关文档
最新文档