荣成市一中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荣成市一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个
B .480个
C .720个
D .840个
2. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
3. 设集合A={x|x 2+x ﹣6≤0},集合B
为函数的定义域,则A ∩B=( )
A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
4.
已知向量=(﹣1,3
),=(x ,2
),且,则x=( )
A

B

C

D

5. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0
6. 将函数)63sin(
2)(π+=x x f 的图象向左平移4
π
个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )
A .3)43sin(
2)(--=πx x g B .3)43sin(2)(++=π
x x g C .3)123sin(2)(+-=πx x g D .3)12
3sin(2)(--=π
x x g
【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 7. △ABC 的内角A ,B ,C
所对的边分别为,,,已知a =
b =
6
A π
∠=
,则
B ∠=( )111]
A .
4π B .4π或34π C .3π或23π D .3
π
8. 给出下列命题:
①在区间(0,+∞)上,函数y=x ﹣1,
y=,y=(x ﹣1)2,y=x 3
中有三个是增函数;
②若log m 3<log n 3<0,则0<n <m <1;
③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;
④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.
其中假命题的个数为( )
A .1
B .2
C .3
D .4
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 10.函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)
B .(e ﹣2,+∞)
C .(﹣∞,e ﹣2)
D .(e ﹣2,+∞)
11.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( )
A .
B .
C .
D .
12.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )
A .112
B .114
C .116
D .120
二、填空题
13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
14.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 15.已知函数
,则
__________;
的最小值为__________.
16.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
17.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .
18.已知函数f (x )=恰有两个零点,则a 的取值范围是 .
三、解答题
19.(本小题满分12分)
已知函数2
1()cos cos 2
f x x x x =--. (1)求函数()y f x =在[0,
]2
π
上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]
20.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *
).
(1)求a 2,a 3,a 4;
(2)猜测数列{a n }的通项公式,并用数学归纳法证明.
21.已知函数

(1)求f (x )的周期和及其图象的对称中心;
(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.
22.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.
(Ⅰ)求出f (5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f (n+1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.
23.已知=(
sinx ,cosx ),=(sinx ,sinx ),设函数f (x )=
﹣.
(1)写出函数f (x )的周期,并求函数f (x )的单调递增区间;
(2)求f (x )在区间[π,]上的最大值和最小值.
24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .
(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:31
3b a
+≥.
荣成市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13. 异面 .
14.222x y += 15.
16.
4
π 17. 12 .
18. (﹣3,0) .
三、解答题
19.(1)最大值为,最小值为32-;(2. 20. 21.
22.
23.
24.。

相关文档
最新文档