湛江市七年级数学试卷有理数解答题试题(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湛江市七年级数学试卷有理数解答题试题(附答案)
一、解答题
1.阅读材料,回答下列问题:
数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。
例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;
在数轴上,有理数3与1对应的两点之间的距离为|3−1|=2;
在数轴上,有理数5与−2对应的两点之间的距离为|5−(−2)|=7;
在数轴上,有理数−2与3对应的两点之间的距离为|−2−3|=5;
在数轴上,有理数−8与−5对应的两点之间的距离为|−8−(−5)|=3;……
如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a−b|或|b−a|,记为|AB|=|a−b|=|b−a|.
(1)数轴上有理数−10与−5对应的两点之间的距离等于________;数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为________;若数轴上有理数x与−1对应的两点A,B之间的距离|AB|=2,则x等于________;
(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为−2,动点P表示的数为x.
①若点P在点M,N之间,则|x+2|+|x−4|=________;若|x+2|+|x−4|═10,则x=________;
②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x−2|+|x−4|的最小值等于________ . 2.大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如
式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|= .根据
以上信息,回答下列问题:
(1)数轴上表示2和5的两点之间的距离是________;数轴上表示-2和-5的两点之间的距离是________.
(2)点A、B在数轴上分别表示实数x和-1.
①用代数式表示A、B两点之间的距;
②如果 ,求x的值.
(3)直接写出代数式的最小值.
3.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;
(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.
4.
阅读下面材料:
点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.
当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,
①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;
③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.
回答下列问题:
①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;
②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;
③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.
④解方程|x+1|+|x﹣2|=5.
5.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a=________,b=________,c=________.
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点
P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.
6.已知:线段AB=20cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.
(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?
(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.
7.如图,在数轴上A点表示的数是-8,B点表示的数是2。
动线段CD=4(点D在点C的右侧),从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒。
(1)①已知点C表示的数是-6,试求点D表示的数;
②用含有t的代数式表示点D表示的数。
(2)当AC=2BD时,求t的值。
(3)试问当线段CD在什么位置时,AD+BC或AD-BC的值始终保持不变?请求出它的值并说明此时线段CD的位置。
8.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.
(1)数轴上点C表示的数是________;
(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.
①当t为何值时,点O恰好是PQ的中点;
②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)
9.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.
(1)a=________,b=________.A,B两点之间的距离=________;
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运
动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;
(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.
10.数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB= ,如:表示数1与5的两点之间的距离可表示
为,表示数-2与3的两点之间的距离可表示为 .
(借助数轴,画出图形,写出过程)
(1)数轴上表示2和7的两点之间的距离是________,数轴上表示3和-6的两点之间的距离是________;
(2)数轴上表示x和-2的两点M和N之间的距离是________,如果|MN|,则x为________;
(3)当式子: |x+2|+|x-3|+|x-4| 取最小值时,x的值为________,最小值为________. 11.如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.
12.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.
例如:对于数列因为
所以数列的“关联数值”为6.进一步发现:当改变这
三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列
的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,
按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.
(1)数列的“关联数值”为________;
(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数
列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________
(3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数
列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.
13.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足
(1)A、B两点对应的数分别为 ________, ________;
(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.
(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?
(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.
14.把具有某种规律的一列数:1,-2,3,-4,5,-6,...,排列成下面的阵形:
........
探索下列事件:
(1)第10行的第1个数是什么数?
(2)数字2019前面是负号还是正号?在第几行?第几列?
15.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距
离都等于7,点在点的右侧,
(1)请在数轴上表示点,位置, ________, ________;
(2)请用含的代数式表示 ________;
(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.
16.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.
(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的
长=________;
(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;
(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.
17.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置
如图所示,则;;
.请探索下列问题:
(1)计算 ________,它表示哪两个点之间的距离? ________
(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.
(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.
18.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.
(1)A,B两点之间的距离为________.
(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.
(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?
19.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b
(1)直接写出:a=________,b=________
(2)数轴上点P对应的数为x,若PA+PB=20,求x的值
(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度
20.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左
边,且CE=8,点F是AE的中点.
(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;
(2)当线段CE运动到点A在C、E之间时,
①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);
②求BE与CF的数量关系;
(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)5;x+5;1或−3
(2)6;6或−4;8
【解析】【解答】(1)根据绝对值的定义:
数轴上有理数−10与−5对应的两点之间的距离等于5;
数轴上有理数x与−5对应的两点之间的距离
解析:(1)5;x+5;1或−3
(2)6;6或−4;8
【解析】【解答】(1)根据绝对值的定义:
数轴上有理数−10与−5对应的两点之间的距离等于5;
数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为|x+5|;
A,B之间的距离|AB|=2,则x等于1或−3,(2)①若点P在点M,N之间,则|x+2|+|x−4|=6;
若|x+2|+|x−4|═10,则x=6或−4;
②|x+2|+|x|+|x−2|+|x−4|的最小值,
即x与4,2,0,−4之间距离和最小,这个最小值=4−(−4)=8.
故答案为:5,|x+5|,1或−3;6,6或−4,8.
【分析】(1)根据绝对值的定义:数轴上有理数-10与-5对应的两点之间的距离等于5;数轴上有理数x与-5对应的两点之间的距离用含x的式子表示为|x+5|;若数轴上有理数x 与-1对应的两点A,B之间的距离|AB|=2,则x等于1或-3;(2)①若点P在点M,N之间,则|x+2|+|x-4|=6;若|x+2|+|x-4|═10,则x=6或-4;
②|x+2|+|x|+|x-2|+|x-4|的最小值,这个最小值=4-(-2)=6.
2.(1)3;3
(2)解:①|AB|=|x-(-1)|=|x+1|,②如果|AB|=2,则|x+1|=2,x+1=2或x+1=-2,解得x=1或x=-3.
(3)解:∵代数式|x+1|+ |x-4|
解析:(1)3;3
(2)解:①|AB|=|x-(-1)|=|x+1|,②如果|AB|=2,则|x+1|=2,x+1=2或x+1=-2,解得x=1或x=-3.
(3)解:∵代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,∴当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是:|4-(-1)|=5.
【解析】【解答】解:(1)数轴.上表示2和5的两点之间的距离是:|5-2|=3;数轴_上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=|-2+5|= |3|=3.
【分析】(1)根据题意,可得数轴上表示2和5的两点之间的距离是:|5-2|=3 ;数轴上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=3;(2)①根据点A、B在数轴上分别表示实数x和-1,可得表示A、B两点之间的距离是:|x-(-1)|=|x+1|;②如果|AB|=2,则|x+1|=2 ,据此求出x的值是多少即可.(3)根据题意,可得代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,所以当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是表示4的点与表示-1的点之间的距离,即代数式|x+1|+|x-4|的最小值是5.
3.(1)1
(2)解:设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴
解析:(1)1
(2)解:设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴点P运动5秒时,追上点R
(3)解:线段MN的长度不发生变化,理由如下:
分两种情况:
点P在A、B之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=5
点P运动到点B左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=5
综上所述,线段MN的长度不发生变化,其长度为5.
【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,
∴AB=10,
∵PA=PB,
∴点P表示的数是1,
【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.
4.解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;
数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;
数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4
②数轴上x
解析:解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;
数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;
数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4
②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.
③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;
④解方程|x+1|+|x﹣2|=5.
当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3
当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2
当x+1与x-2异号,则等式不成立.
所以答案为:3或-2.
【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.
③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.
④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.
5.(1)﹣24;﹣10;10
(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.
②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,
③当点P在AC的延长
解析:(1)﹣24;﹣10;10
(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.
②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,
③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,
∴t=2s或5s时,P到A、B、C的距离和为40个单位.
(3)解:当点P追上T的时间t1= .
当Q追上T的时间t2= .
当Q追上P的时间t3= =20,
∴当<t<时,位置如图,
∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|
=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t
=74-28
=46.
【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,
故答案为﹣24,﹣10,10.
【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=
.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的
性质即可解决问题.
6.(1)4
(2)解:设经过a秒后P、Q相距5cm,
由题意得,20-(2+3)a=5,
解得: a=3 ,
或(2+3)a−20=5,
解得:a=5,
答:再经过3秒或5秒后P、Q相距5cm
解析:(1)4
(2)解:设经过a秒后P、Q相距5cm,
由题意得,20-(2+3)a=5,
解得:,
或(2+3)a−20=5,
解得:a=5,
答:再经过3秒或5秒后P、Q相距5cm
(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或
s,
设点Q的速度为ycm/s,
当2s时相遇,依题意得,2y=20−2=18,解得y=9
当5s时相遇,依题意得,5y=20−6=14,解得y=2.8
答:点Q的速度为9cm/s或2.8cm/s.
【解析】【解答】解:(1)设经过x秒两点相遇,
由题意得,(2+3)x=20,
解得:x=4,
即经过4秒,点P、Q两点相遇;
故答案为:4.
【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.
7.(1)解:①∵点C表示的数是-6,CD=4且点C在点A的右边
∴点D表示的数为-6+4=-2;
②∵从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒。
∴点C表示的数为-8
解析:(1)解:①∵点C表示的数是-6,CD=4且点C在点A的右边
∴点D表示的数为-6+4=-2;
②∵从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒。
∴点C表示的数为-8+2t,
∵CD=4
∴点D表示的数为:-8+2t+4=-4+2t;
(2)解:∵运动t秒后,点C表示的数为-8+2t,点D对应的数为-4+2t,
∵AC=2BD,点B表示的数为2,点A表示的数为-8
∴-8+2t-(-8)=2|-4+2t-2|
∴t=-6+2t或t=6-2t
解之:t=6或2;
(3)解:①当线段CD在线段AB上时(图1)或当点B在线段CD内时(图2)
AD+BC的值保持不变,且AD+BC=AB+CD=14
②当线段CD在点B的右侧时(图3)
ADBC的值保持不变,且ADBC=AC+CDBC=AB+CD=14
【解析】【分析】(1)①由点C表示的数及CD的长及点C在点A的右边,就可求出点D 表示的数;②根据线段的运动方向及运动速度,可得到点C表示的数为-8+2t,再由CD的长,就可用含t的代数式表示出点D表示的数。
(2)求出运动t秒后点C和点D表示的数,再根据AC=2BD,建立关于t的方程,解方程求出t的值。
(3)分情况讨论:当线段CD在线段AB上时(图1)或当点B在线段CD内时(图2) ;当线段CD在点B的右侧时(图3),分别利用绝对值的性质及两点间的距离公式就可求出AB+CD的值。
8.(1)-2
(2)解:①设t秒后点O恰好是PQ的中点.
根据题意t秒后,点
由题意,得-12+2t=-(8-t)
解得,t=4;
即4秒时,点O恰好是PQ的中点.
②当点C为PQ的三等分点时
解析:(1)-2
(2)解:①设t秒后点O恰好是PQ的中点.
根据题意t秒后,点
由题意,得-12+2t=-(8-t)
解得,t=4;
即4秒时,点O恰好是PQ的中点.
②当点C为PQ的三等分点时PC=2QC或QC=2PC,
∵PC=10-2t,QC=10-t,
所以10-2t=2(10-t)或10-t=2(10-2t)
解得t= ;
当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC
∵PC=-10+2t,PQ=20-3t
∴-10+2t=2(20-3t)或20-3t=2(-10+2t)
解得t= 或t= ;
当点Q为CP的三等分点时PQ=2CQ或QC=2PQ
∵当P、Q相遇时,两点都停止运动
∴此情况不成立.
综上,t= 秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点【解析】【解答】(1)解:∵点A表示的数为-12,点B表示的数为8,点C为线段AB 的中点.
∴点C表示的数为:
故答案为:-2
【分析】(1)利用中点公式计算即可;(2)①用t表示OP,OQ,根据OP=OQ列方程求解;②分别以P、Q、C为三等分点,分类讨论.
9.(1)-5;7;12
(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,
=−5+1009−2019,
=−1015.
答:点P所对
解析:(1)-5;7;12
(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,
=−5+1009−2019,
=−1015.
答:点P所对应的有理数的值为−1013;
(3)解:设点P对应的有理数的值为p,
①当点P在点A的左侧时:PA=−5−p,PB=7−p,
依题意得:
7−p=3(−5−p),
解得:p=−11;
②当点P在点A和点B之间时:PA=p−(−5)=p+5,PB=7−p,
依题意得:7−p=3(p+5),
解得:p=−2;
③当点P在点B的右侧时:PA=p−(−5)=p+5,PB=p−7,
依题意得:p−7=3(p+5),
解得:x=−11,这与点P在点B的右侧(即x>7)矛盾,故舍去.
综上所述,点P所对应的有理数分别是−11和−2.
【解析】【解析】解:(1)∵式子M=(a+5)x3+7x2−2x+5是关于x的二次多项式,且二次项系数为b,
∴a+5=0,b=7,
则a=−5,
∴A、B两点之间的距离=|−5-7|=12.
故答案是:−5;7;12.
【分析】(1)根据多项式的项及次数的定义得到a+5=0,由此求得a、b的值,然后根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值即可求线段AB的值;(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;(3)设点P对应的有理数的值为p,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况,根据根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值表示出PA,PB的长度,进而根据点P到点B的距离是点P到点A的距离的3倍分别列出方程,求解即可.
10.(1)|2-7|=5;|3-(-6)|=9
(2)|x+2|;-8或4
(3)3;6
【解析】【解答】解:(1)数轴上表示2和7的两点之间的距离是:|2-7|=5;
数轴上表示-3和-6的
解析:(1)|2-7|=5;|3-(-6)|=9
(2)|x+2|;-8或4
(3)3;6
【解析】【解答】解:(1)数轴上表示2和7的两点之间的距离是:|2-7|=5;
数轴上表示-3和-6的两点之间的距离是:|3-(-6)| =9;
故答案为:5,9;
(2)数轴上表示x和-2的两点M和N之间的距离是:|x+2|,
如果|MN|=6,则|x+2|=6,
∴x+2=±6,
解得:x=4或x=-8,
故答案为:|x+2|,4或-8;
(3)|x+2|+|x-3|+|x-4|的几何意义是:数轴上表示数x的点到表示-2、3、4的三
点的距离之和,
显然只有当x=3时,取到最小值;
∴当x=3时,
最小值为:;
【分析】(1)和(2)主要是根据数轴上两点之间的距离等于相对应两数差的绝对值或直接让较大的数减去较小的数,进行计算;(3)结合数轴和两点间的距离进行分析. 11.(1)2
(2)解:,
∴B点到达的位置所表示的数字是2+3×2=8
8-(-6)=14(个单位长度).
故A,B两点间距离是14个单位长度.
(3)解:运动后的B点在A点右边4个单位
解析:(1)2
(2)解:,
∴B点到达的位置所表示的数字是2+3×2=8
8-(-6)=14(个单位长度).
故A,B两点间距离是14个单位长度.
(3)解:运动后的B点在A点右边4个单位长度,
设经过t秒长时间A,B两点相距4个单位长度,依题意有
3t=14-4,
解得x= ;
运动后的B点在A点左边4个单位长度,
设经过x秒长时间A,B两点相距4个单位长度,依题意有
3t=14+4,
解得x=6.
∴经过秒或6秒长时间A,B两点相距4个单位长度.
【解析】【解答】解:(1)-2+4=2,
故点B所对应的数是2;
【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.
12.(1)-4
(2)7;-3、4、2
(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,
∴-9-a<-9<-3,
∴数列3、-6、a的“关联数值”为-3,
∵
解析:(1)-4
(2)7;-3、4、2
(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,
∴-9-a<-9<-3,
∴数列3、-6、a的“关联数值”为-3,
∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,
∴-3<-3+a<a+3,
∴数列3、a、-6的“关联数值”为a+3,
∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,
∴a+6>6,a+6>a+3,
∴数列-6、a、3的“关联数值”为a+6,
∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,
∴9>9-a,9>6,
∴数列-6、3、a的“关联数值”为9,
∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,
∴-a-9<-a-6<-a,
∴数列a、-6、3的“关联数值”为-a,
∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,
∴-a<3-a<9-a,
∴数列a、3、-6的“关联数值”为9-a,
∵a>0,这些数列的“关联数值”的最大值为10,
∴-3、9、-a、9-a不符合题意,
∵a+6>a+3,
∴a+6=10,
解得:a=4.
取得“关联数值”最大值的数列为-6,4、3.
【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,
∴数列的“关联数值”为-4.
故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,
由(1)得数列的“关联数值”为-4.
∵-4=-4,-4+2=-2,-4+2-(-3)=1,
∴数列4,2,-3的“关联数值”为1,
∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,
∴数列-3、4、2的“关联数值”为7,
∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,
∴数列-3、2、4的“关联数值”为5,
∵-2=-2,-2+4=2,-2+4-(-3)=5,
∴数列2、4、-3的“关联数值”为5,
∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,
∴数列2、-3、4的“关联数值”为-2,
∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2
故答案为7;-3、4、2
【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.
13.(1)-8;6
(2)-2
(3)解:①相遇前相距2个单位长度:
t=[6-(-8)-2]÷(4+2)=1.5(秒)
②相遇后相距2个单位长度:
t=[6-(-8)+2]÷(4+2)=2(秒)
解析:(1)-8;6
(2)-2
(3)解:①相遇前相距2个单位长度:
t=[6-(-8)-2]÷(4+2)=1.5(秒)
②相遇后相距2个单位长度:
t=[6-(-8)+2]÷(4+2)=2(秒)
综上所述:1.5秒或2秒后A、B两点相距2个单位长度.
(4)解:AP+2OB-OP的值不会发生变化.
∵OP=7t,OA=-8+4t,
∴AP=7t-(-8+4t)=3t+8,
∵OB=6+2t,
∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,
∴AP+2OB-OP的值不会发生变化,定值为20.
【解析】【解答】(1)∵,
∴a+8=0,b-6=0,
解得:a=-8,b=6,
故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,
∴对折点表示的数是[6+(-8)]÷2=-1,
∵-1与原点的距离是1,
∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,
故答案为:-2
【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.
14.(1)解:∵第1行第1个数1=(-1)2×(02+1);
第2行第1个数-2=(-1)3×(12+1);
第3行第1个数5=(-1)4×(22+1);
第4行第1个数-10=(-1)5×(32
解析:(1)解:∵第1行第1个数1=(-1)2×(02+1);
第2行第1个数-2=(-1)3×(12+1);
第3行第1个数5=(-1)4×(22+1);
第4行第1个数-10=(-1)5×(32+1);
…
∴第10行第1个数为(-1)11×(92+1)=-82,
(2)解:由以上数列可知,绝对值为奇数的为正,绝对值为偶数的符号为负,
∴2019前面是正号;
∵第45行第1个数为(-1)46×(442+1)=1937,
第46行第1个数为(-1)47×(452+1)=-2026,
且2019-1937+1=83,
∴2019在第45行,第83列
【解析】【分析】(1)由每行的第一个数可知,第n行第一个数为(-1)n+1×[(n-1)2+1],据此可得;(2)根据题意知绝对值为奇数的为正,绝对值为偶数的符号为负;求出第45行第1个数为1937,第46行第1个数为-2026知2021在第45行,再由每行中每个数的绝对值依次加1可得列数.
15.(1);6
(2)|x-6|
(3)解:点 C 在点 B 的左侧,且 CB=8 ,
,
.
设点 A 移动的时间为 t 秒.
当点 A 在点 C 的左侧时,,
解得: t=11
解析:(1);6
(2)
(3)解:点在点的左侧,且,
,
.
设点移动的时间为秒.
当点在点的左侧时,,
解得:,
此时点对应的数为14,在点的右侧,不合题意,舍去;
当点在点的右侧且在点的左侧时,,
解得:.
点移动的时间为秒.
【解析】【解答】(1)解:(1)根据题意得:,,,,
将其表示在数轴上,如图所示.
故答案为:;6
2)解:根据题意得:.
故答案为:
【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.
16.(1)-10;14;24
(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,。