导数及其应用运算单调性极值与定积分早练专题练习(一)附答案新教材高中数学
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《导数及其应用-运算单调性极值与定积分》单元
过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是
( ) A .0,()()x R f x f x ∀∈≤
B .0x -是()f x -的极小值点
C .0x -是()f x -的极小值点
D .0x -是()f x --的极小值点 (2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))
2.函数y =x cos x -sin x 在下面哪个区间内是增函数( ) (A )(2
π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(2020全国2理)(10)
3.已知函数33y x x c =-+的图像与x 轴恰有两个公共点,则c = ( )
A .2-或2
B .9-或3
C .1-或1
D .3-或1(2020大纲理)
答案A。