java求矩阵的特征值和特征向量(AHP层次分析法计算权重)(附源代码)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

java求矩阵的特征值和特征向量(AHP层次分析法计算权重)(附源代码) 这几天做一个项目,需要用到求矩阵的特征值特征向量。

我c++学的不好,所以就去网站找了很多java的源代码,来实现这个功能。

很多都不完善,甚至是不准确。

所以自己参考写了一个。

这个用于我一个朋友的毕业设计。

结果肯定正确。

话不多说,贴源代码!
import java.math.BigDecimal;
import java.util.Arrays;
/**
* AHP层次分析法计算权重
*
* @since jdk1.6
* @author 刘兴
* @version 1.0
* @date 2012.05.25
*
*/
public class AHPComputeWeight {
/**
* @param args
*/
public static void main(String[] args) {
/** a为N*N矩阵*/
//double[][] a= {{1,1,1},{1,1,1},{1,1,1}};
double[][] a ={{1,3,5},{2,3,1,},{4,7,3}};
//double[][] a = {{1 ,1/5, 1/3},{5, 1, 1},{3,1,1}};
//double[][] a ={{1, 1/2, 2, 1},{2, 1, 3, 4},{1/2 ,1/3, 1, 1},{1 ,1/4, 1, 1}};
//double[][] a = {{1 ,0.5, 0.5},{2 ,1, 1},{2 ,1, 1}};
//double[][] a = {{1, 1/4, 1/3, 1},{4, 1 ,3 ,5},{3, 1/3, 1, 4},{1, 1/5, 1/4, 1}};
// double[][] a= {{1,2,3,5},{0.5,1,2,3},{0.33,0.5,1,2},{0.2,0.33,0.5,1}};
int N = a[0].length;
double[] weight = new double[N];
AHPComputeWeight instance = AHPComputeWeight.getInstance();
instance.weight(a, weight, N);
System.out.println(Arrays.toString(weight));
}
// 单例
private static final AHPComputeWeight acw = new AHPComputeWeight();
// 平均随机一致性指针
private double[] RI = { 0.00, 0.00, 0.58, 0.90, 1.12, 1.21, 1.32, 1.41,
1.45, 1.49 };
// 随机一致性比率
private double CR = 0.0;
// 最大特征值
private double lamta = 0.0;
/**
* 私有构造
*/
private AHPComputeWeight() {
}
/**
* 返回单例
*
* @return
*/
public static AHPComputeWeight getInstance() { return acw;
}
/**
* 计算权重
*
* @param a
* @param weight
* @param N
*/
public void weight(double[][] a, double[] weight, int N) { // 初始向量Wk
double[] w0 = new double[N];
for (int i = 0; i < N; i++) {
w0[i] = 1.0 / N;
}
// 一般向量W(k+1)
double[] w1 = new double[N];
// W(k+1)的归一化向量
double[] w2 = new double[N];
double sum = 1.0;
double d = 1.0;
// 误差
double delt = 0.00001;
while (d > delt) {
d = 0.0;
sum = 0;
// 获取向量
int index = 0;
for (int j = 0; j < N; j++) {
double t = 0.0;
for (int l = 0; l < N; l++)
t += a[j][l] * w0[l];
// w1[j] = a[j][0] * w0[0] + a[j][1] * w0[1] + a[j][2] * w0[2];
w1[j] = t;
sum += w1[j];
}
// 向量归一化
for (int k = 0; k < N; k++) {
w2[k] = w1[k] / sum;
// 最大差值
d = Math.max(Math.abs(w2[k] - w0[k]), d);
// 用于下次迭代使用
w0[k] = w2[k];
}
}
// 计算矩阵最大特征值lamta,CI,RI
lamta = 0.0;
for (int k = 0; k < N; k++) {
lamta += w1[k] / (N * w0[k]);
}
double CI = (lamta - N) / (N - 1);
if (RI[N - 1] != 0) {
CR = CI / RI[N - 1];
}
// 四舍五入处理
lamta = round(lamta, 3);
CI = Math.abs(round(CI, 3));
CR = Math.abs(round(CR, 3));
for (int i = 0; i < N; i++) {
w0[i] = round(w0[i], 4);
w1[i] = round(w1[i], 4);
w2[i] = round(w2[i], 4);
}
// 控制台打印输出
System.out.println("lamta=" + lamta);
System.out.println("CI=" + CI);
System.out.println("CR=" + CR);
// 控制台打印权重
System.out.println("w0[]=");
for (int i = 0; i < N; i++) {
System.out.print(w0[i] + " ");
}
System.out.println("");
System.out.println("w1[]=");
for (int i = 0; i < N; i++) {
System.out.print(w1[i] + " ");
}
System.out.println("");
System.out.println("w2[]=");
for (int i = 0; i < N; i++) {
weight[i] = w2[i];
System.out.print(w2[i] + " ");
}
System.out.println("");
}
/**
* 四舍五入
*
* @param v
* @param scale
* @return
*/
public double round(double v, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = new BigDecimal(Double.toString(v));
BigDecimal one = new BigDecimal("1");
return b.divide(one, scale, BigDecimal.ROUND_HALF_UP).doubleV alue();
}
/**
* 返回随机一致性比率
*
* @return
*/
public double getCR() {
return CR;
}
}。

相关文档
最新文档