干式厌氧生物转化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review
通过干式厌氧生物转化过程从固体含量较高的有机基质中回收生物能源:综述SEVEN PARTS
这篇论文主要分为七个部分
1 Overview
1概述
2 Substrate characterization for D-AnBioC processes
2 干式厌氧生物转化系统的底物特性
3 Reactor configurations and operational sequences for D-AnBioC processes
3干式厌氧生物转化过程的反应器的配置和操作顺序
4 Techniques to enhance the bio-energy recovery by D-AnBioC process
4 通过干式厌氧生物转化的过程来提高生物能源回收的技术
5Factors affecting D-AnBioC efficiency
5干式厌氧生物转化效率的影响因素
6 Digested residue management from D-AnBioC process
6干式厌氧生物转化过程中消化残余物的管理
7 Energy and economic factors associated with D-AnBioC process
7 与干式厌氧生物转化过程相关的能源及经济因素
8 Summary and future research directions
8 总结及未来研究方向
1 Overview
Currently, anaerobic bio-conversion (AnBioC) of organic substrates (OS) is considered as the most common biotechnological solution due to its economical and energy recovery benefits.
目前,由于固体含量高的有机基质的干厌氧生物转化在经济和能源回收方面的优势,使其成为了最常见的生物技术解决方案。
In brief, OS are biochemically converted into bio-methane (CH4) under anaerobic conditions by the major groups of bacteria/archaea, such as hydrolyzers, acidogens, acetogens and methanogens.
总之,在厌氧条件下,有机基质(OS)被一群主要为细菌/古生菌的菌群通过生化反应生成甲烷,主要的菌群如水解菌、产酸菌、产乙酸菌和产甲烷菌。
2 Substrate characterization for D-AnBioC processes
2 干式厌氧生物转化系统的底物特性
The D-AnBioC system is mainly designed to treat OS from four different sources, including, agriculture waste, community waste, animal waste and industrial waste.
干式厌氧生物转化系统主要是设计处理四个不同来源的有机基质(OS),包括农业废物、社区垃圾、动物废物和工业废物。
Thus, TS of the OS substrates along with physicochemical properties of the substrates are to be mainly considered for the D-AnBioC process to control overall CH4 yield.因此,底物的有机基质(OS)中的总固体量连同底物的物理化学性质都被认为是干式厌氧生物转化过程中控制甲烷产生的主要因素。
It was noted that the TS of OS influenced the following parameters: rheological properties and viscosity of the reactor contents, fluid dynamics, clogging and solid sedimentation that can directly affect the overall mass transfer rates within the bioreactors.于是得出,有机基质(OS)的总固体含量会影响以下几种参数:流变学特性和反应器内的物质的粘度,流体动力学,堵塞,固体沉降会直接影响整个生物反应器中的传质速率。
However, the D-AnBioC systems seem to be more economical than W-AnBioC in treating OS because of the following: a smaller reactor volume, no internal mixing arrangement for continuous mixing (in some cases), can handle a variety of feed stocks, and can attain maximum CH4 yield.
然而,在处理有机基质(OS)上,干式厌氧生物转化系统比湿式厌氧生物转化系统更经济,原因如下:它的反应器容积更小,内部没有用于连续混合的混合装置(在某些情况下),能够处理各种各样的原料,能够获得最大的甲烷产量。
3 Reactor configurations and operational sequences for D-AnBioC processes
3干式厌氧生物转化过程的反应器的配置和操作顺序
A number of commercial plants, pilot plants and proto-type bio-reactors to treat OS have been developed using the D-AnBioC processes. Four major considerations with the bio-reactor design for continuous operations include:很多商业性质的处理厂,中试处理厂和原生物反应器在处理有机基质(OS)上已经开始开发利用干式厌氧生物转化过程。
四个连续运行的生物反应器的设计考虑的主要因素包括:Organic Loading Rate (OLR)(1)有机负荷率(OLR)—有机负荷率(OLR)是测量厌氧系统的生物转化能力的一种方法。
Solid/Digestate Retention Time (SRT)(2)固体/沼渣的保留时间(SRT)—SRT是在单位时间内流入的体积和有机基质(OS)流出的体积比。
是固体停留在消化池中的平均停留时间。
Hydraulic Retention Time (HRT)(3)水利停留时间(HRT)
CH4 Yield(4)甲烷产量—甲烷产量最大化是最重要的生物反应器设计参数,并且在操作运行的条件中起着关键的作用。
3.1 Microbial dynamics and metabolite distribution with respect to bio-reactor design 3.1微生物动力学和代谢产物的分布与生物反应器设计
In general, four major classified groups of microorganisms are involved in the bioconversion of OS into CH4, as depicted in Fig. 3.
一般情况下,四大类的微生物参与生物将有机基质(OS)转化成甲烷,如图3所示。
It has been reported that the hydrolysis/acidogenesis microorganisms have a faster growth rate (30 min) resulting in more than 90 % in total digester population during the initial stages.
有关报道表明,水解/酸化作用使微生物的增长速度更快(30分钟),从而导致在初始阶段产生的沼气比例大于90%。
As a first step in the AnBioC process, hydrolysis/acidogenesis of complex organic substrates produce VFAs, amino acids, alcohol, carbon dioxide (gas phase)
and hydrogen (gas and liquid phase) within the system. Among the different acids produced, acetic acid will be more abundant than other acids like formic, propionic, valeric and butyric acids. Due to the accumulation of these organic acids, the system pH and ORP values will be \4.5 ±0.5 and ±50 mV (Eh), respectively (Gerardi 2003).
作为干式厌氧生物转化过程的第一步,水解/酸化过程的有机底物在系统中产生复杂的物质如挥发性脂肪酸,氨基酸,醇,二氧化碳(气相)和氢气(气相和液相)。
在不同的酸产生过程中,乙酸会比其他酸,如甲酸,丙酸,戊酸和丁酸更加丰富。
由于这些有机酸的积累,该系统的pH和氧化还原电位(ORP)分别为< 4.5 ±0.5和± 50mV(Eh)(Gerard,2003)。
In the second step, that is, the acidogenesis/ acetogenesis process, products like acetate, hydrogen and less amounts of CH4 are formed under a pH range of 3.5–6.0 and ORP -170 ±50 mV (Eh) (Gerardi 2003). Homoacetogen, a special group of bacteria, involved in the utilization of H2 and CO2 during this stage, produces acetate via the Wood-Ljungdahl pathway.
在第二步骤中,也就是酸化/产乙酸过程,产物如乙酸盐,氢和少量的CH4,形成的pH值范围为 3.5-6.0和氧化还原电位(ORP)为-170 ±50mV(Eh)(Gerard,2003)。
同型产乙酸菌是一群特殊的细菌,在这个阶段中涉及H2和CO2的利用率,通过Wood-Ljungdahl途径产生醋酸。
Also, acetogensis of propionic and butyric acids proceed under very low H2 partial pressure/ concentrations during the third stage (that is, acetogenesis) of anaerobic conversion.
同时,丙酸及丁酸的产酸菌产酸是在H2 分压/浓度非常低的情况下进行的,发生在厌氧转换期间的第三阶段即,产酸。
Followed by acetogenesis, acetoclastic methanogens [which utilize acetate as a carbon source (Eq. 5)], hydrogenotrophic methanogens [which utilize hydrogen and carbon-dioxide (Eq. 6)], and methylotrophic methanogens [which utilize methyl alcohol (Eq. 7)] produce CH4 during the last step.
随后,通过产乙酸菌,产甲烷菌(使用醋酸酯作为碳源(Eq.5)),产氢产甲烷菌(利用氢气和二氧化碳(Eq.6)),甲醇产甲烷菌(利用甲醇(Eq.7))在最后一步产生甲烷。
4 Techniques to enhance the bio-energy recovery by D-AnBioC process
4 通过干式厌氧生物转化的过程来提高生物能源回收的技术
There are a number of techniques proposed in the literature to improve the bio-energy recovery from OS under D-AnBioC processes. Generally, all these techniques were used either alone or in combinations for the better performance of the bioreactor. The details are discussed below.
有很多文献中提出提高有机基质(OS)的干式厌氧生物转化过程回收生物能源的技术。
一般来说,所有这些技术单独使用或在生物反应器中结合使用以达到更好的性能。
在下面进行详细地讨论。
4.1Temperature
4.1 温度
Temperature is one technique to improve the efficiency of the system and reduce the overall SRT in D-AnBioC processes.温度在干式厌氧生物转化过程可以提高系统效率、减少整体的固体/沼渣的停留时间。
Thermophilic temperatures convert organic acids at a faster rate, with higher CH4 production (25–35 %) than the mesophilic system.高温系统比中温系统转换有机酸的速度更快,CH4的产量也更高(25-35%)。
Net energy gain of more than 50–75 % was reported with the thermophilic D-AnBioC system (Zeshan et al. 2012).Zeshan等人在2012年曾报道在适温的干式厌氧生物转化系统中,净能量的收益超过50-75%。
4.2Pre-treatment of substrates
4.2 底物的预处理
Generally, pre-treatment technologies were adopted to alter or remove these structural/compositional impediments to increase the yields of fermentable simple sugars/intended products in order to further process utilizations (Mosier et al. 2005).一般来说,预处理技术是通过改变或移除一些结构/成分障碍,增加可发酵单糖的产量/预期的产物,以进一步提高利用率的过程(Mosier等人,2005)。
Specifically,
any pretreatment technology is intended to: 预处理技术的目的:(1) free as much carbohydrates as possible into monomers; (1)使尽可能多的碳水化物尽可能转化成单体;(2) provide easy accessibility for bacterial or enzymatic action; (2)提供容易操作的细菌/酶促作用;(3) minimize sugar degradation and lignin solubilization;(3)减少糖降解和木质素的溶解;(4) be environmentally friendly and a less energy intensive process; (4)成为环境友好型和低能量密集型的过程;and (5) be a scalable, simple and robust system.(5)是一个可伸缩,简单的和强有力的系统。
Particle size affects the overall bioconversion efficiency and determines the digestate quality. Therefore, size reduction is an important pretreatment technique for D-AnBioC processes (Forster-Carneiro et al. 2008b; Guendouz et al.2010; Nizami and Murphy 2011; Zeshan et al. 2012) to obtain a uniform particulate size. This can improve the active surface area for faster enzymatic reactions.
但是采用干式厌氧生物转化系统处理有机基质(OS)时,粒子大小是一个重要的因素。
粒子大小会影响整个生物的转化效率,并且决定消化的质量。
因此,粉碎是干式厌氧生物转化过程中的一个重要的预处理技术,以获得尺寸均匀的颗粒(Forster-Carneiro等人,2008b;Guendouz等人,2010;Nizami和Murphy,2011;Zeshan等人,2012)。
这可以提高颗粒活性的表面积,使酶促反应更快。
The alkaline pre-treatment technique is most commonly reported.
报道最多的是碱性预处理过程。
Thermal and acid pretreatment methods are less explored with OS, especially for use in the D-AnBioC processes.
用热和酸的预处理方法处理有机基质(OS)的研究较少,特别是干式厌氧生物转化的过程。
Whereas, the biological pre-treatment of OS for the D-AnBioC process is less attempted due to major factors like: 然而,在干式厌氧生物转化过程中,用生物法对有机基质(OS)进行预处理的尝试较少,其主要因素有:(1) a longer retention time compared to physicochemical methods; (1)生物法与物理化学方法相比需要的保留时间更长;(2) the need to provide adequate environmental conditions; (2)
生物法需要提供充分的环境条件;and (3) it’s cost effectiveness.(3)生物法的成本效益。
4.3 Co-digestion
4.3 共消化
The use of mono-substrate for D-AnBioC processes sometimes affect the overall process conversion due to nutrient limitations. 在干式厌氧生物转化过程中的采用纯培养基,由于营养条件的限制,有时会影响整个过程的转换。
It would require treatment to provide an external nutrient supply throughout operations.这需要在整个过程中提供外部营养。
The various mixing ratios of OS for co-digestion studies were considered more important and were expected to affect the overall microbial community distribution within the system.Liu等人在2009年也报道了不同有机基质(OS)的共消化(比率)可以提高消化动力学,但不能提高沼气潜力。
Co-digestion of OS has important benefits, such as:用共消化的方法处理有机基质(OS)有非常重要的优势,比如:(1) reduced fugitive gas emissions; (1)减少挥发性气体的排放;(2) ability to manipulate the C/N ratio to improve process stability; (2)控制C / N的能力,以提高工艺的稳定性;(3)providing a balanced buffering capacity; (3)提供平衡的缓冲能力;(4) improved the rheological properties within the system; (4)改进的系统内的流变性能;(5) reduced external nutrient supply; (5)减少外部养分的供应;(6) minimized the effe cts of toxic or inhibitory compounds towards microbial community within the systems;(6)使毒性效应影响最小化或抑制化合物对系统内的微生物群落的影响;(7) improved the nutrient quality of the digested residue for land applications; (7)为土地的利用,改善消化剩余土地的营养质量;and (8) improved biogas yield.(8) 提高的沼气产量。
4.4 Digester mixing and leachate exchange practices
4.4 沼气池混合渗滤液交换的方法
Due to the high-solid content within the digester, there is a chance for black pockets, or dead zone formations, during continuous operation under the D-AnBioC
process. 在干式厌氧生物转化连续运行中,由于消化池内的固体含量高,容易形成黑口袋或死区。
That is, the overall bioconversion process will be affected should there be aminimum biogas yield. 也就是说,整体的生物转化过程将受到影响,使产气量降到最低。
This will result in digester failure.这将导致消化池出现故障。
To avoid such consequences, internal mixing arrangements, or even, the recirculation of digested residue, should be practiced. 为了避免这样的后果,内部应进行混合安排,甚至使消化残渣进行再循环。
The use of mixing arrangements使用混合安排的优点:: (1) provides a homogenized environment; (1)提供了一个同质化的环境;(2) prevents stratification and formation of surface crust;(2)防止分层和表面地壳的形成;(3) improves contact between microbes and biodegradable particles; (3 )增大了微生物和可生物降解的颗粒之间接触面积;(4) helps to release gas bubbles trapped inside air pockets;(4)有助于释放气穴里的气泡;(5) improves the diffusivity co-efficient of moisture (free water) and other nutrients; (5)提高了水分(游离水)和其他营养物质的扩散率;(6) supports the growth of active microorganisms;(6)支持有效微生物的生长;and (7) re-suspends heavier particles 7)使较重的粒子再次悬浮起来(Buendia et al. 2009; Jha et al. 2011; Ghanimeh et al. 2012).In addition, providing mixing arrangements also affects the overall net energy gains and reduces biogas production from the D-AnBioC processes.此外,混合安排也影响了整体的净能量收益,并减少了干式厌氧生物转化的过程中沼气的产生.
4.5 Inoculum and enzyme addition
4.5 接种物和酶促反应
A major problem with the D-AnBioC process is that it requires a larger amount of inoculum for better biogas yield especially for batch operations. 干式厌氧生物转化过程中的一个主要问题是,它需要较大的接种量才能得到更好的沼气产率,尤其是对于批处理操作系统。
Inoculum generally contains a mixed population of bacteria and archaea originally obtained from the previous batch of digestion. 接种量一般包含一个混合菌群和最初从前几批消化过程中获得的古细菌。
This bacterial population from the previous batch is called adapted culture. 这种从上一批处理中
获得细菌群体的方法被称为适应培养。
But, the best used inoculum is reported as anaerobically digested sewage sludge from wastewater treatment plants (Forster- Carneiro et al. 2007b).但是,据报道,最好的接种方法是污水处理厂中污水污泥的厌氧消化.Other than sewage sludge,digested material from an established reactor or ruminant cultures or manure is often used as seed inocula.除了污水污泥,还有已建立的反应器的消化物,反刍物或粪便经常被用来作为菌种的接种物。
4.6 Altering the feedstock and OLR4.6改变原料和有机负荷率(OLR)
Varying the OLR to the bioreactors can be done to improve biogas yield.生物反应器的有机负荷率的变化可以改善沼气产量。
Also, it is possible to get an inoculum which is stable within the system, that is, an inoculum which is able to withstand adverse environmental conditions. 此外,在系统内可还以得到一个的稳定的接种物,即能够承受恶劣的环境条件的接种物。
Similarly, lower OLR could be used for the bioreactor system under lower biogas yield conditions. This is also done to avoid "short circuiting" (Zeshanet al. 2012).同样,在生物反应器系统的沼气产量低的条件下,可以采用低的有机负荷率。
这样做也是为了避免出现“短路”的情况(Zeshan等,2012).
4.7 Neutralization techniques
4.7中和技术
The single-stage D-AnBioC process requires initial neutralization to support the growth of methanogenic populations and to reduce time at the start-up phase.单级的干式厌氧生物转化过程开始需要中和作用来维持产甲烷菌的生长以及降低启动阶段的停留时间。
In that case, the addition of alkali to increase the pH to near neutral can reduce the time required to start the methanogenesis process within the system, as reported by Zeshan et al. (2012).在2012年Zeshan等人曾报道,既然那样,通过加入碱来提高pH值使其接近中性,可以减少启动系统内的产生甲烷所需要的时间。
Chen et al. (2010) reported that the alkalinity of about 2,500 mg CaCO3/L and a pH of above 7 is maintained by adding 0.2 g NaOH/g VS for effective CH4 conversion. Chen等人(2010)报告说,为了使CH4进行有效的转化,需要约2500mg碳酸
钙/ L的碱度和7以上的pH值,这可以通过加入0.2gNaOH /gVS来维持。
因此,在干式厌氧生物转化过程中添加碱性溶液以中和该系统,能够快速的产生甲烷。
Therefore, the addition of an alkaline solution to neutralize the system can be used for the quick onset of methanogenesis process during D-A-BioC processes.
4.8 Nutrient supplement
4.8 补充营养
Micro elements like iron, cobalt, nickel, tungsten, molybdenum, and selenium were reported to be important co-factors of enzyme or co-enzymes involved in the biosynthesis of CH4 and the growth of anaerobic bacteria. 据报道,在生物合成CH4和厌氧细菌的生长中,铁,钴,镍,钨,钼,硒等微量元素是重要的酶或酶的辅因子(Nges等,2012)。
While operating the system, particularly under high ammonia- N concentration, the addition of micronutrients supported process stability. 在操作系统中,特别是在氨氮浓度很高时,添加微量营养素能够提高过程的稳定性。
5 Factors affecting D-AnBioC efficiency
5干式厌氧生物转化效率的影响因素
The D-AnBioC processes frequently encounter inhibition problems which are harder to control (Guendouz et al. 2010). 干式厌氧生物转化过程经常遇到难以控制的抑制问题The main inhibiting compounds are VFAs, ammonia-N, metals and cations 主要的抑制化合物的挥发性脂肪酸(VFAs),氨氮,金属阳离子,.In addition, the accumulation of gases such as CO2, H2 and H2S also affect the overall process performance.此外,如CO2,H2和H2S气体的积累也会影响整体的工艺性能。
5.1 V olatile fatty acids (VFAs)
5.1挥发性脂肪酸(VFAs)
VFAs are important intermediate compounds in the metabolic pathway of CH4 fermentation. 挥发性脂肪酸(VFAs)是CH4发酵代谢途径中的重要的中间体化合物。
VFAs cause microbial stress particularly at very high concentrations.挥发性脂肪酸(VFAs)会导致微生物的压力,特别是浓度非常高时。
Acetic, butyric and
propionic acids are the major VFAs present during anaerobic bio-degradation.乙酸,丁酸和丙酸是厌氧生物降解中的主要的挥发性脂肪酸(VFAs)的表现形式。
5.2 Ammonia-N
5.2氨态氮
About 60–80 % of total nitrogen (especially the proteins and other organic nitrogen compounds) was converted (via continuous solubilization and ammonification process) to ammonia-N during the anaerobic digestion of OS.Ammonia-N tended toaccumulate in the system. 在有机基质的好氧消化过程中60%-80%的总氮(尤其是蛋白质和其他有机氮化合物)的转化为氨态氮(通过连续增溶和氨化过程)。
Ammonia-N tended to accumulate in the system.氨态氮在系统中更倾向于不断积累。
It is generally believed that the ammonia-N at *200 mg/L is essential for the growth of anaerobic microorganisms. 一般认为,200mg/l浓度的氨态氮是厌氧微生物生活所必需的。
However, the threshold value at 1,500 mg/L exhibited moderate inhibition, while, a threshold value at more than 3,000 mg/L was expected to inhibit 100 % of methanogenesis process via different mechanisms.然而,Gerardi于2003年表示,在限值浓度为1500mg/l时,产甲烷作用会受到一定的抑制,当限值浓度为3000mg/l以上时,不同机制下的产甲烷作用会被完全抑制。
Similarly, free ammonia (non-ionic form) concentration of about 300–800 mg/L was reported to be inhibitory for the D-AnBioC processes .相似的,据报道(Gallert 和Winter 1997; Yabu 等人2011; Duan 等人2012),浓度为300–800 mg/l的游离态氨对干式厌氧生物转化过程有抑制作用。
5.3 Metal ions
5.3金属离子
Metal ions like sodium, potassium and calcium are required for the effective functioning of D-AnBioC systems.在干式厌氧生物转化系统的有效运转中,像钠、钾、钙这样的金属离子是必不可少的。
Excessive concentration causes strong inhibition.但浓度过量将会引起强烈的抑制作用。
Liang et al. (2011) reported no significant effect of elevated concentrations of major ions like potassium, sodium and calcium accumulation with CH4 production.
2011年,Liang等人研究指出,随着甲烷的产生,像钾、钠、钙这样的主要离子的浓度并没有明显的升高。
However, thermophilic acetoclastic methanogens are reported to be more sensitive with potassium ions.然而,据报道,产乙酸的高温厌氧甲烷菌对钾离子浓度更敏感。
6 Digested residue management from D-AnBioC process
6干式厌氧生物转化过程中消化残余物的管理
Generally, the three major process components involved with digestate management schemes include:一般认为,消化残余物管理的三个主要方案包括:(1) dewatering and drying; (1)脱水和干燥;(2) aerobic treatment;(2)好氧处理;and (3) pre- and postcharacterization of digested residue for application purposes, as discussed below.(3)下面讨论的将是对以应用为目的的消化残余物预期和后期的特性分析.
6.1 Dewatering and drying
6.1 脱水和干燥
Mechanical dewatering is commonly used for the digested residue to remove water contents thus improving TS content for easy handling. 机械脱水是消化残余物去除水分最常用的方式,它能提高残余物中的总固体含量,使处理更加方便。
Methods like centrifugation, press filters, screw pumping and vacuum evaporation methods are used alternatively.像离心,压滤,泵吸和真空蒸发这些方法都是选择性的使用。
一般认为,这些技术简单,省时,更有效,但是经济性不是太好。
6.2 Aerobic curing or composting
6.2 有氧固化及堆肥
Aerobic curing generally breaks down organic components further and fixes nitrogen contents.有氧固化一般来说就是进一步分解有机化合物组分和修复氮的含量。
It also eliminates hazardous components and reduces pathogen/ helminthes loads.它还能消除有害物质,降低病原体/寄生虫的数目。
6.3 Pre and post-characterization of residue for soil fertilization
6.3 用于土壤施肥残渣的前期与后期的特性分析
There are a number of parameters generally considered for compost materials and needed for the characterization of digested residue from D-AnBioC processes.堆肥材料有大量的参数需要考虑,有些就是通过对干式厌氧生物转化过程中消化残余物的特性分析所得。
These include: temperature, C/N ratio, NPK (Nitrogen-Phosphorous-Potassium) value, biogas potential, SOUR, cation exchange capacity (CEC), heavy metals, seed germination index (SGI) and pathogen loads.这些参数包括:温度、C/N、氮磷钾(NPK)值、沼气潜在值、比耗氧率(SOUR)、阳离子交换容量(CEC)、重金属量、种子发芽指数(SGI)及病原体数目。
7 Energy and economic factors associated with D-AnBioC process
7 与干式厌氧生物转化过程相关的能源及经济因素
Net energy gain from the D-AnBioC system is always reported to be higher than that of W-AnBioC systems.据报道,从干式厌氧生物转化系统中获得的净能量比从湿式厌氧生物转化系统中获得的较高。
Energy balance is generally calculated from the overall CH4 yield and total in-house energy consumption for various plant operation activities, such as, bioreactor operations, pre-treatment of OS, and postmanagement of digested residues. 能量的平衡一般是根据处理厂各种操作过程中甲烷总产量及内部能量消耗来进行计算的,例如,生物反应器的操作,有机基质(OS)的预处理,消化残余物的后期管理。
Waste collection and transportation costs are usually excluded.废物收集和运输成本通常被排除在外。
8 Summary and future research directions
8 总结及未来研究方向
Bio-energy production from OS is considered as a clean bio-fuel production technology to replace fossil fuels, coal or oil in the future.来自有机基质(OS)的生物能源产品是未来取代化石燃料(煤或石油)的一种清洁的生物燃料产品。
Also, it contributes to overall GHG emission mitigation via resource conservation, recycling and reuse practices.同时,通过节约资源、循环和回收利用的方法,有助于减少温
室气体总量的排放。
Many potential OS, like agricultural residues, sludge, biomass, organic fraction of municipal solid wastes, food waste, animal manures and fleshing, papers/cardboards, industrial organic byproducts, sea grass and aquatic weeds, are being explored for bio-energy recovery.许多潜在的有机基质(OS)正在探索着应用于生物能源,比如,农业废物,污泥,生物质,城市生活垃圾中的有机质部分,食品废物,动物粪便和尸体,纸/纸板,工业有机副产品,海草和水生杂草。
Therefore, the selection of appropriate pre-treatment conditions and optimization of process parameters for different OS was deemed important.因此,合适的预处理的选择和不同有机基质(OS)操作参数的最优化是非常重要的。
It has been proven that the size reduction and alkaline pre-treatment methods of OS is more advantageous over the other commonly proposed methods, especially for D-AnBioC systems. 实践证明,有机基质(OS)尺寸减小及碱性预处理的方法比其他常规处理方法有更大的优势,尤其在干式厌氧生物转化系统中。
In addition, the bioreactor configuration and operational variables, like OLR, SRT/HRT, temperature and internal mixing/recirculation, are considered as major limiting factors in overall bio-conversion processes.另外,生物反应器的配置及操作变量,如有机负荷(OLR)、SRT/HRT、温度和内部混合/再循环,都被认为是总生物转换过程中的主要限制因素。
It is necessary to address the following research gaps and needs:因此,有必要强调一下下面的研究差距及需求:
● 1 to increase the understanding of reactor configuration, optimized operating
conditions, required degree of pre-treatment and digested residue management schemes for a variety of OS.增加对不同有机基质(OS)的生物反应器配置,优化操作条件,预处理程度和消化残余物管理方案的了解。
● 2 to increase the understanding of the D-AnBioC processes through the
comprehensive analysis of the roles of phase separation, microbial community distribution patterns, hydrogen ion partial pressure and accumulation of toxic components通过对相分离,微生物群落的分布模式,氢离子局部压力分析及
有毒成分的积累这些因素的综合分析,来增加对干式厌氧生物转化过程的理解。
3 better understanding of the influence of micro andmacro nutrients, co-digestion effects, monitoring of GHG emissions during post-treatment and soil fertilization with the digested residue.在后期处理和用消化残渣进行土壤施肥过程中,要更好的理解微量和大量营养元素的影响,混合消化的效果,监测温室气体的排放问题。
4 to develop the novel bioreactors and operational sequences, pre-treatment combinations, methods to recover from system failure by providing supplementary substances (minerals or microbes) and the preparation of special inocula must be considered.
必须要考虑开发新颖的生物反应器和操作序列,预处理方法的组合,通过补充基质(矿物质和微生物)的方法使系统恢复运行以及准备特殊的接种物。