高中物理必修3物理 全册全单元精选试卷(提升篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修3物理全册全单元精选试卷(提升篇)(Word版含解析)
一、必修第3册静电场及其应用解答题易错题培优(难)
1.A、B是两个电荷量都是Q的点电荷,相距l,AB连线中点为O。
现将另一个电荷量为q的点电荷放置在AB连线的中垂线上,距O为x的C处(图甲)。
(1)若此时q所受的静电力为F1,试求F1的大小。
(2)若A的电荷量变为﹣Q,其他条件都不变(图乙),此时q所受的静电力大小为F2,求F2的大小。
(3)为使F2大于F1,l和x的大小应满足什么关系?
【答案】
223
(())
2
l
x+223
(())
2
l
x+
(3) 2
l x
>
【解析】
【详解】
(1)设q为正电荷,在C点,A、B两电荷对q产生的电场力大小相同,为:
2
2)
4
(
A B
kQq
F F
l
x
==
+
方向分别为由A指向C和由B指向C,如图:
故C 处的电场力大小为:
F 1=2F A sinθ
方向由O 指向C 。
其中:
22
4
sin l x θ=
+
所以:
3122
2
24
()kQqx
F l x =
+ (2)若A 的电荷量变为-Q ,其他条件都不变,则C 处q 受到的电场力:
F 2=2F A cosθ
其中:
22
24
l cos l x θ=
+
所以:
22
2
23(4
)kQql
F l x +=
方向由B 指向A 。
(3)为使F 2大于F 1,则:
222
23(4)kQql F l x +=
>31222
24
()kQqx
F l x =+ 即:
l >2x
2.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4
C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部
辅设绝缘层。
“隧道”左端固定一弹簧,用细线将弹簧与一静止物块拴接,初始状态弹簧被压缩,物块可看成质点,质量m=0.1kg ,电荷量q =-
2
3
×10-6C ,与“隧道”绝缘层间的动摩擦因数μ=0.2。
剪断细线,弹簧释放弹性势能E p ,促使物块瞬间获得初速度(忽略加速过程)。
之后物块从A 点沿直线运动至B 点后沿圆形轨道运动,恰好通过最高点C 。
其中l AB =2m ,设物块运动时电荷量始终不变,且不对Q 的电场产生影响,不计空气阻力,静电力常量为k = 9.0×l09N·
m 2/C 2。
求: (1)物块在最高点C 时的速度大小;
(2)物块在圆形轨道最低点B 时对轨道的压力大小; (3)弹簧压缩时的弹性势能E p 和物块初速度v A 。
【答案】(1) 4m/s (2) 6N (3) 3.2J, 8m/s 【解析】 【详解】
(1)物块恰好通过最高点C ,轨道对物块没有作用力,由牛顿第二定律得
2
C
v mg F m
r
+=库
其中
2
Qq
F k
r =库 解得
v C =4m/s
(2)B →C 过程,由动能定理得
2211222
C B mv v mg r m -⋅=
- 解得
56m/s B v =
在B 点,由牛顿第二定律得
2
B
NB v F F mg m
r
+-=库
F NB =6N
根据牛顿第三定律知物块在圆形轨道最低点B 时对轨道的压力大小 F NB ′=F NB =6N 。
(3)A→B ,由动能定理得
221122
AB B A mv f v l m -=
- 又 f=μmg 解得
v A =8m/s
弹簧压缩时的弹性势能
2
12
p A E mv =
解得
E p =3.2J
3.如图所示,均可视为质点的三个物体A 、B 、C 在倾角为30°的光滑绝缘斜面上,A 绝缘,A 与B 紧靠在一起,C 紧靠在固定挡板上,质量分别为m A =0.43kg ,m B =0.20kg ,m C =0.50kg ,其中A 不带电,B 、C 的电荷量分别为q B =+2×10-5C 、q C =+7×10-5C 且保持不变,开始时三个物体均能保持静止。
现给A 施加一平行于斜面向上的力F ,使A 做加速度a=2.0m/s 2的匀加速直线运动,经过时间t ,力F 变为恒力,已知静电力常量为k=9.0×109N·m 2/C 2,g 取10m/s 2。
求: (1)开始时BC 间的距离L ; (2)F 从变力到恒力需要的时间t 。
【答案】(1)2.0m ;(2)1.0s 【解析】 【分析】 【详解】
(1)A 、B 、C 静止时,以AB 为研究对象,受力分析有
2
sin30o B C
A B q q m m g k
L +=() 代入数据解得
L =2.0m
(2)AB 分离时两者之间弹力恰好为零,此后F 变为恒力,对B 用牛顿第二定律得
2
sin30B B B C
m g m a q q k
l ︒=-
3.0m l =
由匀加速运动规律得
212
l L at -=
解得
1.0s t =
4.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。
已知小球所带电荷量
61.010q C -=⨯,匀强电场的场强33.010N/C E =⨯,取重力加速度210m/s g =,
sin370.6︒=。
求:
(1)小球所受电场力F 大小; (2)小球质量m ;
(3)将电场撤去小球回到最低点时速度v 的大小; (4)撤去电场后小球到达最低点时绳子对小球的拉力大小。
【答案】(1)3⨯10-3N ;(2)4⨯10-4kg ;(3)2m/s ;(4)5.6⨯10-3N 【解析】 【分析】 【详解】
(1)小球所受电场力F 大小
3310N F qE -==⨯
(2)球受mg 、绳的拉力T 和电场力F 作用,
根据共点力平衡条件和图中几何关系有
tan mg qE θ=
解得小球的质量
-4410kg m =⨯
(3
)将电场撤去,小球摆动到最低点的过程由机械能守恒定律得:
21(1-cos37)2
mgL mv ︒=
解得
2.0m/s v =
(4)将电场撤去,小球摆动到最低点时由牛顿第二定律得
2
-v T mg m L
=
解得
-35.610N T =⨯
5.如图所示,高为h 的光滑绝缘直杆AD 竖直放置,在D 处有一固定的正点荷,电荷量为Q 。
现有一质量为m 的带电小球套在杆上,从A 点由静止释放,运动到B 点时速度达到最大值,到C 点时速度正好又变为零,B 、C 和D 相距分别为13h 和1
4
h ,静电力常量为k ,重力加速度为g ,求:
(1)小球的电荷量q 和在C 点处的加速度; (2)C 、A 两点间的电势差。
【答案】(1)29mgh q kQ =,79a g = 方向竖直向上(2)274kQ
h
【解析】 【详解】
(1)小球运动到B 点时速度达到最大,说明小球必带正电,在B 点应有:
2()3
kQq
mg h =
得:
29mgh q kQ
=
在C 点,由牛顿第二定律:
2
(
)4
kQq
mg ma
h -= 得:
7
9
a g =
,方向竖直向上。
(2)设C 、A 两点间的电势差为U ,则A 、C 间的电势差为-U 。
从A 到C 过程,由动能定理:
()04
h
mg h qU --=
得:
274kQ
U h
=
6.在竖直平面内固定一半径为R=0.3m 的金属细圆环,质量为5
m 310kg -=⨯的金属小球(视为质点)通过长为L=0.5m 的绝缘细线悬挂在圆环的最高点.小球带电荷量为
62.510q C -=⨯时,发现小球在垂直圆环平面的对称轴上某点A 处于平衡状态,如图所
示.已知静电力常量9229.010?/k N m C =⨯. 求:
(1)细线的拉力F 的大小;
(2)小球所在处的电场强度E 的大小?
(3)金属细圆环不能等效成点电荷来处理,试应用微元法推导圆环带电量Q 表达式?(用字母R 、L 、k 、E 表示)
【答案】(1) 4510N -⨯ (2) 160/N C (3) 2
54EL
Q k =或322
Q k L R
=- 【解析】
由几何关系:3
cos 5
R L θ==,224sin 5
L R L θ-=
=
,4tan 3θ= ①
(1)对小球受力分析可知:cos mg
F θ
=
② 由①②得:4510F N -=⨯ ③ (2)由平衡条件可得:tan qE mg θ= ④ 由①④得:160/E N C = ⑤ (3)由微元法,无限划分,设每一极小段圆环带电量为q ∆
则:
2
sin q
k
E L θ∆=∑ ⑥ 其中:q Q ∑∆=
由①⑥得:
2
54EL Q k =或322
Q k L R
=- ⑦ 点睛:因2Q
E k
r
=只能适用于真空中的点电荷,故本题采用了微元法求得圆环在小球位置的场强,应注意体会该方法的使用.库仑力的考查一般都是结合共点力的平衡进行的,应注意正确进行受力分析.
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E ,内阻不计,电阻阻值为R ,平行板电容器电容为C ,两极板间为真空,两极板间距离为d ,不考虑极板边缘效应.
(1)闭合开关S ,电源向电容器充电.经过时间t ,电容器基本充满. a .求时间t 内通过R 的平均电流I ;
b .请在图2中画出充电过程中电容器的带电荷量q 随电容器两极板电压u 变化的图象;
并求出稳定后电容器储存的能量E0;
(2)稳定后断开开关S.将电容器一极板固定,用恒力F将另一极板沿垂直极板方向缓慢拉开一段距离x,在移动过程中电容器电荷量保持不变,力F做功为W;与此同时,电容器储存的能量增加了ΔE.请推导证明:W=ΔE.要求最后的表达式用已知量表示.
【答案】(1)a.
CE
I
t
= b.2
1
2
E CE
=(2)见解析
【解析】
试题分析:(1)a.设充电完毕电容器所带电量为Q,即时间t内通过电阻R的电量,此时电容器两端电
压等于电源的电动势
根据电容的定义(2分)
根据电流强度的定义(2分)
解得平均电流(2分)
b.根据q = Cu,画出q-u图像如图1所示(2分)
由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示
由图像求出电容器储存的电能(2分)
解得(2分)
(2)设两极板间场强为,两极板正对面积为S
根据,,得,可知极板在移动过程中板间场强不变,两极板间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有
根据功的定义有
代入已知量得出(2分)
电容器增加的能量(或)
(2分)
代入已知量得出(2分)
所以
考点:电容,电动势,能量守恒.
8.在电场方向水平向右的匀强电场中,一带电小球从A点竖直向上抛出,其运动的轨迹如下图所示.小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点.小球抛出时的动能为8.0J,在M点的动能为6.0J,不计空气的阻力.求:
(1)小球水平位移x1与x2的比值;
(2)小球落到B点时的动能E kB;
(3)小球从A点运动到B点的过程中最小动能E kmin.
【答案】(1)1:3(2)32J(3)
24
7
J
【解析】
【详解】
(1)如图所示,带电小球在水平方向上受电场力的作用做初速度为零的匀加速运动,竖直方向上只受重力作用做竖直上抛运动,故从A到M和M到B的时间相等,则x1:x2=1:3 (2)小球从A到M,水平方向上电场力做功W电=6J
则由能量守恒可知,小球运动到B点时的动能为
E kB=E k0十4W电=32J
(3)由于合运动与分运动具有等时性,设小球所受的电场力为F,重力为G,则有:
1
2
2
6J
1
6J
2
Fx
F
t
m
=
=
即
2
2
8J
1
8J
2
Gh
G
t
m
=
=
即
联立解得
3
2
F
G
=
由图可知
33
tan sin 27
F G θθ=
=⇒=
则小球从A 运动到B 的过程中速度最小时速度一定与等效重力G /垂直,故:
20124()J 27
kmin E m v sin θ=
=
9.如图(a ),长度L=0.8m 的光滑杆左端固定一带正电的点电荷A ,其电荷量Q=
;一质量m=0.02kg ,带电量为q 的小球B 套在杆上.将杆沿水平方向固定
于某非均匀外电场中,以杆左端为原点,沿杆向右为x 轴正方向建立坐标系.点电荷A 对小球B 的作用力随B 位置x 的变化关系如图(b )中曲线I 所示,小球B 所受水平方向的合力随B 位置x 的变化关系如图(b )中曲线II 所示,其中曲线II 在0.16≤x≤0.20和x≥0.40范围可近似看作直线.求:(静电力常量
)
(1)小球B 所带电量q;
(2)非均匀外电场在x=0.3m 处沿细杆方向的电场强度大小E ; (3)在合电场中,x=0.4m 与x=0.6m 之间的电势差U .
(4)已知小球在x=0.2m 处获得v=0.4m/s 的初速度时,最远可以运动到x=0.4m .若小球在x=0.16m 处受到方向向右,大小为0.04N 的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的最小距离s 是多少?
【答案】(1)6110C -⨯(2)(3)800 V (4)0.065m
【解析】 【分析】 【详解】
(1)由图可知,当x=0.3m 时,
因此
.
(2)设在x=0.3m 处点电荷与小球间作用力为F 2, F 合=F 2+qE 因此
电场在x=0.3m 处沿细杆方向的电场强度大小为3⨯,方向水平向左.
(3)根据图像可知在x=0.4m 与x=0.6m 之间合力做功大小 W 合=0.004⨯0.2 J=8⨯10-4J 由qU=W 合 可得
(4)由图可知小球从x=0.16m 到x=0.2m 处 电场力做功
小球从
到
处
电场力做功2W =1
2
-2mv =31.610--⨯J 由图可知小球从
到
处
电场力做功3W =-0.004×0.4 J=31.610--⨯J 由动能定理1W +2W +3W +F s 外=0 解得s =
【点睛】
通过图线1位置0.3m 处和库仑定律计算小球B 带电量;再根据图像分析0.3m 处合力向左,库仑力向右,可以计算出该位置外加电场的电场力,进而计算外加电场电场强度;在0.4m 到0.6m 处合电场是匀强电场,根据qU=W 合可以计算两位置电势差;通过动能定理计算距离.
10.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:
(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】
带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】
(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =
(2)物块进入电场向右运动的过程,根据动能定理得:()2101
02
mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m
(3)物块先向右作匀减速直线运动,根据:00111••22
t v v v
s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m
=μ-=. 根据:21221
2
s a t =
得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg
a g m
μμ=-=-=-
根据:3322a t a t = 解得30.2t s =
物块运动的总时间为:123 1.74t t t t s =++= 【点睛】
本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.
11.如图所示,光滑水平面上方以CD 为界,右边有水平向右的匀强电场,电场强度大小E =104N/C,水平面上有质量为M =0.1kg 的绝缘板,板的右端A 恰好在边界CD 处,板上距A 端l =1.8m 放置一质量m 1=0.1kg 、带电量为q =-8×10-5 C 的小滑块P .质量为m 2=0.5kg 的小滑块Q 以初速度v 0=5.5m/s 从B 端滑入绝缘板,在与小滑块P 相遇前,小滑块P 已进入电场.已知小滑块P 、Q 与板之间的动摩擦因数分别为μ1=0.5、μ2=0.1,最大静摩擦力近似等
于滑动摩擦力.g =10m/s 2.求:
(1)小滑块Q 刚滑上板时,滑块P 的加速度大小a 1; (2)小滑块P 进入电场后的加速度大小和方向;
(3)若小滑块P 、Q 恰好在CD 边界相向相遇,AB 板的长度L . 【答案】(1)2.5m/s 2(2)3m/s 2;方向向右(3)12.52m 【解析】
(1)设:小滑块P 与绝缘板一起向右加速运动.
由牛顿第二定律:2211()m g m M a μ=+,解得:2
1 2.5m/s a =;
对小滑块P ,由牛顿第二定律:1110.25N f m a ==,1max 1110.5N>f m g f μ==假设正确; (2)小滑块P 进入电场后,设:小滑块P 相对绝缘板运动,
对绝缘板,由牛顿第二定律得:2211)m g m g M a μμ-=,解得:a =0,做匀速直线运动;
对小滑块P ,由牛顿第二定律1111
qE m g m a μ'-=,解得213m/s a '=,方向向左,假设正确;
(3)设刚进入电场时小滑块P 的速度为v 1
由运动学公式:1123m/s v a l ==, 滑块P 进入电场前运动的时间为1
11
1.2s v t a ==, 设滑块P 回到CD 边界时间为t 2,
由运动学公式:2
1212102
v t a t '-
=,解得22s t =; 对小滑块Q ,加速度大小为a 2,
由牛顿第二定律得:2222m g m a μ=,2
221m/s a g μ==;
设:经过t 3时间,小滑块Q 与绝缘板共速,即:1023v v a t =-;
解得:01
3122
2.5s<
3.2s v v t t t a -=
=+=, 设:此后小滑块Q 与绝缘板共同做匀减速运动,其加速度大小为2a ', 由牛顿第二定律得:1122()m g m M a μ'=+, 解得:2112
2
5
m/s 6
m g
a M m μ'==
+, Q 相对于绝缘板的总位移:22103231113111
()[()] 4.925m 22
x v t a t a t v t t =--+-=, 小滑块P 相对于板的总位移:
22131112321231
()()() 5.796m 2
x v t t v t t t a t t t '=-++--+-≈, 板的总长度为1212.52m L x x l =++≈.
12.如图所示,ABCD 为固定在竖直平面内的轨道,AB 段光滑水平,BC 段为光滑圆弧,对应的圆心角θ=37º,半径r =2.5m ,CD 段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E =2×105N /C 、方向垂直于斜轨向下的匀强电场.质量m =5×10
-2
kg 、电荷量q =+1×10-6C 的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑
行,在C 点以速度v 0=3 m /s 冲上斜轨.以小物体通过C 点时为计时起点,0.1s 以后,场强大小不变,方向反向.已知斜轨与小物体间的动摩擦因数μ=0.25.设小物体的电荷量保持不变,取g =10 m /s 2,sin37º=0.6,cos37º=0.8.
(1)求弹簧枪对小物块所做的功;
(2)在斜轨上小物体能到达的最高点为P ,求CP 的长度. 【答案】(1)W f =0.475J (2)s =0.57m 【解析】
试题分析:(1)设弹簧枪对小物体做功为W f ,由动能定理即可求解;
(2)对小物体进行受力分析,分析物体的运动情况,根据牛顿第二定律求出加速度,结合运动学基本公式即可求解. 解:
(1)设弹簧枪对小物体做功为W f ,由动能定理得W f ﹣mgr (l ﹣cosθ)=mv 02① 代人数据得:W f =0.475J ②
(2)取沿平直斜轨向上为正方向.设小物体通过C 点进入电场后的加速度为a 1, 由牛顿第二定律得:﹣mgsinθ﹣μ(mgcosθ+qE )=ma 1③
小物体向上做匀减速运动,经t 1=0.1s 后,速度达到v 1,有:v 1=v 0+a 1t 1④
由③④可知v1=2.1m/s,设运动的位移为s1,有:s l=v0t1+a1t12⑤
电场力反向后,设小物体的加速度为a2,由牛顿第二定律得:
﹣mgsinθ﹣μ(mgcosθ﹣qE)=ma2⑥
设小物体以此加速度运动到速度为0,运动的时间为t2,位移为s2,有:
0=v1+a2t2⑦
s2=v1t2+a2t22⑧
设CP的长度为s,有:s=s1+s2⑨
联立相关方程,代人数据解得:s=0.57m
答:(1)弹簧枪对小物体所做的功为0.475J;
(2)在斜轨上小物体能到达的最高点为P,CP的长度为0.57m.
【点评】本题主要考查了动能定理、牛顿第二定律及运动学基本公式的直接应用,要求同学们能正确对物体受力分析,确定物体的运动情况,难度适中.
三、必修第3册电路及其应用实验题易错题培优(难)
13.为测量某金属丝的电阻率,小明同学设计了如图甲、乙所示的两种实验方案,已知电源的电动势E和内阻r在实验过程中保持不变。
(1)小明先进行了如图甲方案的测量。
①他首先利用游标卡尺和螺旋测微器分别测出甲、乙、丙三根不同金属丝的直径,示数分别如图甲、乙、丙所示。
则三根金属丝直径的测量值分别为d甲=________mm、d乙
=________mm、d丙=________mm。
若三根金属丝的材料、长度相同且粗细均匀,则它们的电阻R甲、R乙和R丙中最大的是________,最小的是________。
②实验过程中,小明先将甲金属丝接入电路,并用米尺测出接入电路中的甲金属丝的长度l=50.00cm。
闭合开关后移动滑动变阻器的滑片分别处于不同的位置,并依次记录了两电表的测量数据如下表所示,其中5组数据的对应点他已经标在如图所示的坐标纸上,请你标出余下一组数据的对应点,并画出U-I图线________________。
实验次
123456
数
U/V0.90 1.20 1.50 1.80 2.10 2.40
I/A0.180.240.310.370.430.49
③该方案测得的甲金属丝的电阻率ρ甲=__________Ω·m(计算结果保留两位有效数字)。
④对于上述第(1)所述的测量过程,随着通过金属丝的电流I不断增大,滑动变阻器上的电功率P随之变化。
对于P-I的关系图象,在下列图中可能正确的是(________)
(2)小明又用如图乙方案测量乙金属丝的电阻率,已知电源的电动势E=5.0V、内阻
r=0.20Ω。
实验中他可以通过改变接线夹(即图乙中滑动变阻器符号上的箭头)接触金属丝的位置以控制接入电路中金属丝的长度。
①请在下述步骤的空格中将实验操作步骤补充完整:
a.正确连接电路,设定电阻箱的阻值,闭合开关;
b.读出电流表的示数,记录接线夹的位置;
c.断开开关,______________;
d.闭合开关,重复b、c的操作。
②根据测得电流与金属丝接入长度关系的数据,绘出如图所示的关系图线,其斜率为
_____________A-1·m-1(保留2位有效数字);图线纵轴截距与电源电动势的乘积代表了___________________的电阻之和。
③图中图线的斜率、电源电动势和金属丝横截面积的乘积代表的物理量是____________,其数值和单位为_______________(保留2位有效数字)。
(3)电表的内阻可能对实验产生系统误差,请你分别就这两种方案说明电表内阻对电阻率测
量的影响____________________________________。
【答案】1.75 1.34~1.38 0.546~0.548 R 丙 R 甲 见解析 (2.3~2.5)×10-5 D 测出接入电路的金属丝的长度 12~14 电源内阻、电流表内电阻与电阻箱 金属丝的电阻率 (9.8±0.5)×10-5Ω·m 图甲方案,由于电流表分压,导致电压表测量值偏大,电阻的测量值偏大,电阻率测量值偏大;图乙方案中电表内阻对测量结果没有影响 【解析】 【分析】 【详解】
(1)①[1]金属丝甲的直径
1mm 0.0515mm 1.75mm d =+⨯=甲
[2]金属丝乙的直径
1mm 0.0218mm 1.36mm d =+⨯=乙
[3]金属丝丙的直径
0.5mm 0.046mm 0.546mm d =+=丙
[4][5]根据电阻定律的决定式
2
4=l l R S d ρ
ρπ= 可知
R 甲 最小,R 丙最大
②[6]图象如图所示
③[7]根据图象可知电阻值
4.92ΩU
R I
=
=甲 再根据电阻定律
2
4=l l R S d ρ
ρπ= 代入数据,解得
52.410m ρ-=⨯Ω⋅
④[8]随电流增大,滑动变阻器的功率先变大后变小,当滑动变阻器阻值等于其它电阻之和时,功率最大,D 正确,ABC 错误。
故选D 。
(2)①[9] 测出接入电路的金属丝的长度。
②[10]由图象可得斜率为13 A -1·m -1。
[11][12]根据
E
I rl R
=
+ 整理得
1r R l I E E
=+ 其中r 就是单位长度的电阻,根据电阻定律
r S
ρ
=
代入整理得
1R l I ES E
ρ=+ 因此图线纵轴截距与电源电动势的乘积代表电源内阻、电流表内电阻与电阻箱电阻之和;斜率、电源电动势和金属丝横截面积的乘积代表的金属丝的电阻率。
③[13]将电源电动势E 和乙金属丝的直径d 乙代入得
32
51.361013 5.0()Ωm 9.410Ωm 2
ρπ--⨯=⨯⨯⨯⋅=⨯⋅
(3)[14] 图甲方案,由于电流表的分压作用,导致电压表测量值偏大,电阻的测量值偏大,电阻率测量值偏大;图乙方案中电表内阻对测量结果没有影响。
14.有一额定电压为2.8 V ,额定功率0.56 W 的小灯泡,现要用伏安法描绘这个小灯泡的伏安特性曲线,有下列器材可供选用: A .电压表(量程0~3 V 内阻约6 kΩ) B .电压表(量程0~6 V ,内阻约20 kΩ) C .电流表(量程0~0.6 A ,内阻约0.5 Ω) D .电流表(量程0~200 mA ,内阻约20 Ω) E.滑动变阻器(最大电阻10 Ω,允许最大电流2 A ) F.滑动变阻器(最大电阻200 Ω,允许最大电流150 mA ) G.三节干电池(电动势约为4.5 V ) H.电键、导线若干
(1)为提高实验的精确程度,电压表应选用____;电流表应选用___;滑动变阻器应选用____;(以上均填器材前的序号)
(2)请在虚线框内画出描绘小灯泡伏安特性曲线的电路图____;
(3)通过实验描绘出小灯泡的伏安特性曲线如图所示,某同学将一电源(电动势E =2 V ,内阻r =5 Ω)与此小灯泡直接连接时,小灯泡的实际功率是____W (保留两位有效数字)。
【答案】A D E 0.18(0.16~0.20范围内均给对)
【解析】
【分析】
【详解】
(1)由题意可知,灯泡的额定电压为2.8V ,为了准确性及安全性原则,电压表应选择A ;由P =UI 可得,灯泡的额定电流为:0.56A 200mA 2.8
P I U ===,故电流表应选择D ;测量灯泡的伏安特性曲线实验中应采用分压接法,故滑动变阻器应选用小电阻,故滑动变阻器应选择 E ;
(2)测量小灯泡的伏安特性曲线时,要求电压值从零开始变化,故滑动变阻器应采有分压接法;灯泡内阻约为:
14U I
=Ω,而电流表内阻约为20Ω,故电流表应采用外接法;故电路图如图所示∶
(3) 由电源的电动势和内阻作出电源的伏安特性曲线如图所示:
则交点为灯泡的工作点,由图可知,灯泡的电压为1.38V,电流为0.15A,则灯泡的功率
P=UI=1.3×0.13=0.17W;(0.16~0.20范围内均给对)
【点睛】
根据小灯泡的额定电压可以选出电压表,根据灯泡的额定功率可求出额定电流,则可确定出电流表;根据滑动变阻器的接法可选出滑动变阻器;根据测伏安特性曲线的实验要求可以选出滑动变阻器的接法,由电流表及电压表内阻的关系可得出电流表的接法;在图中作出电源的伏安特性曲线,图像与灯泡的伏安特性曲线的交点为灯泡的工作点,则可得出灯泡的电压及电流,由功率公式可求得实际功率。
15.在“描绘小灯泡的伏安特性曲线”的实验中,利用实验得到了8组数据,在图1所示的-坐标系中,通过描点连线得到了小灯泡的伏安特性曲线.
I U
(1)根据图线的坐标数值,请在图2中选出该实验正确的实验电路图:____(选填“甲”或“乙”).
(2)根据所选电路图,请在图3中用笔画线代替导线,把实验仪器连接成完整的实验电路.(________)
(3)根据图1,可判断出图4中正确的关系图象是(图中P为小灯泡功率"为通过小灯泡的电流)___.
(5)将同种规格的两个这样的小灯泡并联后再与R = 10Ω的定值电阻串联,接在电动势为8V、内阻不计的电源上,如图5所示.闭合开关S后,则电流表的示数为____A,两个小灯泡的总功率为__ W(本小题结果均保留两位有效数字).
【答案】甲 D 0.60 1.2
【解析】
【分析】
【详解】
(1)[1]描绘灯泡伏安特性曲线,电压与电流应从零开始变化,滑动变阻器应采用分压接法,所以正确的实验电路图是甲.
(2)[2]根据实验电路图连接实物电路图,实物电路图如图所示:
(3)[3]由于灯泡电阻随电流增大电阻R 增大,由2P I R =可知,2P I -图象斜率增大,故选D .
(4)[4][5]由图5所示电路图可知,两灯泡并联,可以把电源与定值电阻等效为电源,设每只电灯加上的实际电压和实际电流分别为U 和I ,在这个闭合电路中,则有:
02E U IR =+
代入数据并整理得:
820U I =-
在图a 所示坐标系中作出820U I =-的图象如图所示
由图象可知,两图象交点坐标值为:U =2V ,I =0.3A
此时通过电流表的电流值
2A I I ==0.6A
每只灯泡的实际功率
P UI ==2×0.3=0.6W
所以两个小灯泡的总功率为1.2W.
16.温度传感器的核心部分是一个热敏电阻。
某课外活动小组的同学在学习了伏安法测电阻之后,利用所学知识来测量由某种金属制成的热敏电阻的阻值。
可供选择的实验器材如下:
A.直流电源,电动势E=6V,内阻不计;
B.毫安表A1,量程为600mA ,内阻约为0.5Ω;
C.毫安表A2,量程为10mA,内阻R A=100Ω;
D.定值电阻R0=400Ω;
E.滑动变阻器R=5Ω;
F.被测热敏电阻R t,开关、导线若干。
(1)实验要求能够在0~5V范围内,比较准确地对热敏电阻的阻值R t进行测量,请在图甲的方框中设计实验电路______。
(2)某次测量中,闭合开关S,记下毫安表A1的示数I1和毫安表A2的示数I2,则计算热敏电阻阻值的表达式为R t=______(用题给的物理量符号表示)。
(3)该小组的同学利用图甲电路,按照正确的实验操作步骤,作出的I2-I1图象如图乙所示,由图可知,该热敏电阻的阻值随毫安表A2的示数的增大而____(填“增大”“减小”或“不变”)。
(4)该小组的同学通过查阅资料得知该热敏电阻的阻值随温度的变化关系如图丙所示。
将该热敏电阻接入如图丁所示电路,电路中电源电压恒为9V,内阻不计,理想电流表示数为0.7A,定值电阻R1=30Ω,则由以上信息可求出定值电阻R2的阻值为______Ω,此时该金属热敏电阻的温度为______℃。
【答案】
()
2A0
12
I R R
I I
+
-
增大 17.5 55
【解析】
【分析】
【详解】
(1)[1].题目中没有电压表,可用已知内阻的电流表A2与定值电阻R0串联构成量程为。