中考复习强化训练5函数(含答案)

合集下载

2015中考模拟 青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)

2015中考模拟 青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)

2015中考模拟青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)一.选择题(共20小题)1.(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张2.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()3.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()y=5.(2014•毕节市)抛物线y=2x2,y=﹣2x2,共有的性质是()6.(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主7.(2014•兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,8.(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()9.(2014•湖里区模拟)已知两个变量x和y,它们之间的3组对应值如下表,则y与x之)10.(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,11.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()12.(2014•泰安)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是(). C D .13.(2014•汕头)二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) ,14.(2014•泰安)二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应下列结论:(1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0.15.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()217.(2014•黔东南州)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m218.(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大19.(2014•东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的20.(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()二.填空题(共4小题)21.(2014•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于_________.(结果保留π)22.(2014•乌鲁木齐)对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是_________.(填写正确结论的序号)23.(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(_________,_________).24.(2014•菏泽)如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则=_________.三.解答题(共6小题)25.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.26.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.27.(2014•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.28.(2014•绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?29.(2014•陕西)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?30.(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)2015中考模拟青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)参考答案与试题解析一.选择题(共20小题)1.(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张2.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()3.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()反比例函数反比例函数本题考查了反比例函数的性质.对于反比例函数(y=是反比例函数,故本选项错误;y==x+5.(2014•毕节市)抛物线y=2x2,y=﹣2x2,共有的性质是()y=<﹣时,>﹣时,取得最小值<﹣时,>﹣时,取得最大值6.(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主7.(2014•兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,8.(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()9.(2014•湖里区模拟)已知两个变量x和y,它们之间的3组对应值如下表,则y与x之)y=,故此选项错误.10.(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,解:根据题意,在反比例函数11.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()12.(2014•泰安)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是().C D.的图象位于第二、四象限;13.(2014•汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),,正确,故<14.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.=1.515.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()﹣,2.17.(2014•黔东南州)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m218.(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大19.(2014•东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的m+1(20.(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()=1二.填空题(共4小题)21.(2014•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π))=故答案是:.22.(2014•乌鲁木齐)对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是①③④.(填写正确结论的序号),,时,>==1﹣=,x,y=﹣23.(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).(((24.(2014•菏泽)如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则=3﹣.,(,(的横坐标相同,为,∴,﹣=﹣.三.解答题(共6小题)25.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.y=,即可求出的图象经过点,解得﹣∴,∴∴﹣﹣=)或(﹣)26.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.的图象在第二象限的交点为∴∴x﹣,,﹣27.(2014•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.∴.28.(2014•绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?),个单位,再向下平移个单位得到.29.(2014•陕西)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?∴,解得﹣﹣30.(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)。

中考数学三轮专题强化卷【专题7】函数与图象(含答案)

中考数学三轮专题强化卷【专题7】函数与图象(含答案)

专题七函数与图象⊙热点一:图象信息题1.如图Z7-7,二次函数y=-x2-2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是()图Z7-7A.(-3,-3)B.(1,-3)C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)2.(2013年山东菏泽)已知b<0时,二次函数y=ax2+bx+a2-1的图象是下列4个图之一.根据图象分析,a的值等于()A.-2 B.-1C.1 D.2⊙热点二:代数几何综合题1.(2013年湖南永州)如图Z7-8,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A,B两点.(1)写出A,B两点的坐标(坐标用m表示);(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;(3)设以AB为直径的⊙M与y轴交于C,D两点,求CD的长.图Z7-82.(2013年四川资阳节选)如图Z7-9,四边形ABCD是平行四边形,过点A,C,D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连接CE,点A,B,D的坐标分别为(-2,0),(3,0),(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M,N分别是直线l和x轴上的动点,连接MN,当线段MN恰好被BC垂直平分时,求点N的坐标.图Z7-9⊙热点三:函数探索开放题(2013年四川雅安)如图Z7-10(1),已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图Z7-10(2),若E是线段AD上的一个动点(E与A,D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.(1) (2)图Z7-10函数与图象热点一 1.D 2.C 热点二1.解:(1)∵y =(x -m )2-4m 2, ∴当y =0时,(x -m )2-4m 2=0. 解得x 1=-m ,x 2=3m . ∵m >0,∴A ,B 两点的坐标分别是(-m,0),(3m,0). (2)∵A (-m,0),B (3m,0),m >0,∴AB =3m -(-m )=4m ,圆的半径为12AB =2m .∴OM =AM -OA =2m -m =m .∴抛物线的顶点P 的坐标为:(m ,-2m ).又∵二次函数y =(x -m )2-4m 2(m >0)的顶点P 的坐标为(m ,-4m 2), ∴-2m =-4m 2.解得m 1=12,m 2=0(舍去).∴二次函数的解析式为y =⎝⎛⎭⎫x -122-1, 即y =x 2-x -34.(3)如图89,连接CM .在Rt △OCM 中, ∵∠COM =90°,CM =2m =1,OM =m =12,∴OC =CM 2-OM 2=12-⎝⎛⎭⎫122=32. ∴CD =2OC = 3.图89 图902.解:(1)∵点A ,B ,D 的坐标分别为(-2,0),(3,0),(0,4),且四边形ABCD 是平行四边形,∴AB =CD =5,∴点C 的坐标为(5,4).∵点A ,C ,D 在抛物线y =ax 2+bx +c (a ≠0)上,∴⎩⎪⎨⎪⎧4a -2b +c =0,25a +5b +c =4,c =4.解得⎩⎪⎨⎪⎧a =-27,b =107,c =4.故抛物线的解析式为y =-27x 2+107x +4.(2)如图90,连接BD 交对称轴于G ,在Rt △OBD 中,易求BD =5,∴CD =BD ,则∠DCB =∠DBC .又∵∠DCB =∠CBE ,∴∠DBC =∠CBE .过G 作GN ⊥BC 于H ,交x 轴于N , 易证GH =HN ,∴点G 与点M 重合. 故直线BD 的解析式y =-43x +4.根据抛物线可知对称轴方程为x =52,则点M 的坐标为⎝⎛⎭⎫52,23,即GF =23,BF =12. ∴BM =FM 2+FB 2=56.又∵MN 被BC 垂直平分,∴BM =BN =56.∴点N 的坐标为⎝⎛⎭⎫236,0. 热点三解:(1)由题意,得⎩⎪⎨⎪⎧a +b +c =0,9a -3b +c =0,c =3.解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.∴抛物线的解析式为:y =-x 2-2x +3. (2)∵△PBC 的周长为PB +PC +BC , ∵BC 是定值,∴当PB +PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴l 对称,∴连接AC 交l 于点P ,即点P 为所求的点(如图91).图91∵AP =BP ,∴△PBC 的周长最小是PB +PC +BC =AC +BC . ∵A (-3,0),B (1,0),C (0,3), ∴AC =3 2,BC =10.故△PBC 周长的最小值为3 2+10.(3)①∵抛物线y =-x 2-2x +3顶点D 的坐标为(-1,4),A (-3,0), ∴直线AD 的解析式为y =2x +6. ∵点E 的横坐标为m ,∴E (m,2m +6),F (m ,-m 2-2m +3).∴EF =-m 2-2m +3-(2m +6)=-m 2-4m -3, AH =12AB =12×4=2,∴S =S △DEF +S △AEF =12EF ·GH +12EF ·AG =12EF ·AH =12(-m 2-4m -3)×2=-m 2-4m -3.②存在.∵S =-m 2-4m -3=-(m +2)2+1. ∴当m =-2时,S 最大,最大值为1. 此时点E 的坐标为(-2,2).。

备战中考数学(人教版)综合能力冲刺练习(含解析)

备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

2020初中数学中考专题复习——四边形中的线段最值问题专项训练5(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练5(附答案详解)

1.C
参考答案
【解析】
【分析】
根据三个角都是直角的四边形是矩形,得四边形 AEPF 是矩形,根据矩形的对角线相等,得
EF=AP,则 EF 的最小值即为 AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角
三角形 ABC 斜边上的高.
【详解】
连接 AP,
∵在△ ABC 中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°, 又∵PE⊥AB 于 E,PF⊥AC 于 F, ∴四边形 AEPF 是矩形, ∴EF=AP, ∵AP 的最小值即为直角三角形 ABC 斜边上的高,即 2.4, ∴EF 的最小值为 2.4, 故选:C. 【点睛】 本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要 求的线段的最小值转化为便于求的最小值得线段是解此题的关键. 2.C 【解析】 【分析】 根据轴对称确定最短路线问题,作点 P 关于 BD 的对称点 P',连接 与 BD 的交点即为所求的 点 K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知 ⊥CD 时
的最小值,求解即可.
【详解】
解::如图,∵

,,
∴点 P'到 CD 的距离为 2× = ,
∴ 故选 C.
的最小值为 .
【点睛】 本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最 短路线的方法是解题的关键. 3.C 【解析】 【分析】 先作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值.然后证明 四边形 ABNM′为平行四边形,即可求出 MP+NP=M′N=AB=2. 【详解】 解:如图,作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值, 最小值为 M′N 的长. ∵菱形 ABCD 关于 AC 对称,M 是 AB 边上的中点, ∴M′是 AD 的中点, 又∵N 是 BC 边上的中点, ∴AM′∥BN,AM′=BN, ∴四边形 ABNM′是平行四边形, ∴M′N=AB=2, ∴MP+NP=M′N=2,即 MP+NP 的最小值为 2, 故选:C.

初三数学中考复习 求函数表达式及其应用 专题训练题 含答案

初三数学中考复习  求函数表达式及其应用 专题训练题  含答案

精品基础教育教学资料,仅供参考,需要可下载使用!初三数学中考复习 求函数表达式及其应用 专题训练题1.在函数y =1x +1中,自变量x 的取值范围是( )A .x >-1B .x <-1C .x ≠-1D .x =-1 2.函数y =x 3-x的自变量的取值范围是( )A .x ≠3B .x ≠0C .x ≠3且x ≠0D .x <33. 据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有将水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数表达式是( )A .y =0.05xB .y =5xC .y =100xD .y =0.05x +1004. 某工程队承建一条长30 km 的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的函数表达式为( )A .y =30-14xB .y =30+14xC .y =30-4xD .y =14x5. 图中的圆点是有规律地从里到外逐层排列的,设y 为第n 层(n 为正整数)圆点的个数,则下列函数表达式中正确的是( )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2 6. 函数12x -3中,自变量x 的取值范围是_________. 7. 如图,△ABC 的边BC 的长是8,BC 边上的高AD ′是4,点D 在BC 上运动,设BD 长为x ,请写出△ACD 的面积y 与x 之间的函数关系式_______________.8. A ,B 两地相距20 km ,小李步行从A 地到B 地,若设他的速度为每小时5 km ,他与B 地的距离为y km ,步行的时间为x 小时,则y 与x 之间的函数关系式为____________,自变量x 的取值范围是_____________. 9. 如图,用边长60 cm 的正方形铁皮做一个无盖水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,如果截去的小正方形的边长是x cm ,水箱的容积是y cm 3,则y 与x 之间的函数表达式是_____________,自变量x 的取值范围是___________.10. 某自行车存车处在星期日存车4 000辆,其中变速车存车费是每辆一次0.30元,普通车存车费是每辆一次0.20元,若普通车存车数为x ,存车总收入y(元)与x 的函数表达式是_________________,自变量x 的取值范围是________________. 11. 求下列函数的自变量的取值范围. (1)y =x 2+5;(2)y =x -2x +4;(3)-x ;(4)y =1x 2+2.12. 如图,正方形ABCD的边长为16,M为DC边上一个动点,M点不与D,C点重合,CM=x.(1)试写出△ADM的面积y关于x的函数表达式;(2)求出自变量x的取值范围;(3)当x取多少时,△ADM面积为64?13. 李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,长方形ABCD的面积为S.(1)分别求出y,S与x之间的函数表达式;(2)求自变量x的取值范围.14. 高空的气温与距地面的高度有关,某地地面气温为24℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.15. 某剧院的观众席的座位为扇形,且按下列方式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.16. 如图,在Rt△ABC中,已知∠ACB=90°,BC=4 cm,AC=9 cm,点D在射线CA上从点C出发向点A方向运动(点D不与点A重合),且点D运动的速度为2 cm/s,现设运动时间为x(s)时,对应的△ABD 的面积为y(cm2).(1)填写下表:时间x(s) … 2 4 6 … 面积y(cm 2)……(2)请写出y 与x 之间满足的关系式.(3)在点D 的运动过程中:①直接指出出现△ABD 为等腰三角形的次数有______次,当第一次出现△ABD 为等腰三角形时,请用所学知识描述此时点D 所在的位置为__________________与________的交点处; ②求当x 为何值时,△ABD 的面积是△ABC 的面积的14.参考答案:1---5 CABAB 6. x ≠327. y =-2x +168. y =20-5x 0≤x ≤4 9. y =(60-2x)2·x 0<x<30 10. y =1 200-0.1x 0≤x ≤4 000 11. (1) 解:x ≠-4. (2) 解:x 是任意实数. (3) 解:x ≥0. (4) 解:x 是任意实数 12. 解:(1) y =128-8x. (2) 0<x<16. (3) x =8.13. 解:(1) y =-12x +12,S =-12x 2+12x.(2) 0<x<24.14. 解:(1)∵离地面距离每升高1 km ,气温下降6 ℃,∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =24-6h.(2)当h =3时,T =24-6×3=6(℃).(3)当T =-6℃时,-6=24-6h ,解得h =5,答:距地面的高度h 为5 km.15. 解:(1)由图表中数据可得,当x 每增加1时,y 增加3. (2)由题意可得,y =50+3(x -1)=3x +47.(3)某一排不可能有90个座位,理由:由题意可得:y =3x +47=90,解得x =433.x 不是整数,故某一排不可能有90个座位. 16. (1) 10 2 6(2) ①当点D 在线段AC 上时(不包括A 点),y =12AD ·BC =12(9-2x)×4=-4x +18;②当点D 在CA 的延长线时,y =12AD ·BC =12(2x -9)×4=4x -18.综合①②,得y =⎩⎪⎨⎪⎧-4x +18(0≤x<92)4x -18(x>92).(3) ① AB 的垂直平分线 AC②△ABC 的面积=12AC ×BC =12×9×4=18,令y =184,即184=-4x +18,或者184=4x -18,解得x =278或x =458.∴当x =278或x =458时,△ABD 的面积是△ABC 面积的14.。

2023年中考数学二轮复习 函数的实际问题 拓展练习(含答案)

2023年中考数学二轮复习 函数的实际问题 拓展练习(含答案)

2023年中考数学二轮复习《函数的实际问题》拓展练习一、选择题1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是( )A.Q=8xB.Q=8x﹣50C.Q=50﹣8xD.Q=8x+502.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,￿如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()3.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3tB.大于3tC.小于4tD.大于4t4.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )5.当温度不变时,某气球内的气压p(kPa)与气体体积V(m3)的函数关系如图所示,已知当气球内的气压p>120 kPa时,气球将爆炸,为了安全起见,气球的体积V 应( )A.不大于45m 3 B.大于45m 3 C.不小于45m 3D.小于45m 36.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A.y =36(1﹣x)B.y =36(1+x)C.y =18(1﹣x)2D.y =18(1+x 2)7.某工厂第一年的利润为20万元,第三年的利润为y 万元.设该公司利润的平均年增长率为x,则y 关于x 的二次函数的表达式为( ).A.y =20(1﹣x)2B.y =20(1+x)2C.y =(1﹣x)2+2D.y =(1﹣x)2﹣208.从地面竖直向上抛出一个小球,小球的高度h(m)关于小球运动时间t(s)的二次函数表达式为h =30t ﹣5t 2.则小球从抛出到回落到地面所需要的时间是( ).A.6sB.4sC.3sD.2s9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x(单位:米)的一部分,则水喷出的最大高度是 ()A.4米B.3米C.2米D.1米10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间的函数关系式为y=-n 2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月11.在A 、B 两地之间有汽车站C(C 在直线AB 上),甲车由A 地驶往C ,乙车由B 地驶往A 地,两车同时出发,匀速行驶.甲、乙两车离C 站的路程y 1,y 2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.正确的结论有( )A.1个B.2个C.3个D.4个12.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF 的长为( )A.0.4米B.0.16米C.0.2米D.0.24米二、填空题13.小高从家骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间x(分钟)与离家距离y(千米)的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家需要的时间是分钟.14.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,且具有一次函数的关系,如下表所示.则y关于x的函数表达式为_____________(写出自变量x的取值范围).15.小东早晨从家骑车到学校,先上坡后下坡,行驶的路程y(千米)与所用的时间x(分)之间的函数关系如图所示,若小东返回时上、下坡的速度仍保持不变,则他从学校骑车回家用的时间是分.16.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是________m.17.如图所示,正方形EFGH的顶点在边长为2的正方形ABCD的边上.若设AE =x,正方形EFGH的面积为y,则y关于x的函数表达式为.18.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.三、解答题19.某气象研究中心观测一场沙尘暴从发生到结束的全过程.开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时.一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减l千米/时,最终停止.结合右侧风速与时间的图像回答下列问题:(1)在y轴( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过小时;(3)当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式为.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)求甲、乙的存款额y1、y2(元)与存款月数x(月)之间的函数关系式,画出函数图象.(2)请问到第几个月,甲的存款额超过乙的存款额?22.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为xcm,它的面积为ycm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少23.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元,该市一户居民在5月以后,某月用电x千瓦时,当月交电费y 元.(1)上表中,a=_______;b=_______;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案1.C2.C3.D4.C5.C6.C7.B.8.A.9.A 10.C ;11.D 12.C13.答案为:15;14.答案为:y=-0.2x +50(30≤x≤120)15.答案为:37.216.答案为:1.217.答案为:y =2x 2﹣4x +4.18.答案为:0.5;19.解:(1)8,32.(2)57.(3)y=-x+57(25≤x≤57).20.解:(1)将(40,1)代入t =k v ,得1=k40,解得k =40.函数关系式为:t =40v.当t =0.5时,0.5=40m ,解得m =80.所以,k =40,m =80. (2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)y1=600+500x y2=2000+200x;(2)x>423,到第5个月甲的存款额超过乙的存款额.22.解:(1)y=10﹣x)·x,x是自变量,它的值应在0到10之间(不包括0和10) (2)如下表:x1234567891y9162124252421169(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;③当x取距5等距离的两数时,得到的两个y值相等.(4)从表中可以发现x=5时,y取到最大的值25.23.解:(1)0.6,0.65;(2)当x≤150时,y=0.6x;当150<x≤300时,y=0.65x﹣7.5;当x>300时,y=0.9x﹣82.5.(3)0.62元.。

安徽省2019年中考二轮复习题型五:函数的实际应用题(含答案)

安徽省2019年中考二轮复习题型五:函数的实际应用题(含答案)

题型五函数的实际应用题类型一最大利润问题1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=-2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?2.某旅行社推出一条成本价为500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=-x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;(2)求经营这条旅游线路每月所需要的最低成本;(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?3.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并直接写出当x取何值时,商场可获得最大利润,最大利润为多少元?4. (2018合肥庐阳区一模)某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元.按规定,该产品售价不得低于60元/件且不得超过160元/件,且每年售价确定以后不再变化,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)求2017年该公司的最大利润?(3)在2017年取得最大利润的前提下,2018年公司将重新确定产品售价,能否使两年共盈利达980万元,若能,求出2018年产品的售价;若不能,请说明理由.第4题图5.某公司生产一种产品,每件成本为2元,售价为3元,年销售量为100万件.为获取更好的效益,公司准备拿出一定资金做广告,通过市场调查发现:每年投入的广告费用为x(单位:十万元) 时,产品的年销售量将是原来的y倍,同时y又是x的二次函数,且满足的相互关系如下表:x0 1 2 …y 1 1.5 1.8 …(1)求y与x之间的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润s(单位:十万元)与广告费x(单位:十万元)的函数关系;(3)如果公司一年投入的年广告费为10-30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增加?公司可获得的最大年利润是多少?6.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲.节日前夕,某花店采购了一批鲜花礼盒,成本价为每件30元,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量y(件)是销售单价x (元/件)的一次函数.(1)求出y 与x 的函数关系;(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100%.①当销售单价x 取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价-成本总价);②试确定销售单价x 取何值时,花店销售该鲜花礼盒每天获得的利润W (元)最大?并求出花店销售该鲜花礼盒每天获得的最大利润.7. 某种商品的成本为每件20元,经市场调查发现,这种商品在未来40天内的日销售量m (件)与x (天)的关系如表.时间x (天) 1361036…日销售量m (件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与时间x (天)的函数关系式为y 1=14x +25(1≤x ≤20且x 为整数),后20天每天的价格y 2(元/件)与时间x (天)的函数关系式为y 2=-12x +40(21≤x ≤40且x 为整数).(1)求日销售量m (件)与时间x (天)之间的关系式;(2)请预测本地市场在未来40天中哪一天的日销售利润最大?最大日销售利润是多少?类型二最优方案问题1.某商店分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.2.某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销量为x(件),其中x>0.若在甲地销售,每件售价y(元)与x之间的函数关系式为y=-110x+100,每件成本为20元,设此时的年销售利润为w甲(元)(利润=销售额-成本);若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,15≤a≤25),每件售价为106元,销售x(件)每年还需缴纳110x2元的附加费,设此时的年销售利润为w乙(元)(利润=销售额-成本-附加费);(1)当a=16,且x=100时,w乙=________元;(2)求w甲与x之间的函数关系式(不必写出x的取值范围),并求x为何值时,w甲最大以及最大值是多少?3.近年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?4.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2∶1.运行区间票价起点站终点站一等座二等座都匀桂林95(元) 60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式;(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.类型三抛物线型问题1. (2018滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?第1题图2. 有一座抛物线拱型桥,在正常水位时,水面BC 的宽为8米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy .(1)求该抛物线的表达式;(2)如果水面BC 上升3米(即OA =3)至水面EF ,点E 在点F 的左侧,求水面宽度EF 的长.第2题图3. 有一个抛物线型蔬菜大棚,将其截面放在如图所示的直角坐标系中,抛物线可以用函数y =ax 2+bx 来表示.已知大棚在地面上的宽度OA 为10米,距离O 点2米处的棚高BC 为3米.(1)求该抛物线的函数关系式;(2)求蔬菜大棚离地面的最大高度是多少米?(3)若借助横梁DE 建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?第3题图4. 某校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,当球出手后水平距离为4 m 时到达最大高度4 m ,篮圈距地面3 m ,设篮球运行的轨迹为抛物线.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式; (2)此球能否准确投中?(3)此时,若对方队员乙在甲前面1 m 处跳起拦截,已知乙的最大摸高为3.1 m ,那么他能否拦截成功?第4题图5. 如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA ,O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y (m)与水平距离x (m)之间的关系式可以用y =-x 2+bx +c 表示,且抛物线经过点B (12,52),C (2,74),请根据以上信息,解答下列问题.(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?第5题图类型四 几何面积最大值问题1. 投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式; (2)若菜园面积为384 m 2,求x 的值;(3)当x 为何值时,菜园的面积最大,最大值为多少?第1题图2.为了保护环境,实现城市绿化,某房地产公司要在拆迁的一块地上进行绿化改造,他们依据地势整理出了一块矩形区域ABCD,铺成人们可以活动的砖石地面,又分别以AB、BC、CD、DA为斜边向外作等腰直角三角形(如图所示),通过测量,发现四边形MNGH的周长正好为200米,设AB =x米,BC=y米 .(1)求y与x之间的函数关系式;(2)如果矩形区域ABCD铺设砖石地面,建设费用为每平方米50元,其他区域种花草,建设费用为每平方米100元,设总建设费用为w元,求w与x之间的函数关系式;当x取何值时,w有最小值,最小值为多少?第2题图3. (2018合肥瑶海区三模)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图所示,单位:m),现在其中修建一条观花道(如图阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为y m2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13 m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.第3题图4. (2017潍坊)如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线、虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元.裁掉的正方形边长多大时,总费用最低,最低为多少?第4题图5.如图,为美化社区环境,满足市民休闲娱乐需要,某社区计划在一块长为60 m,宽为40 m 的矩形空地上修建四个面积相等的休闲区,并将余下的空地修建成横向宽x m,纵向宽为2x m的鹅卵石健身道.第5题图(1)用含x(m)的代数式表示休闲区的面积S(m2),并注明x的取值范围;(2)若休闲区的面积与鹅卵石健身道的面积相等,求此时x的值;(3)已知承建公司修建休闲区、鹅卵石健身道的前期投入及造价w1(万元)、w2(万元)与修建面积a(m2)之间的关系如下表所示,并要求满足1≤x≤3,要使修建休闲区和鹅卵石健身道的总价w最低,x应取多少米,最低造价多少万元?a(m2) 0 10 100 …w1(万元) 0.5 0.6 1.5 …w2(万元) 0.5 0.58 1.3 …参考答案类型一最大利润问题1.解:(1)w=(x-80)·y=(x-80)(-2x+320)=-2x2+480x-25600,w与x的函数关系式为:w=-2x2+480x-25600;(2)w=-2x2+480x-25600=-2(x-120)2+3200,∵-2<0,80≤x≤160, ∴当 x=120 时,w 有最大值,w 最大值为 3200. 答:销售单价定为 120 元时,每天销售利润最大,最大销售利润 3200 元. 2. 解:(1)由题意得 y<200 时,即-x+1300<200, 解得:x>1100, 即该旅游线路报价的取值范围为 1100 元/人~1200 元/人之间; (2)设经营这条旅游线路每月所需要的成本为 z 元, ∴z=500(-x+1300)=-500x+650000, ∵-500<0, ∴当 x=1200 时,z 最低=-500×1200+650000=50000; 答:经营这条旅游线路每月所需的最低成本为 50000 元. (3)设经营这条旅游线路的总利润为 w, 则 w=(x-500)(-x+1300)=-x2+1800x-650000=-(x-900)2+160000, ∵-1<0,800≤x≤1200, ∴当 x=900 时,w 最大=160000. 答:当这条旅游线路的旅游报价为 900 元时,可获得最大利润,最大利润为 160000 元. 3. 解:(1)若商场经营该商品不降价,则一天可获利润 100×(100-80)=2000(元); (2)①依题意得: (100-80-x)(100+10x)=2160, 即 x2-10x+16=0, 解得:x1=2,x2=8, 经检验:x1=2,x2=8 均符合题意, 答:商场经营该商品一天要获利润 2160 元,则每件商品应降价 2 元或 8 元; ②依题意得: y=(100-80-x)(100+10x)=-10x2+100x+2000=-10(x-5)2+2250, ∵-10<0, ∴当 x=5 时,商场所获利润最大,最大利润为 2250 元. k=- 1   60k+b=15 20, 4. 解:(1)设 y=kx+b,则根据题图可知 ,解得 160k+b=10  b=18  ∴y 与 x 的函数关系为 y=- 1 x+18(60≤x≤160); 201 1 (2)设公司的利润为 w 万元,则 w=(x-40)(- x+18)-1000=- (x-200)2+280, 20 20 1 又∵- <0, 20 ∴当 x<200 时,w 随 x 增大而增大,则 60≤x≤160, ∴当 x=160 时,w 最大,最大值为 200, ∴2017 年该公司的最大利润为 200 万元; (3)根据题意可得: 1 (x-40)(- x+18)+200=980, 20 解得 x1=100,x2=300(舍), ∴当 x=100 时,能使两年共盈利达 980 万元. 5. 解:(1)设二次函数的解析式为 y=ax2+bx+c,c=1   根据题意,得 a+b+c=1.5 ,  4a+2b+c=1.8 a=-   10 解得: 3 , b= 5  c=1 1 3 故所求函数的解析式是:y=- x2+ x+1; 10 5 (2)根据题意,得 s=10y(3-2)-x=-x2+5x+10; (3)s=-x2+5x+10 5 65 =-(x- )2+ . 2 4 由于 1≤x≤3,所以当 1≤x≤2.5 时,s 随 x 的增大而增大. ∴当广告费在 10~25 万元之间,公司获得的年利润随广告费的增大而增大,公司可获得的最大 65 年利润是 万元. 4 6. 解:(1)设一次函数的解析式为 y=kx+b,将(30,350)和(40,300) 分别代入 y=kx+b  30k+b=350 k=-5 得: ,解得 ,   40k+b=300 b=5001∴y 与 x 的函数关系式为 y=-5x+500; (2)①据题意得:(x-30)(-5x+500)=5000 即 x2-130x+4000=0, 解得:x1=50,x2=80, 又∵30×(1+100%)=60,80>60 不合题意,舍去, 答:当销售单价 x=50 时,该花店销售鲜花礼盒每天获得的利润为 5000 元. ②据题意得,W=(x-30)(-5x+500),即 W=-5(x-65)2+6125 ∵-5<0,30≤x≤60, 在对称轴直线 x=65 的左边,y 随 x 的增大而增大, 所以,当销售单价 x=60 时,花店销售该鲜花礼盒每天获得的利润 W(元)最大,最大利润 W= -5(60-65)2+6125=6000 元. 7. 解:(1)通过图表可知 m 与 x 之间的关系式为一次函数,设一次函数解析式为 m=kx+b,  k+b=94 k=-2 把(1,94)和(3,90)代入,得 ,解得 , 3k+b=90 b=96  ∴m=-2x+96; (2)设日销售利润为 W 元, 1 1 当 1≤x≤20 时,W=(-2x+96)( x+25-20)=- (x-14)2+578, 4 2 当 x=14 时,W 最大=578, 1 当 21≤x≤40 时,W=(-2x+96)(- x+40-20)=(x-44)2-16, 2∵当 x<44 时,W 随 x 增大而减小, ∴x=21 时,W 最大=(21-44)2-16=513, ∴未来 40 天中,第 14 天日销售利润最大,最大利润 578 元. 类型二 最优方案问题 1. 解:(1)设 A 种商品每件的进价为 x 元,B 种商品每件的进价为 y 元, 30x+40y=3800 根据题意得: , 40x+30y=3200   x=20 解得 , y=80 答:A 种商品每件的进价为 20 元,B 种商品每件的进价为 80 元; (2)设购进 B 种商品 m 件,获得的利润为 w 元,则购进 A 种商品(1000-m)件, 根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+10000, ∵A 种商品的数量不少于 B 种商品数量的 4 倍, ∴1000-m≥4m, 解得:m≤200, ∵在 w=10m+10000 中,10>0, ∴w 的值随 m 的增大而增大, ∴当 m=200 时,w 取最大值,最大值为 10×200+10000=12000, ∴当购进 A 种商品 800 件、B 种商品 200 件时,销售利润最大,最大利润为 12000 元. 2. 解:(1)8000; 1 【解法提示】w 乙=(106-a)x- x2, 10 当 a=16 且 x=100 时,w 乙=90×100-1000=8000(元); 1 1 1 (2)w 甲=(y-20)x=(- x+100-20)x=- x2+80x=- (x-400)2+16000, 10 10 10 1 ∵- <0,∴当 x=400 时,w 甲最大,最大值是 16000. 10 3. 解:(1)由题意得: y1=(120-a)x(1≤x≤125,x 为正整数), y2=(180-80)x-0.5x2=100x-0.5x2(1≤x≤120,x 为正整数); (2)①∵40<a<100, ∴120-a>0, 即 y1 随 x 的增大而增大, ∴当 x=125 时,y1 最大值=(120-a)×125=15000-125a(万元), 即方案一的最大年利润为(15000-125a)万元; ②y2=-0.5(x-100)2+5000, ∵-0.5<0, ∴当 x=100 时,y2 最大值=5000(万元), 即方案二的最大年利润为 5000 万元; (3)由 15000-125a>5000, 解得 a<80, ∴当 40<a<80 时,选择方案一;由 15000-125a=5000,解得 a=80, ∴当 a=80 时,选择方案一或方案二均可; 由 15000-125a<5000,得 a>80, ∴当 80<a<100 时,选择方案二. 4. 解:(1)设参加社会实践的老师有 m 人,学生有 n 人,则学生家长代表有 2m 人, 根据题意得:  95(3m+n)=6175 m=5  ,解得 , 60(m+2m)+60×0.75n=3150 n=50  则 2m=10, 答:参加社会实践的老师、家长代表与学生各有 5、10 与 50 人; (2)由(1)知所有参与人员总共有 65 人,其中学生有 50 人, ①当 50≤x<65 时,最经济的购票方案为: 学生都买学生票共 50 张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票. ∴火车票的总费用(单程)y 与 x 之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x), 即 y=-35x+5425(50≤x<65); ②当 0<x<50 时, 最经济的购票方案为: 一部分学生买学生票共 x 张, 其余的学生与家长代表、 老师一起购买一等座火车票共(65-x)张. ∴火车票的总费用(单程)y 与 x 之间的函数关系式为:y=60×0.75x+95(65-x), 即 y=-50x+6175(0<x<50), ∴购买单程火车票的总费用 y 与 x 之间的函数关系式为:-50x+6175(0<x<50)  y= ;  -35x+5425(50≤x<65)(3)∵x=30<50, ∴y=-50x+6175=-50×30+6175=4675, 答:当 x=30 时,购买单程火车票的总费用为 4675 元. 类型三 抛物线型问题 1. 解:(1)当 y=15 时, 15=-5x2+20x, 解得 x1=1,x2=3, 答:在飞行过程中,当小球的飞行高度为 15 m 时,飞行时间是 1 s 或 3 s; (2)当 y=0 时, 0=-5x2+20x, 解得 x1=0,x2=4, ∵4-0=4, ∴在飞行过程中,小球从飞出到落地所用时间是 4 s; (3)y=-5x2+20x=-5(x-2)2+20, ∵-5<0 ∴当 x=2 时,y 取得最大值,此时,y=20, 答:在飞行过程中,小球飞行高度在第 2 s 时最大,最大高度是 20 m. 2. 解:(1)设抛物线的表达式为:y=ax2+c, 由题意可得图象经过(4,0),(0,4),c=4  则 ,  16a+c=01 解得:a=- , 4 1 故抛物线的表达式为:y=- x2+4; 4 (2)由题意可得:y=3 时, 1 3=- x2+4, 4 解得:x=± 2, 故 EF=4, 答:水面宽度 EF 的长为 4 m. 3. 解:(1)由题意可得,抛物线经过(2,3),(10,0),100a+10b=0  故 , 4a+2b=3 a=-16 解得: , 15 b =  83 15 故抛物线的函数关系式为:y=- x2+ x; 16 8 3 15 (2)y=- x2+ x 16 8 3 75 =- (x-5)2+ , 16 16 3 ∵- <0, 16 75 ∴当 x=5 时,y 最大= , 16 75 故蔬菜大棚离地面的最大高度是 米; 16 (3)由题意可得:当 y=1.5 时, 3 15 1.5=- x2+ x, 16 8 解得:x1=5+ 17,x2=5- 17, 故 DE=x1-x2=5+ 17-(5- 17)=2 17. 答:门高度不低于 1.5 米时,横梁 DE 最宽为 2 17米. 20 4. 解:(1)根据题意,求出手点、最高点和篮圈的坐标分别为:(0, ),(4,4),(7,3), 9 设二次函数解析式为 y=a(x-h)2+k,由题知 h=4,k=4,即 y=a(x-4)2+4, 20 20 将点(0, )代入上式可得 16a+4= , 9 931 解得 a=- , 9 1 ∴抛物线解析式为 y=- (x-4)2+4(0≤x≤7); 9 (2)将(7,3)点坐标代入抛物线解析式得: 1 - ×(7-4)2+4=3, 9 ∴(7,3)点在抛物线上, ∴此球一定能投中; (3)能拦截成功, 1 理由:将 x=1 代入 y=- (x-4)2+4 得 y=3, 9 ∵3<3.1, ∴他能拦截成功. 1 5 7 5. 解:(1)根据题意,将点 B( , ),C(2, )代入 y=-x2+bx+c, 2 2 4-(2) +2b+c=2 得 , 7 - 2 + 2 b + c =  42 2115b=2   解得 7 ,  c=4 7 ∴抛物线的函数关系式为 y=-x2+2x+ , 4 7 7 当 x=0 时,y= ,∴喷水装置 OA 的高度为 米; 4 4 7 11 (2)∵y=-x2+2x+ =-(x-1)2+ , 4 4 11 11 ∴当 x=1 时,y 取得最大值 ,故喷出的水流距水面的最大高度是 米; 4 4 7 (3)当 y=0 时,解方程-x2+2x+ =0, 4 解得 x1=1- 11 11 (舍去),x2=1+ , 2 2 11 )米,才能使喷出的水流不至于落在池外. 2 类型四 几何面积最大值问题 1. 解:(1)根据题意知,y= (2)根据题意,得: 2 100 (- x+ )x=384, 3 3 解得:x=18 或 x=32, ∵墙的长度为 24 m, 10000-200x 2 100 =- x+ (0<x≤24); 3 3 2×150答:水池的半径至少要(1+∴x=32,不合题意,舍去, ∴x=18; (3)设菜园的面积为 S m2, 2 100 则 S=(- x+ )x 3 3 2 100 =- x2+ x 3 3 2 1250 =- (x-25)2+ , 3 3 2 ∵- <0, 3 ∴当 x<25 时,S 随 x 的增大而增大, ∵x≤24, 2 1250 ∴当 x=24 时,S 取得最大值,最大值为- ×(24-25)2+ =416(m2), 3 3 答:当 x=24 时,菜园的最大面积为 416 m2. 2. 解:(1)∵以 AB、BC、CD、DA 为斜边向外作等腰直角三角形, ∴四边形 MNGH 为矩形, ∵AB=CD, ∴△AHB≌△DNC, ∴AH=DN, 又∵MA=MD,∴MH=MN, ∴矩形 MNGH 为正方形, ∵AB=x,∴BH= ∵BC=y,∴BG= ∴ 2 x, 2 2 y, 22 2 x+ y=200÷ 4=50, 2 2 200 2 ) - xy]×100 =- 50xy + 250000 =- 50x( - x + 50 2) + 250000 = 50x2 - 4整理得 y=-x+50 2; (2)∵w = 50xy + [(2500 2 x+250000, 2500 2 ∵50>0, ∴当 x= =25 2时, w 有最小值, w 最小=50×(25 2)2-2500 2×25 2+250000 2×50 =187500. 答:当 x=25 2时,w 有最小值,最小值为 187500 元. 3. 解:(1)由题意可得:y=(8-x)(6-x)=x2-14x+48(0<x<6); (2)由题意可得:y=48-13=35, 则 x2-14x+48=35, 即(x-1)(x-13)=0, 解得:x1=1,x2=13, 经检验得:x=13 不合题意,舍去, 答:x 的值为 1; (3)y=x2-14x+48=(x-7)2-1, 当 0.5≤x≤1 时,y 随 x 的增大而减小, 165 故当 x=0.5 时,y 最大,最大值为(0.5-7)2-1= (m2). 4 165 答:改造后剩余油菜花地所占面积的最大值为 m2. 4 4. 解:(1)裁剪示意图如解图:第 4 题解图 设裁掉的正方形的边长为 x dm. 根据题意可得:(10-2x)(6-2x)=12, 即 x2-8x+12=0, 解得 x1=2,x2=6(不合题意,舍去), ∴裁掉的正方形的边长为 2 dm; (2)由题意可得 10-2x≤5(6-2x),解得 0<x≤2.5, 设总费用为 y 元, 根据题意得 y=2[x(10-2x)+x(6-2x)]×0.5+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24, ∵对称轴为直线 x=6,函数图象开口向上, ∴当 0<x≤2.5 时,y 随 x 的增大而减小, ∴当 x=2.5 时,y 有最小值,最小值为 4×(2.5-6)2-24=25(元). 答:当正方形的边长为 2.5 dm 时,总费用最低,最低为 25 元. 5. 解:(1)S=40×60-2x×40×3-60×x×3+2x· x· 9=18x2-420x+2400; x<10    60-2x×3>0 ∵ ,得 40, 40-x×3>0  x< 3  ∴0<x<10, ∴S=18x2-420x+2400(0<x<10); 40×60 (2)由题意得:18x2-420x+2400= ,化简得 3x2-70x+200=0, 2 10 10 解得 x1= ,x2=20(不合题意,舍去),∴此时 x 为 m; 3 3 (3)由表可知:修建休闲区前期投入 0.5 万元,每平方米造价 0.01 万元;修建鹅卵石健身道前期 投入 0.5 万元,每平方米造价 0.008 万元,由上述信息可得:w=0.01×(18x2-420x+2400)+ 0.008×(-18x2+420x)+1 , 整理, 得 w=0.036x2-0.84x+25, 配方后, 得 w= 35 ∵a>0,∴当 x< 时,w 随 x 的增大而减小, 3 ∵1≤x≤3,∴当 x=3 时,w 最小=0.036×9-0.84×3+25=22.804(万元), 答 : 当 x 的 值 取 3 米 时 , 最 低 造 价 为 元. 22.804 万 9 35 201 (x- )2+ , 250 3 10。

人教版九年级物理中考复习热学强化训练(含答案)

人教版九年级物理中考复习热学强化训练(含答案)

人教版九年级物理中考复习热学强化训练一、填空题(每空2分,共20分;将答案直接写在横线上,不必写出解题过程)1.电冰箱是常用的家用电器,小明同学想了解家里冰箱的温度,他用温度计先测量家里的室温,温度计示数如图甲所示,再用温度计测量冰箱冷冻室的温度,温度计示数如图乙所示,家里的室温比冰箱冷冻室温度高℃。

2.大部分疫苗需要在低温下储存运输,医生在运送疫苗的医疗箱内放入很多冰块,这是利用冰块的原理达到降温的目的。

3.冬天早晨我们起床时,常可以看到玻璃窗上有美丽的“冰花”,“冰花”是由空气中的水蒸气遇冷形成的。

4.如图,在一个厚壁玻璃筒里放一块有少量乙醚的棉花,用力把活塞迅速下压,棉花就会立即燃烧,这是通过的方式使筒内气体内能增加。

5.云南省罗富县有一长达27 km的连续下坡山区公路,有经验的司机在下坡前往往先在汽车的各个轮胎上浇水,防止在下坡时因连续刹车使轮胎和刹车片过热,从而造成交通事故。

用水作为冷却剂是利用了水的大的特点。

6.2020年1月18日,“第十届江苏·台湾灯会”在常州恐龙城开幕。

如图所示为展会中的“走马灯”,点燃底部蜡烛,热空气上升驱动扇叶转动,观众惊奇地看到纸片小人的影子动了起来。

热空气上升驱动扇叶转动的能量转化方式为。

7.在“探究不同物质吸热升温现象”的实验中,量取沙子和水时,要保证它们的质量相等。

用酒精灯分别加热沙子和水,如果采用升高相同的温度,比较加热时间的方式,得到的图像应是(选填“甲”或“乙”)。

8.有一台汽油机在一个工作循环中消耗了6 g汽油(汽油的热值为4.6×107 J/kg),如果这台汽油机的效率为40%,则一个循环中输出的有用机械能为J。

9.某辆行驶的小轿车,其正常工作时的能量转化情况如图所示。

若输入的化学能为2000 J,输出的内能和声能共计1700 J,输出的有用能量是动能,则小轿车正常工作时的效率为。

10.为了减少大气污染,可对秸秆进行回收加工,然后制成秸秆煤。

2021年中考一轮复习数学《函数填空压轴题》专项突破训练(附答案)

2021年中考一轮复习数学《函数填空压轴题》专项突破训练(附答案)

2021年九年级数学中考复习《函数填空压轴题》专项突破训练(附答案)1.如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.2.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x 轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.3.如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M,若AB=6,则OM的长为.4.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.5.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.6.在平面直角坐标系xOy中,P为反比例函数y=(x>0)的图象上的动点,则线段OP 长度的最小值是.7.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.8.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m 于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.10.已知:在平面直角坐标系中,直线L经过点A(0,﹣1),且直线L与抛物线y=x2﹣x 只有一个公共点,试求出这个公共点的坐标.11.如图,抛物线与y轴交于点A,与x轴交于B、C,点A关于抛物线对称轴的对称点为点D,点E在y轴上,点F在以点C为圆心,半径为2的圆上,则DE+EF 的最小值是.12.如图,已知抛物线y=x2+bx+2与x轴交于A、B两点,顶点为M,抛物线的对称轴在y 轴的右则,若tan∠BAM=,则b的值是.13.如图,已知函数y=x+3的图象与函数y=的图象交于A、B两点,连接BO并延长交函数y=的图象于点C,连接AC,若△ABC的面积为12,则k的值为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有个.15.如图,反比例函数y=(k≠0,x<0)经过△ABO边AB的中点D,与边AO交于点C,且AC:CO=1:2,连接DO,若△AOD的面积为,则k的值为.16.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.17.如图,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=﹣x2+bx+c 的图象经过A、B两点,与x轴交于另一点C.若点M在抛物线的对称轴上,且∠AMB=∠ACB,则所有满足条件的点M的坐标为.18.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c ≤n的解集是.19.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.20.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点,若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,若存在以O,M,N 为顶点的三角形与△ABC相似.请求出点N的坐标.21.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于A(a,0),B(b,0)两点,若点P为该抛物线的顶点,则使△PAB面积最小时抛物线的解析式为.22.如图,以点O为圆心,半径为2的圆与的图象交于点A,B,若∠AOB=30°,则k 的值为.23.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x 轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k 的值为.24.直线与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO'B',则点B′的坐标是.参考答案1.如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.解:过点C作CD⊥x轴,过点B作BE⊥y轴,与DC的延长线相交于点E,由折叠得:OA=AC=1,OB=BC=2,∵∠E=∠CDA=∠ACB=90°,∴∠ECB+∠EBC=90°,∠ECB+∠ACD=90°,∴∠EBC=∠ACD,∴△ACD∽△CBE,∴,设CD=m,则BE=2m,CE=2﹣m,AD=2m﹣1在Rt△ACD中,由勾股定理得:AD2+CD2=AC2,即:m2+(2m﹣1)2=12,解得:m1=,m2=0(舍去);∴CD=,BE=OD=,∴C(,)代入y=得,k==,故答案为:2.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x 轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).3.如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M,若AB=6,则OM的长为9 .解:抛物线y=x2+bx+c与x轴只有一个交点,则b2﹣4c=0,设OM=h,A、B点的横坐标分别为m、n,则:A(m,h)、B(n,h),由题意得:x2+bx+(c﹣h)=0,则:m+n=﹣b,mn=c﹣h,AB=6=n﹣m===,解得:h=9,故答案为9;附注:其它解法:将抛物线平移,顶点至原点,此时y=x2,则点B点横坐标为3,故y=9.4.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为(8,).解:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO==13,∴BC=13,∵AB∥CE,AB=BD,∴∠CED=∠BAD=∠ADB=∠CDE,∴CD=CE,∴AB+CE=BD+CD=13,即OC+CE=13,∴OE=13,∴E(13,0),由A(5,12),E(13,0),可得AE的解析式为y=﹣x+,∵反比例函数y=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=,解方程组,可得,,∴点D的坐标为(8,).5.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.6.在平面直角坐标系xOy中,P为反比例函数y=(x>0)的图象上的动点,则线段OP 长度的最小值是 2 .解:根据题意可得:当P为直线y=x与反比例函数y=(x>0)的交点时则线段OP 长度的最小,由得:或(舍去),则P点的坐标为(,),则线段OP==2,故答案为:2.7.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12 .解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|k|=12,由函数图象在第二象限,所以k=﹣12.8.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m 于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为2.解:作CE⊥x轴于E,DF⊥y轴于F,如图,对于y=﹣x+m,令x=0,则y=m;令y=0,﹣x+m=0,解得x=m,∴A(0,m),B(m,0),∴△OAB等腰直角三角形,∴△ADF和△CEB都是等腰直角三角形,设M的坐标为(a,b),则ab=,CE=b,DF=a,∴AD=DF=a,BC=CE=b,∴AD•BC=a•b=2ab=2.故答案为2.10.已知:在平面直角坐标系中,直线L经过点A(0,﹣1),且直线L与抛物线y=x2﹣x 只有一个公共点,试求出这个公共点的坐标(1,0),(﹣1,2)或(0,0).解:(1)、如果直线L是一次函数,设直线L的解析式是y=ax﹣1,根据直线L与抛物线相交可得x2﹣x=ax﹣1,x2﹣(a+1)x+1=0,因为只有一个交点,那么(a+1)2﹣4=0,a=﹣3或a=1.当a=1时,直线L的解析式是y=x﹣1,那么与抛物线的交点就应该是方程组的解,即,即交点坐标是(1,0).当a=﹣3是,直线L的解析式是y=﹣3x﹣1,那么与抛物线的交点就应该是(﹣1,2);(2)、当直线L的解析式是x=0时,他们的交点就应该是(0,0),因此公共点坐标为(1,0),(﹣1,2)或(0,0).11.如图,抛物线与y轴交于点A,与x轴交于B、C,点A关于抛物线对称轴的对称点为点D,点E在y轴上,点F在以点C为圆心,半径为2的圆上,则DE+EF 的最小值是23 .解:对于,令x=0,则y=15,令=0,解得x =4或8,故点A、B、C的坐标分别为(0,15)、(4,0)、(8,0),函数的对称轴为x=6,则点D(12,15),过点D作y轴的对称点H(﹣12,15),连接CH交y轴于点E,交圆C于点F,则点E、F 为所求点,理由:∵点H、D关于y轴对称,则EH=ED,则DE+EF=HE+EF=HF为最小,则DE+EF最小=HF=HC﹣2=﹣2=23,故答案为23.12.如图,已知抛物线y=x2+bx+2与x轴交于A、B两点,顶点为M,抛物线的对称轴在y 轴的右则,若tan∠BAM=,则b的值是﹣3 .解:过点M作MN⊥x轴于点N,则tan∠BAM==,函数的对称轴为x=﹣b,当x=﹣b时,y=x2+bx+2=2﹣,则MN=﹣2,令y=x2+bx+2,则xA+xB=﹣b,xA+xB=2,应该改为:令y=x2+bx+2=0,则xA+xB=﹣b,xA.xB=2.令y=x2+bx+2,则x A+x B=﹣b,x A•x B=2,则AB=|x A﹣x B|===2AN,则AN=,∵AN=2MN,即AN==2(﹣2),解得b=±3,∵b<0,故b=﹣3,故答案为﹣3.13.如图,已知函数y=x+3的图象与函数y=的图象交于A、B两点,连接BO并延长交函数y=的图象于点C,连接AC,若△ABC的面积为12,则k的值为.解:如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=6.设直线y=x+3与y轴交于点D,则D(0,3),设A(a,a+3),B(b,b+3),则C(﹣b,﹣b﹣3),∴S△OAB=×3×(a﹣b)=6,∴a﹣b=4 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC﹣S△OCN=S梯形AMNC=6,∴(﹣b﹣3+a+3)(﹣b﹣a)=6,将①代入,得∴﹣a﹣b=3②,①+②,得﹣2b=7,b=﹣,①﹣②,得2a=1,a=,∴A(,),∴k=×=.故答案为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有 4 个.解:抛物线开口向下,因此a<0,对称轴为x=1>0,因此a、b异号,所以b>0,抛物线与y轴交点在正半轴,因此c>0,所以abc<0,于是①正确;抛物线的对称轴为直线x=﹣=1,因此有2a+b=0,故④正确;当x=﹣1时,y=a﹣b+c<0,而2a+b=0,所以3a+c<0,故②不正确;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,即b2>4ac,故⑤正确;抛物线的对称轴为x=1,与x轴的一个交点在﹣1与0之间,因此另一个交点在2与3之间,于是当x=2时,y=4a+2b+c>0,因此③正确;综上所述,正确的结论有:①③④⑤,故答案为:4.15.如图,反比例函数y=(k≠0,x<0)经过△ABO边AB的中点D,与边AO交于点C,且AC:CO=1:2,连接DO,若△AOD的面积为,则k的值为﹣2 .解:如图所示,过C作CE⊥BO于E,过A作AF⊥BO于F,∴CE∥AF,∴△OCE∽△OAF,设C(x,),∵AC:CO=1:2,∴OC:OA=2:3,∴A(x,),∵D是AB的中点,∴点D的纵坐标为=,又∵点D在反比例函数y=图象上,∴点D的横坐标为=,∴点B的横坐标为×2﹣x=x,∵△AOD的面积为,OD是△AOB的中线,∴△BOD的面积为,即(﹣x)×=,解得k=﹣2,故答案为:﹣2.16.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为﹣.解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=﹣.故答案为﹣.17.如图,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=﹣x2+bx+c 的图象经过A、B两点,与x轴交于另一点C.若点M在抛物线的对称轴上,且∠AMB=∠ACB,则所有满足条件的点M的坐标为()或().解:一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,则点A、B的坐标分别为(4,0)、(0,﹣2),当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,以O2为圆心,以O2A半径画⊙O2,此时A、B两点均在⊙O2上,M点为⊙O2与对称轴的交点,如图2,∵O1与O2关于AB的对称,∴O2A=O2B=O1A=O1B,∴⊙O2与⊙O1是等圆,∵AB为⊙O2与⊙O1共同的弦,圆周角∠ACB对应的优弧是⊙O1中的优弧AB,圆周角∠AMB 对应的优弧是⊙O2中的优弧AB,又∵在等圆⊙O2与⊙O1中,∠ACB与∠AMB所对应的优弧相等,∴∠AMB=∠ACB,∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,﹣).综上所述,点M的坐标为()或().18.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c ≤n的解集是﹣5≤x≤2 .解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.19.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.20.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点,若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,若存在以O,M,N 为顶点的三角形与△ABC相似.请求出点N的坐标(,0)或(,0)或(﹣1,0)或(5,0).解:设抛物线的解析式为:y=a(x﹣1)2+1,∵抛物线经过原点,∴a(0﹣1)2+1=0,解得,a=﹣1,则抛物线的解析式为:y=﹣(x﹣1)2+1=﹣x2+2x,,解得,,,∴点B的坐标为(2,0),点C的坐标为(﹣1,﹣3),∴AB==,AC==2,BC==3,∴AC2=AB2+BC2,∴∠ABC=90°,设点N的坐标为(n,0),则点M的坐标为(n,﹣n2+2n),当△ONM∽△ABC时,=,即=,解得,n1=﹣1,n2=5,当△ONM∽△CBA时,=,即=,解得,n1=,n2=,综上所述,点N的坐标为(,0)或(,0)或(﹣1,0)或(5,0),故答案为:(,0)或(,0)或(﹣1,0)或(5,0).21.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于A(a,0),B(b,0)两点,若点P为该抛物线的顶点,则使△PAB面积最小时抛物线的解析式为y=x2﹣4x+3 .解:由题意知4+2m+n=﹣1,即n=﹣2m﹣5,∵A(a,0)、B(b,0)两点在抛物线y=x2+mx+n上,∴a+b=﹣m,ab=n,又∵|AB|=|a﹣b|=x2+mx+n经过(2,﹣1),代入得,n=﹣2m﹣5,∴|AB|=,P点纵坐标为﹣m2﹣2m﹣5,S△PAB=AB•|y P|=•|﹣m2﹣2m﹣5|==,所以,当m=﹣4时,S△PAB最小,此时,该抛物线解析式为y=x2﹣4x+3.故答案是:y=x2﹣4x+3.22.如图,以点O为圆心,半径为2的圆与的图象交于点A,B,若∠AOB=30°,则k 的值为.解:由圆、反比例函数图象的对称性可知,图形关于一三象限角平分线对称,即关于直线y=x对称,可得,△AOM≌△BON,∴∠AOM=∠BON=(90°﹣30°)=30°,在Rt△BON中,∵OB=2,∴BN=2×sin30°=1,ON=2×cos30°=,∴B(,1)∴k=,故答案为:.23.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x 轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k 的值为 4 .解:∵正方形ABCD的面积为20,∴AB=BC=CD=DA==2,∴CE=DE=,∵∠COE=∠ADE=90°,∠CEO=∠AED,∴△COE∽△ADE,∴==,即,==,∴=,∵CE=,∴OE=1,OC=2,过点D作DF⊥x轴,垂足为F,∵CE=DE,∴OF=OC=2,DF=2OE=2,∴D(2,2)代入反比例函数关系式得,k=2×2=4,故答案为:4.24.直线与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO'B',则点B′的坐标是(8,6)或(4,﹣6).解:把x=0或y=0代入得,y=2,x=6,故点A(6,0),B(0,2),即OA=6,OB=2;①把△AOB绕点A顺时针旋转90°后得到△AO1'B1',∴O1′B1′=OB=2=AM,B1′M=O1′A=OA=6,OM=6+2=8,∴B1′(8,6);②把△AOB绕点A逆时针旋转90°后得到△AO2'B2',∴O2′B2′=OB=2=AN,B2′N=O2′A=OA=6,ON=6﹣2=4,∴B2′(4,﹣6);故答案为:(8,6)或(4,﹣6).。

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。

中考数学专题训练5.二次函数压轴题(含解析)

中考数学专题训练5.二次函数压轴题(含解析)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】二次函数压轴题1. 如图①,抛物线y =ax 2+(a +2)x +2(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4).过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求a 的值;(2)若PN ∶MN =1∶3,求m 的值;(3)如图②,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+32BP 2的最小值.图① 图②第1题图解:(1)∵A (4,0)在抛物线上,∴0=16a +4(a +2)+2,解得a =-12;(2)由(1)可知抛物线解析式为y =-12x 2+32x +2,令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4-m ,∵PM ⊥x 轴,∴△OAB ∽△P AN ,∴OB OA =PN P A ,即24=PN 4-m, ∴PN =12(4-m ),∵M 在抛物线上,∴PM =-12m 2+32m +2,∵PN ∶MN =1∶3,∴PN ∶PM =1∶4,∴-12m 2+32m +2=4×12(4-m ),解得m =3或m =4(舍去),即m 的值为3;(3)如解图,在y 轴上取一点Q ,使OQ OP 2=32,第1题解图由(2)可知P 1(3,0),且OB =2,∴OP 2OB =32,且∠P 2OB =∠QOP 2,∴△P 2OB ∽△QOP 2,∴QP 2BP 2=OP 2OB =32, ∴当Q (0,92)时,QP 2=32BP 2,∴AP 2+32BP 2=AP 2+QP 2≥AQ ,∴当A 、P 2、Q 三点在一条直线上时,AP 2+QP 2有最小值,又∵A (4,0),Q (0,92),∴AQ =42+(92)2=1452, 即AP 2+32BP 2的最小值为1452.2. 如图,已知二次函数y =ax 2+bx +4的图象与x 轴交于A (-2,0),B (4,0)两点,与y 轴交于点C ,抛物线的顶点为D ,点P 是x 轴上方抛物线上的一个动点,过P 作PN ⊥x 轴于N ,交直线BC 于M .(1)求二次函数表达式及顶点D 的坐标;(2)当PM =MN 时,求点P 的坐标;(3)设抛物线对称轴与x 轴交于点H ,连接AP 交对称轴于E ,连接BP 并延长交对称轴于F ,试证明HE +HF 的值为定值,并求出这个定值.第2题图解:(1)∵A (-2,0),B (4,0)在二次函数的图象上,将A ,B 点代入二次函数表达式中,得⎩⎪⎨⎪⎧4a +(-2)b +4=016a +4b +4=0, 解得⎩⎨⎧a =-12b =1, ∴二次函数的表达式为y =-12x 2+x +4,将其化为顶点式为y =-12(x -1)2+92,∴顶点D 的坐标为(1,92);(2)由抛物线表达式得点C 的坐标为(0,4),设直线BC 的解析式为y =kx +c (k ≠0),将点B (4,0),点C (0,4)代入得⎩⎪⎨⎪⎧4k +c =0c =4,解得⎩⎪⎨⎪⎧k=-1c =4,∴直线BC 的解析式为y =-x +4,(5分)∵点P 在x 轴上方的抛物线上,∴设点P 的坐标为(t ,-12t 2+t +4)(-2<t <4),∵PN ⊥x 轴于N ,∴点N 的坐标为(t ,0),∵PN 交BC 于M ,∴点M 的坐标为(t ,-t +4),(7分)∵PM =MN ,点P 在点M 的上方,∴PN =2MN ,即-12t 2+t +4=2(-t +4),解得t 1=2,t 2=4(与B 重合舍去),∴当PM =MN 时,点P 的坐标为(2,4);(8分)第2题解图(3)如解图,过点P 作PG ⊥x 轴于点G ,设点P 的坐标为(t ,-12t 2+t +4),∵DH⊥x轴于点H,∴PG∥DH,∴△AHE∽△AGP,△BGP∽△BHF,∴EHPG=AHAG,PGFH=BGBH,∴EH=AH·PGAG,FH=BH·PGBG,(10分)当点G在BH上时,∵AH=BH=3,AG=t+2,BG=4-t,PG=-12t2+t+4,∴EH+FH=3(PGt+2+PG4-t)=3·(-12)(t+2)(t-4)·4-t+t+2(t+2)(4-t)=9,同理,当点G在AH上,由抛物线对称性可知,结果相同.综上可知,HE+HF的结果为定值,且这个定值为9.(14分)3. 如图,在平面直角坐标系中,直线y=12x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为9 ∶10?若存在,直接写出m 的值;若不存在,说明理由.第3题图解:(1)由12x +1=0,得x =-2,∴A (-2,0),由12x +1=3,得x =4,∴B (4,3).∵y =ax 2+bx -3经过A 、B 两点,∴⎩⎪⎨⎪⎧(-2)2·a -2b -3=042·a +4b -3=3,解得⎩⎪⎨⎪⎧a =12b =-12,如解图,设直线AB 与y 轴交于点E ,则E (0,1). ∵PC ∥y 轴,∴∠ACP =∠AEO .∴sin ∠ACP =sin ∠AEO =OA AE =222+12=255; (2)①由(1)知,抛物线的解析式为y =12x 2-12x -3,∴P (m ,12m 2-12m -3),C (m ,12m +1),∴PC =12m +1-(12m 2-12m -3)=-12m 2+m +4.在Rt △PCD 中,PD =PC ·sin ∠ACP =(-12m 2+m +4)×255=-55(m -1)2+955.∵-55<0,∴当m =1时,PD 有最大值955; ②存在,m =52或329.【解法提示】如解图,分别过点D 、B 作DF ⊥PC ,BG ⊥PC ,垂足分别为点F 、G .第3题解图由图中几何关系可知∠FDP =∠DCP =∠AEO ,∴cos ∠FDP =cos ∠AEO =OE AE =122+12=55, 在Rt △PDF 中,DF =cos ∠FDP ·PD =55PD =-15(m 2-2m -8). 又∵BG =4-m ,∴PBCPCDS S △△=DF BG =-15(m 2-2m -8)4-m =m +25. 当PBCPCD S S △△=m +25=910时,解得m =52; 当PBCPCD S S △△=m +25=109时,解得m =329. ∴m =52或329.4. 如图,在平面直角坐标系中,四边形OABC 是矩形,OA =3,AB =4,在OC 上取一点E ,使OA =OE ,抛物线y =ax 2+bx +c 过A ,E ,B 三点.(1)求B ,E 点的坐标及抛物线表达式;(2)若M 为抛物线对称轴上一动点,则当|MA -ME |最大时,求M 点的坐标;(3)若点D 为OA 中点,过D 作DN ⊥BC 于点N ,连接AC ,若点P 为线段OC 上一动点且不与C 重合,PF ⊥DN 于F ,PG ⊥AC 于G ,连接GF ,是否存在点P ,使△PGF 为等腰三角形?若存在,求出所有满足条件的P 点坐标;若不存在,请说明理由.第4题图解:(1)∵OA =3,AB =4, OA =OE ,∴A (0,3),B (-4,3), E (-3,0). 将A ,B ,E 三点坐标代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧c =316a -4b +c =39a -3b +c =0,解得⎩⎪⎨⎪⎧a =1b =4c =3, ∴抛物线的表达式为y =x 2+4x +3;(3分)(2)∵抛物线y =x 2+4x +3的对称轴为直线x =-2,点A 关于对称轴的对称点为点B ,∴当|MA -ME |最大时,M 在直线BE 与直线x =-2的交点处,即连接BE 并延长交直线x =-2于点M ,M 点即为所求,如解图①,(5分)第4题解图①设直线BE 的解析式为y =kx +b (k ≠0),∵直线过B (-4,3),E (-3,0),∴⎩⎪⎨⎪⎧-4k +b =3-3k +b =0, ∴⎩⎪⎨⎪⎧k =-3b =-9, ∴直线BE 的解析式为y =-3x -9.当x =-2时, y =-3,∴M (-2,-3);(7分)(3)设P (x ,0)(x <0),如解图②,过点P 分别作PF ⊥DN 于点F ,PG ⊥AC 于点G ,过点G 作GH ⊥OC 于点H ,交DN 于点Q ,连接GF ,第4题解图②∵OA =3,AB =4,∠AOC =90°,∴AC =5,∵D 为OA 的中点,DN ⊥BC ,∴PF =32,sin ∠1=PG PC =OA AC ,∴PG x +4=35,∴PG =3(x +4)5, ∵cos ∠1=CG PC =OC AC ,∴CG x +4=45, ∴CG =4(x +4)5. ∵△CGH ∽△CAO ,∴GH AO =CG CA =CH CO ,∴GH 3=CG 5=CH 4,∴GH =35CG =35×4(x +4)5=12(x +4)25, CH =45CG =45×4(x +4)5=16(x +4)25,(9分) ∴PH =QF =OC -CH -OP =4-16(x +4)25+x =9(x +4)25, GQ =GH -QH =12(x +4)25-32, ∴在Rt △GQF 中,GF 2=[12(x +4)25-32]2+81(4+x )2625=9(x +4)225-36(x +4)25+94.要使△PGF 为等腰三角形,可分三种情况讨论:(ⅰ)当GF =GP 时, GF 2=GP 2,∴9(x +4)225-36(x +4)25+94=9(x +4)225, ∴x =-3916,∴P 1(-3916,0);(11分)(ⅱ)当FG =FP 时,FG 2=FP 2,∴9(x +4)225-36(x+4)25+94=94,∴x 1=-4,x 2=0.∵点P 不与C 重合,∴x =-4(舍去),∴P 2(0,0);(12分)(ⅲ)当PG =PF 时,3(x +4)5=32,∴x =-32,∴P 3(-32,0).(13分)综上所述,存在P 1(-3916,0),P 2(0,0),P 3(-32,0)使△PFG 为等腰三角形.(14分)5. 已知:直线y =12x -3与x 轴、y 轴分别交于A 、B ,抛物线y =13x 2+bx+c 经过点A 、B ,且交x 轴于点C .(1)求抛物线的解析式;(2)点P 为抛物线上一点,且点P 在AB 的下方,设点P 的横坐标为m . ①试求当m 为何值时,△P AB 的面积最大;②当△P AB 的面积最大时,过点P 作x 轴的垂线PD ,垂足为点D ,问在直线PD 上是否存在点Q ,使△QBC 为直角三角形?若存在,直接写出符合条件的Q 点的坐标,若不存在,请说明理由.第5题图 备用图解:(1)∵直线y =12x -3与x 轴、y 轴分别交于A 、B ,则A (6,0),B (0,-3),又∵抛物线y =13x 2+bx +c 经过点A 、B ,则⎩⎨⎧0=13×62+6b +c -3=c,解得⎩⎨⎧b =-32c =-3,∴抛物线的解析式为y =13x 2-32x -3;(2)①∵点P 的横坐标为m ,∴P (m ,13m 2-32m -3),∵点P 在直线AB 下方,∴0<m <6,第5题解图①如解图①,过点P 作x 轴的垂线,交AB 于点E ,交x 轴于点D ,则E (m ,12m -3),∴PE =12m -3-(13m 2-32m -3)=-13m 2+2m ,∴S △P AB =S △BPE +S △PEA =12PE ·OA=12(-13m 2+2m )×6=-(m -3)2+9,∴当m =3时,△P AB 的面积最大;②在直线PD 上存在点Q ,使△QBC 为直角三角形;点Q 的坐标为(3,94)或(3,-32).【解法提示】直线PD 的解析式为:x =3,易得C (-32,0),D (3,0),当∠BCQ =90°时,如解图②,易证△COB ∽△QDC ,则CO OB =QD DC ,可得Q (3,94);第5题解图②当∠CBQ =90°时,如解图③,易知Q 在AB 上,将x =3代入直线y =12x -3,得y =-32,∴Q (3,-32);第5题解图③当∠BQC =90°时,如解图④,易证△CDQ ∽△QRB ,则CD QR =DQ BR ,即923-DQ=DQ 3,无解.第5题解图④综上所述,在直线PD 上存在点Q ,使△QBC 为直角三角形,点Q 的坐标为(3,94)或(3,-32).6. 如图,抛物线y=x2-4x-5与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求A,B,C三点的坐标及抛物线的对称轴;(2)如图①,点E(m,n)为抛物线上一点,且2<m<5,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,求四边形EHDF周长的最大值;(3)如图②,点P为抛物线对称轴上一点,是否存在点P,使以点P,B,C 为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图①图②第6题图解:(1)把y=0代入y=x2-4x-5,得x2-4x-5=0,解得x1=-1,x2=5,∵点B在点A的右侧,∴A,B两点的坐标分别为(-1,0),(5,0),把x=0代入y=x2-4x-5,得y=-5,∴点C的坐标为(0,-5),∵y =x 2-4x -5=(x -2)2-9,∴抛物线的对称轴为直线x =2;(4分)(2)由题意可知,四边形EHDF 是矩形,∵抛物线的对称轴为直线x =2,点E 坐标为(m ,m 2-4m -5),∴EH =-m 2+4m +5,EF =m -2,∴矩形EHDF 的周长为2(EH +EF )=2(-m 2+4m +5+m -2)=-2(m 2-5m-3)=-2(m -52)2+372,∵-2<0,2<m <5,∴当m =52时,矩形EHDF 的周长最大,最大值为372;(8分)第6题解图(3)存在点P ,使以点P ,B ,C 为顶点的三角形是直角三角形.如解图,设点P 的坐标为(2,k ),∵B 和C 两点的坐标分别为(5,0),(0,-5),∴BC =52+52=52,①当∠CBP =90°时,∵BC 2+BP 2=CP 2,∴(52)2+(5-2)2+(-k )2=22+(k +5)2,解得k =3,∴P 1(2,3);(10分)②当∠PCB =90°,∵BC 2+PC 2=BP 2,∴(52)2+22+(k +5)2=(5-2)2+(-k )2,解得k =-7,∴P 2(2,-7);(12分)③当∠CPB =90°时,∵PC 2+PB 2=BC 2,∴22+(k +5)2+(5-2)2+k 2=(52)2,解得k =1或k =-6,∴P 3(2,1),P 4(2,-6),综上所述,满足条件的点P 的坐标为(2,3),(2,-7),(2,1)或(2,-6).(14分)7. 如图,抛物线y =-14x 2+bx +c 经过A (2,0),B (-4,0)两点,直线y =2x -2交y 轴于点D ,过点B 作BC ⊥x 轴交直线CD 于点C .(1)求抛物线的解析式;(2)求点B 关于直线y =2x -2对称的点E 的坐标,判断点E 是否在抛物线上,并说明理由;(3)点P 是抛物线上一动点,过点P 作x 轴的垂线,交直线CE 于点F ,是否存在这样的点P ,使以点P 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.第7题图解:(1)∵抛物线y =-14x 2+bx +c 的图象经过点A (2,0),B (-4,0)两点,∴⎩⎪⎨⎪⎧-14×4+2b +c =0-14×16-4b +c =0, 解得⎩⎨⎧b =-12c =2, ∴抛物线的解析式为y =-14x 2-12x +2;(2)点E 在抛物线上,理由如下:如解图①,设直线CD :y =2x -2与x 轴交于点N ,过点E 作EM ⊥x 轴,垂足为点M,令y=2x-2=0,解得x=1,∴点N的坐标为(1,0),点D的坐标为(0,-2),∵BN2=25,BD2=20,DN2=5,BN2=BD2+DN2,∴BD⊥CD,∵点B和点E关于点D对称,∴BE=2BD,∴BE=45,∵当x=-4时,y=2x-2=-10,∴点C的坐标为(-4,-10),∵BN=5,BC=10,∴CN=55,又∵∠MBE=∠BCN,∠CBN=∠BME,∴△CBN∽△BME,∴BECN=MEBN,即4555=ME5,∴ME=4,根据勾股定理得BM=BE2-ME2=80-16=8,∴BM=8,∴OM=4,∴点E 的坐标为(4,-4), 当x =4时,y =-14x 2-12x +2=-14×16-12×4+2=-4, ∴点E 在抛物线上;第7题解图①(3)存在,点P 的坐标为(-1,94)或(-5+3292,3329-1518)或(-5-3292,-3329+1518). 【解法提示】如解图②,设直线CE 的解析式为y =kx +b ′,由(2)得点C (-4,-10),E (4,-4),∴⎩⎪⎨⎪⎧-4k +b ′=-104k +b ′=-4,解得⎩⎨⎧k =34b ′=-7,第7题解图②∴直线CE 的解析式为y =34x -7.∵PF ⊥x 轴,设点P 的坐标为(a ,-14a 2-12a +2),则点F 的坐标为(a ,34a -7),∴PF =|-14a 2-12a +2-(34a -7)|=|-14a 2-54a +9|, 要使以点P 、B 、C 、F 为顶点的四边形为平行四边形, ∵PF ∥BC , ∴PF =BC =10.当-14a 2-54a +9=10时, 解得a 1=-4(舍去),a 2=-1, ∴点P 的坐标为(-1,94), 当-14a 2-54a +9=-10时, 解得a 1=-5+3292, a 2=-5-3292, ∴点P 的坐标为(-5+3292,3329-1518)或(-5-3292, -3329+1518), 综上所述,存在点P ,使以点P 、B 、C 、F 为顶点的四边形为平行四边形,点P 的坐标为(-1,94)或(-5+3292,3329-1518)或(-5-3292,-3329+1518). 8. 如图,已知抛物线y =ax 2+bx (a ≠0)过点A (3,-3)和点B (33,0),过点A 作直线AC ∥x 轴,交y 轴于点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出相应点P 的坐标; (3)抛物线上是否存在点Q ,使得S △AOC =13S △AOQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.第8题图解:(1)将点A (3,-3),B (33,0)分别代入y =ax 2+bx 中,得⎩⎪⎨⎪⎧-3=3a +3b 0=27a +33b, 解得⎩⎨⎧a =12b =-332,∴抛物线的解析式为y =12x 2-332x ;(2)设P 点的坐标为P (m ,12m 2-332m ),则D (m ,-3),∴PD =|12m 2-332m +3|,AD =|m -3|, ∵∠ACO =∠ADP =90°,∴①当△ACO ∽△ADP 时,有AC OC =ADPD , 即33=|m -3||12m 2-332m +3|,∴3|m -3|=|12m 2-332m +3|,∴3(m -3)=12m 2-332m +3或-3(m -3)=12m 2-332m +3,整理得m 2-53m +12=0或m 2-3m =0,解方程m 2-53m +12=0得:m 1=43,m 2=3(点P 与A 点重合,△APD 不存在,舍去);解方程m 2-3m =0得:m 3=0,m 4=3(点P 与A 点重合,△APD 不存在,舍去);此时P 点的坐标为P (0,0)或P (43,6); ②当△ACO ∽△PDA 时,有AC OC =PD AD , 即33=|12m 2-332m +3||m -3|,∴3|12m 2-332m +3|=|m -3|,∴3(12m 2-332m +3)=m -3或-3(12m 2-332m +3)=m -3, 整理得3m 2-11m +83=0或3m 2-7m +43=0,解方程3m 2-11m +83=0,得:m 1=833,m 2=3(点P 与A 点重合,△APD 不存在,舍去);解方程3m 2-7m +43=0,得:m 1=433,m 2=3(点P 与A 点重合,△APD 不存在,舍去);此时P 点的坐标为P (833,-43)或P (433,-103),综上可知:以点A 、D 、P 为顶点的三角形与△AOC 相似时,点P 的坐标为:P (0,0)或P (43,6)或P (833,-43)或P (433,-103);(3)存在.在Rt △AOC 中,OC =3,AC =3,根据勾股定理得OA =23, ∵S △AOC =12OC ·AC =332,S △AOC =13S △AOQ , ∴S △AOQ =932,∵OA =23,∴△AOQ 边OA 上的高为92,如解图,过点O作OM⊥OA,截取OM=92,第8题解图过点M作MN∥OA交y轴于点N,∵AC=3,OA=23,∴∠AOC=30°,又∵MN∥OA∴∠MNO=∠AOC=30°,∴在Rt△OMN中,ON=2OM=9,即N(0,9),过点M作MH⊥x轴交x 轴于点H,∵∠MNO=30°,∴∠MOH=30°,∴MH=12OM=94,OH=934,即M(934,94),设直线MN的解析式为y=kx+9(k≠0),把点M的坐标代入得94=934k+9,即k=-3,∴y=-3x+9,联立得⎩⎨⎧y =-3x +9y =12x 2-332x,解得⎩⎪⎨⎪⎧x =33y =0或⎩⎪⎨⎪⎧x =-23y =15,即Q (33,0)或(-23,15).9. 如图,抛物线经过原点O (0,0),与x 轴交于点A (3,0),与直线l 交于点B (2,-2). (1)求抛物线的解析式;(2)点C 是x 轴正半轴上一动点,过点C 作y 轴的平行线交直线l 于点E ,交抛物线于点F ,当EF =OE 时,请求出点C 的坐标;(3)点D 为抛物线的顶点,连接OD ,在抛物线上是否存在点P ,使得∠BOD =∠AOP ?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.第9题图 备用图解:(1)由题意可设抛物线的解析式为y =ax 2+bx , 将A (3,0),B (2,-2)代入y =ax 2+bx 中,得⎩⎪⎨⎪⎧9a +3b =04a +2b =-2,解得⎩⎪⎨⎪⎧a =1b =-3, ∴抛物线的解析式为y =x 2-3x ;(2)设直线l的解析式为y=kx,将B(2,-2)代入y=kx中,得-2=2k,解得k=-1,∴直线l的解析式为y=-x,设点C的坐标为(n,0),则点E的坐标为(n,-n),点F的坐标为(n,n2-3n).①当点C在点A的左侧时,如解图①所示,EF=-n-(n2-3n)=-n2+2n,OE=n2+(-n)2=2n,∵EF=OE,∴-n2+2n=2n,解得n1=0(C,E,F三点均与原点重合,舍去),n2=2-2,∴点C的坐标为(2-2,0);②当点C在点A的右侧时,如解图②所示,EF=n2-3n-(-n)=n2-2n,OE=n2+(-n)2=2n,∵EF=OE,∴n2-2n=2n,解得n1=0(C,E,F均与原点重合,舍去),n2=2+2,∴点C的坐标为(2+2,0);综上所述,当EF =OE 时,点C 的坐标为(2-2,0)或(2+2,0); (3)存在点P 使得∠BOD =∠AOP ,点P 的坐标为(145,-1425)或(165,1625). 【解法提示】抛物线的解析式为y =x 2-3x =(x -32)2-94,∴顶点D 的坐标为(32,-94),设抛物线的对称轴交直线l 于点M ,交x 轴正半轴于点N ,过点D 作DG ⊥OB 于点G ,过点P 作PH ⊥x 轴于点H ,如解图③所示,∵直线l 的解析式为y =-x , ∴∠MON =45°,∴△ONM 为等腰直角三角形,ON =MN =32,OM =2ON =322, ∴DM =94-32=34, 在Rt △DGM 中,∵∠DMG =∠NMO =45°, ∴Rt △DGM 为等腰直角三角形, ∴MG =DG =34×22=328, ∴OG =OM +MG =322+328=1528.设点P 的坐标为(c ,c 2-3c ),当点P 在x 轴下方时,如解图③所示,OH =c ,HP =3c -c 2,第9题解图③∵∠HOP =∠BOD ,∴tan ∠HOP =tan ∠BOD ,∴HP OH =DG OG ,即3c -c 2c =3281528, 解得c 1=0(P 点与O 点重合,舍去),c 2=145,∴点P 的坐标为(145,-1425);当点P 在x 轴上方时,如解图④所示,OH =c ,HP =c 2-3c ,第9题解图④同理可得c 2-3c c =3281528, 解得c 1=0(P 点与O 点重合,舍去),c 2=165,∴P 点的坐标为(165,1625).综上所述,存在点P 使得∠BOD =∠AOP ,点P 的坐标为(145,-1425)或(165,1625).10. 在平面直角坐标系中,直线y =12x -2与x 轴交于点B ,与y 轴交于点C ,二次函数y =12x 2+bx +c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图①,连接DC ,DB ,设△BCD 的面积为S ,求S 的最大值;(3)如图②,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标...;若不存在,请说明理由.图① 图②第10题图解:(1)直线y =12x -2中,令y =0,解得x =4,令x =0,解得y =-2,∴点B (4,0),C (0,-2),将点B (4,0),C (0,-2)代入y =12x 2+bx +c 中,得⎩⎪⎨⎪⎧8+4b +c =0c =-2,解得⎩⎨⎧b =-32c =-2, ∴二次函数的表达式为y =12x 2-32x -2;第10题解图①(2)如解图①,过点D 作DE ∥y 轴,交BC 于点E ,设点D 的坐标为(x ,12x 2-32x -2)(-1<x <4),则点E (x ,12x -2),∴DE =12x -2-(12x 2-32x -2)=-12x 2+2x ,∴S =S △CDE +S △BDE =12(-12x 2+2x )×4=-x 2+4x =-(x -2)2+4,∴当x =2时,S 有最大值,S 的最大值为4;(3)存在,满足条件的点D 的横坐标为2或2911.【解法提示】令y =0,则12x 2-32x -2=0,解得x 1=-1,x 2=4,∴A (-1,0),∵B (4,0),C (0,-2),∴AB 2=52=25,AC 2=12+(-2)2=5,BC 2=42+22=20,∴AB 2=AC 2+BC 2,∴△ABC 是以∠ACB 为直角的直角三角形,如解图②,取AB 的中点P ,第10题解图②∴P (32,0),∴P A =PC =PB =52,∴∠CPO =2∠ABC ,∴tan ∠CPO =OC OP =tan2∠ABC =43,过点D 作x 轴的平行线交y 轴于点R ,交BC 的延长线于点G ,连接CR , ①当∠DCM =2∠ABC =∠DGC +∠CDG ,∵DG ∥x 轴,∴∠DGC =∠ABC ,∴∠CDG =∠ABC ,∴tan ∠CDG =tan ∠ABC =OC OB =12,即CR DR =12,设点D (x ,12x 2-32x -2),∴DR =x ,RC =-12x 2+32x ,∴-12x 2+32x x=12,解得x 1=0(舍去),x 2=2, ∴点D 的横坐标为2;②当∠MDC =2∠ABC ,∴tan ∠MDC =43,设MC =4k ,∴DM =3k ,DC =5k ,∵tan ∠DGC =3k MG =12,∴MG =6k ,∴CG =2k ,∴DG =35k ,∵∠MGD =∠RGC ,∠DMG =∠CRG =90°, ∴△DMG ∽△CRG ,∴DM CR =DG CG ,∴CR =255k ,RG =2CR =455k ,即3k CR =35k 2k ,∴DR =35k -455k =1155k ,∴DR CR =1155k 255k =x -12x 2+32x , 解得x 1=0(舍去),x 2=2911, ∴点D 的横坐标为2911,综上所述,满足条件的点D的横坐标为2或2911.。

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习一. 本周教学内容: 函数专题复习 (一)一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x ==-⎧⎨⎪⎩⎪ ()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

3. 应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P FS u S t==⎧⎨⎪⎪⎪⎩⎪⎪⎪(三)二次函数1. 定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22. 图象:抛物线3. 图象的性质:分五种情况可用表格来说明4. 应用:(1)最大面积;(2)最大利润;(3)其它【例题分析】例1. 已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求此一次函数的表达式。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

中考数学专题训练:函数的应用(含答案)

中考数学专题训练:函数的应用(含答案)

中考数学专题训练:函数的应用1. (2012四川德阳10分)已知一次函数1y x m=+的图象与反比例函数26yx=的图象交于A、B两点,.已知当x1>时,12y y>;当0x1<<时,12y y<.⑴求一次函数的解析式;⑵已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.【答案】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1。

将x=1代入反比例函数解析式,6y==61,∴点A的坐标为(1,6)。

又∵点A在一次函数图象上,∴1+m=6,解得m=5。

∴一次函数的解析式为y1=x+5。

(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3。

∴6y==23。

∴点C的坐标为(3,2)。

过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2∴x+5=2,解得x=﹣3。

∴点D的坐标为(﹣3,2)。

∴CD=3﹣(﹣3)=3+3=6。

点A到CD的距离为6﹣联立y=x+56y=x⎧⎪⎨⎪⎩,解得11x=1y=6⎧⎨⎩(舍去),22x=1y=6-⎧⎨-⎩。

∴点B的坐标为(﹣6,﹣1)。

∴点B到CD的距离为2﹣(﹣1)=2+1=3。

∴S△ABC=S△ACD+S△BCD=12×6×4+12×6×3=12+9=21。

2. (2012河北省8分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=mx(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【答案】解:(1)∵四边形ABCD是平行四边形,∴AD=BC。

2019年浙江中考数学复习方法技巧专题五:转化思想训练(含答案)

2019年浙江中考数学复习方法技巧专题五:转化思想训练(含答案)

方法技巧专题五转化思想训练转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.一、选择题1.[2019·山西] 我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是( )A.转化思想 B.函数思想C.数形结合思想 D.公理化思想2.[2019·扬州] 已知M=29a-1,N=a2-79a(a为任意实数),则M、N的大小关系为( )A.M<N B.M=NC.M>N D.不能确定3.[2019·十堰] 如图F5-1所示,小华从A点出发,沿直线前进10 m后左转24°,再沿直线前进10 m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A.140 m B.150 mC.160 m D.240 m图F5-14.[2019·徐州] 图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )图F5-2A.1或9 B.3或5C.4或6 D.3或6二、填空题5.[2019·烟台] 运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是________.图F5-36.[2019·达州] 如图F5-4,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连结BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.图F5-47.[2019·宿迁] 如图F5-5,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.图F5-5三、解答题8.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.A2.A [解析] ∵N-M=a2-79a-(29a-1)=a2-a+1=(a-12)2+34>0,∴M<N.故选A.注:此题把比较两个式子的大小转化为比较两个代数式的差的正负.3.B [解析] ∵多边形的外角和为360°,这里每一个外角都为24°,∴多边形的边数为360°÷24°=15.∴小华一共走的路程=15×10=150(m).故选B.注:把问题转化为正多边形的周长.4.D [解析] 如图,把原图形扩充成矩形,则图中两个阴影部分的面积相等,于是可列方程x(9-x)=6×(9-6).整理,得x2-9x+18=0,解得x1=3,x2=6.故选D.注:此题体现了转化思想(把不规则图形转化为规则图形)和方程思想.5.x<8 [解析] 由题意,得3x-6<18,解得x<8.6.24+9 3 [解析] 如图,连结PQ,则△APQ为等边三角形.∴PQ=AP=6.易知△APC≌△AQB,∴QB=PC=10.由勾股定理的逆定理,可知∠BPQ=90°.∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×62=24+9 3.故答案为24+9 3.注:此题体现了分散向集中转化,即通过旋转把PA,PB,PC集中到△PBQ中.7.4或2 3 [解析] 设AD的中点为P1,无论AB多长,△P1BC都是等腰三角形,即点P1始终是符合条件的一个点.(1)如图①,当以点B(或点C)为圆心,以BC为半径的圆与直线AD相切时,符合条件的点有3个,此时AB=BC=4;(2)如图②,分别以点B(或点C)为圆心,以BC为半径的圆经过点P1时,符合条件的点也有3个.此时BP1=BC=4,AB=2 3.综上所述,BA的长为4或2 3.注:将等腰三角形的个数转化为直线与圆的交点个数.8.解:(1)证明:如图,延长ED交AG于点H.∵O 为正方形ABCD 对角线的交点, ∴OA =OD ,∠AOG =∠DOE=90°, ∵四边形OEFG 为正方形,∴OG =OE , ∴△AOG ≌△DOE , ∴∠AGO =∠DEO. ∵∠AGO +∠GAO=90°, ∴∠DEO +∠GAO=90°. ∴∠AHE =90°,即DE⊥AG.(2)①在旋转过程中,∠OAG ′成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG′为直角时,∵OA =OD =12OG =12OG′,∴在Rt △OAG ′中,sin ∠AG ′O =OA OG′=12,∴∠AG ′O =30°, ∵OA ⊥OD ,OA ⊥AG ′, ∴OD ∥AG ′.∴∠DOG ′=∠AG′O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG′为直角时,同理可求得∠BOG′=30°, 所以α=180°-30°=150°.综上,当∠OAG′为直角时,α=30°或150°. ②AF ′长的最大值是2+22,此时α=315°. 理由:当AF′的长最大时,点F′在直线AC 上,如图所示.∵AB =BC =CD =AD =1, ∴AC =BD =2,AO =OD =22. ∴OE ′=E′F′=2OD = 2. ∴OF ′=(2)2+(2)2=2. ∴AF ′=AO +OF′=22+2.∵∠DOG′=45°,∴旋转角α=360°-45°=315°.2019-2020学年数学中考模拟试卷一、选择题1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个2.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()A.61B.72C.73D.863.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点()A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)4.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.5.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.736.今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:那么这16名同学植树棵树的众数和中位数分别是()A.5和6B.5和6.5C.7和6D.7和6.57.下列运算正确的是()A .232a a a +=B .326(a )a -=C .222(a b)a b -=-D .326(2a )4a -=-8.下列运算正确的是( ) A .5210()a a -= B .6262144a a a a-÷⋅=- C .32264()a b a b -=D .23a a a -+=-9.如图,OAC ∆和BAD ∆都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数ky x=在第一象限的图象经过点B ,则OAC ∆和BAD ∆的面积之差OAC BAD S S ∆∆-为( )A .2kB .6kC .k 21 D .k10.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =kx上(k >0,x >0),则k 的值为( )A .B .C .9D .11.如果a+b =12,那么a b a b b a+--22的值是( ) A .12B .14C .2D .412.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .D .二、填空题13.如图,点A B C ,,在⊙O 上,若40CBO =∠°,则∠A 的度数为_____.14.数据-5,-3,-3,0,1,3的众数是_______.15.如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为()2,4,点E 的坐标为()1,2-,则点P 的坐标为______.16.如图,已知A (12,y 1),B (2,y 2)为反比例函数y =1x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_____.17.某公路沿线有A ,B ,C 三个站点,甲、乙两车同时分别从A 、B 站点出发,匀速驶向C 站,最终到达C 站.设甲、乙两车行驶x (h )后,与B 站的距离分别为y 1、y 2(km ),y 1、y 2与x 的函数关系如图所示,则经过___小时后两车相遇.18x 的取值范围为_____. 三、解答题19.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件. (1)求出销售量y 件)与销售单价x (元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W (元)与销售单价x 元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?20.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.21.如图,△ABC是正方形网格图中的格点三角形(顶点在格点上),请分别在图1,图2的正方形网格内按下列要求画一个格点三角形.(1)在图1中,以AB为边画直角三角形△ABD(D与C不重合),使它与△ABC全等.(2)在图2中,以AB为边画直角三角形△ABE,使它的一个锐角等于∠B,且与△ABC不全等.22.如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:四边形OCED为平行四边形;(2)求证:△PCE≌△EDQ(3)如图2,延长PC,QD交于点R.若∠MON=150°,求证:△ABR为等边三角形。

九年级数学中考复习:函数专题训练(含答案)

九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。

2019年中考专题训练05:函数与几何图形的综合(含答案)

2019年中考专题训练05:函数与几何图形的综合(含答案)

专题训练(五)[函数与几何图形的综合]1.[2017·济宁] 已知函数y=mx2-(2m-5)x+m-2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤-1时,y的取值范围是1≤y≤-3n,求n的值;②函数C2:y=m(x-h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.2.[2017·攀枝花改编] 如图ZT5-1,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).图ZT5-1(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.当△BCD是以BC为直角边的直角三角形时,求点D的坐标.3.[2017·无锡] 如图ZT5-2,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过点P且垂直于AB的直线与☉O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC∶CE=1∶2.图ZT5-2(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.4.[2018·柳北区三模] 如图ZT5-3,抛物线y=a(x-2)2-1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).图ZT5-3(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求tan∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB=∠PMB时,求点P的坐标.5.[2018·柳北区4月模拟] 如图ZT5-4①,在平面直角坐标系xOy中,直线l:y=x+m与x轴,y轴分别交于点A和点B(0,-1),抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(4,n).图ZT5-4(1)求n的值和抛物线的解析式.(2)点D在抛物线上,且点D的横坐标为t(0<t<4),DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图②).若矩形DFEG的周长为p,求p与t的函数关系式及p的最大值.(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.6.[2017·重庆A卷] 如图ZT5-5,在平面直角坐标系中,抛物线y=x2-x-与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.图ZT5-5(1)求直线AE的解析式.(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是线段CP上的一点,点N是线段CD上的一点,求KM+MN+NK的最小值.(3)点G是线段CE的中点,将抛物线y=x2-x-沿x轴正方向平移得到新抛物线y',y'经过点D,y'的顶点为点F.在新抛物线y'的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)由题意可得:解得:m<,且m≠0.当m=2时,函数解析式为y=2x2+x.(2)①函数y=2x2+x图象开口向上,对称轴为直线x=-,∴当x<-时,y随x的增大而减小.∵当n≤x≤-1时,y的取值范围是1≤y≤-3n,∴2n2+n=-3n.∴n=-2或n=0(舍去).∴n=-2.②∵y=2x2+x=2x+2-,∴函数C1的图象顶点M的坐标为-,-.由图形可知当P为射线MO与圆的交点时,距离最大.∵点P在直线OM上,由O(0,0),M-,-可求得直线的解析式为y=x.设P(a,b),则有a=2b.根据勾股定理可得PO2=(2b)2+b2=(2,解得b=1(负值已舍).∴a=2.∴PM最大时函数C2的解析式为y=2(x-2)2+1.2.解:(1)由题意得解得-∴抛物线的解析式为y=x2-4x+3.(2)方法1(代数法):如图①,过点P作PG∥CF交CB于点G,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE和△GPE均为等腰直角三角形,∴EF=CF=(3-m),PE=PG.又易知直线BC的解析式为y=-x+3.设x P=t(1<t<3),则PE=PG=(-t+3-t-m)=(-m-2t+3).又∵t2-4t+3=t+m,∴m=t2-5t+3.∴PE+EF=(3-m)+(-m-2t+3)=(-2t-2m+6)=-t+m-3)=-t2-4t)=-(t-2)2+4, ∴当t=2时,PE+EF取最大值4.方法2:(几何法)如图②,由题易知直线BC的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形.以BC为对称轴将△FCE对称得到△F'CE,作PH⊥CF'于点H则PE+EF=PF'=PH.又PH=y C-y P=3-y P.∴当y P最小时,PE+EF取最大值.∵抛物线的顶点坐标为(2,-1),∴当y P=-1时,(PE+EF)max=×(3+1)=4.(3)由(1)知对称轴为直线x=2,设D(2,n),如图③.当△BCD是以BC为直角边的直角三角形,且D在BC上方D1位置时, 由勾股定理得C+BC2=B,即(2-0)2+(n-3)2+(3)2=(3-2)2+(0-n)2,解得n=5;当△BCD是以BC为直角边的直角三角形,且D在BC下方D2位置时, 由勾股定理得B+BC2=C,即(2-3)2+(n-0)2+(3)2=(2-0)2+(n-3)2,解得n=-1.∴当△BCD是以BC为直角边的直角三角形时,D点坐标为(2,5)或(2,-1).3.解:(1)过点E作EF⊥x轴于点F,∵CD⊥AB,∴CD∥EF,PC=PD.∴△ACP∽△AEF,△BPD∽△BFE.∵AC∶CE=1∶2,∴AC∶AE=1∶3.∴==,==.∴AF=3AP,BF=3PB.∵AF-BF=AB.∴3AP-3PB=AB.又∵☉O的半径为3,设P(m,0),∴3(3+m)-3(3-m)=6,∴m=1.∴P(1,0).(2)∵P(1,0),∴OP=1,∵A(-3,0).∴OA=3,∴AP=4,BP=2.∴AF=12.连接BC.∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴△ACP∽△CBP,∴=.∴CP2=AP·BP=4×2=8.∴CP=2(负值已舍).∴EF=3CP=6.∴E(9,6).∵抛物线的顶点在直线CD上,∴CD是抛物线的对称轴,∴抛物线过点(5,0).设抛物线的函数表达式为y=ax2+bx+c.-根据题意得解得--∴抛物线的函数表达式为y=x2-x-.4.解:(1)由抛物线y=a(x-2)2-1过点C(4,3),得3=a(4-2)2-1,解得a=1,∴抛物线的解析式为y=(x-2)2-1,顶点M的坐标为(2,-1).(2)如图,连接OM,∵OC2=32+42=25,OM2=22+12=5,CM2=22+42=20,∴CM2+OM2=OC2,∴∠OMC=90°.OM=,CM=2,tan∠OCM===.(3)如图,过C作CN垂直于对称轴,垂足N在对称轴上,取一点E,使EN=CN=2,连接CE,EM=6.当y=0时,(x-2)2-1=0,解得x1=1,x2=3,∴A(1,0),B(3,0).∵CN=EN,∴∠CEP=∠PMB=∠CPB=45°,∵∠EPB=∠EPC+∠CPB=∠PMB+∠PBM,∴∠EPC=∠PBM,∴△CEP∽△PMB,∴=,易知MB=,CE=2,∴=,解得PM=3±,∴P点坐标为(2,2+)或(2,2-).5.解:(1)∵直线l:y=x+m经过点B(0,-1),∴m=-1,∴直线l的解析式为y=x-1.∵直线l:y=x-1经过点C(4,n),∴n=×4-1=2.∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,-1),∴-解得--∴抛物线的解析式为y=x2-x-1.(2)令y=0,则x-1=0,解得x=,∴点A的坐标为,0,∴OA=.在Rt△OAB中,OB=1,∴AB===.∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE·cos∠DEF=DE·=DE,DF=DE·sin∠DEF=DE·=DE,∴p=2(DF+EF)=2×+DE=DE,∵点D的横坐标为t(0<t<4),∴D t,t2-t-1,E t,t-1,∴DE=t-1-t2-t-1=-t2+2t,∴p=×-t2+2t=-t2+t,∴p=-(t-2)2+,且-<0,∴当t=2时,p有最大值.(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴,B1O1∥x轴.设点A1的横坐标为x,如图①,点O1,B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1, ∴x2-x-1=(x+1)2-(x+1)-1,解得x=.如图②,点A1,B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大, ∴x2-x-1=(x+1)2-(x+1)-1+,解得x=-.综上所述,点A1的横坐标为或-.6.解:(1)令y=0,得x2-x-=0,解得x1=-1,x2=3,∴点A(-1,0),B(3,0).∵点E(4,n)在抛物线上,∴n=×42-×4-=,即点E,设直线AE的解析式为y=kx+b,则-,解得∴直线AE的解析式为y=x+. (2)令y=x2-x-中x=0,得y=-, ∴C(0,-).由(1)得点E,∴直线CE的解析式为y=x-.过点P作PH∥y轴,交CE于点H,如图①, 设点P t,t2-t-,则H t,t-, ∴PH=t----=-t2+t, ∴S△PCE=S△PHC+S△PHE=·PH·-=×-×4=-t2+t=-(t2-4t)=-(t-2)2+.∵-<0,∴当t=2时,S△PCE最大,此时点P(2,-).∵C(0,-),∴PC∥x轴.∵B(3,0),K为BC的中点,∴K,-.如图②,作点K关于CP,CD的对称点K1,K2,连接K1K2,分别交CP,CD于点M,N.此时KM+MN+NK最小,易知K1,-.∵OC=,OB=3,OD=1,∴∠OCB=60°,∠OCD=30°,∴CD平分∠OCB,∴点K2在y轴上.∵CK=OC=,∴点K2与原点O重合,∴KM+MN+NK=K1M+MN+NO=OK1=-=3,∴KM+MN+NK的最小值为3.(3)存在.如图③,点Q的坐标分别为Q1(3,2),Q23,- 1,Q33,-,Q43,-- 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1初三数学强化训练(五)函数(一)(总分150分,时间100分钟)班级__________________姓名_______________学号__________得分_______一、填空题(每题3分,共36分)1.点(-2,1)在第_______象限,它关于x 轴的对称点在第________象限.2.函数x y 1-=的自变量x 的取值范围是 . 3.将直线x y 31=向下平移3个单位所得直线的解析式为___________________.4.已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: . 5.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是 . 6.已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2)若223x y +=,1xy =,则x y -= . 7.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 8.已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .9.如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是 .10.在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有 个. 二、选择题(每题3分,共30分).11坐标半面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为何? ( )A .(-5,4)B .(-4,5)C . (4,5)D . (5,-4) 12.要使式子a +2a有意义,a 的取值范围是 ( )A .a ≠0B .a >-2且a ≠0C .a >-2或a ≠0D .a ≥-2且a ≠0 13.在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点,构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是 ( ) A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 14.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 15.下列函数中,y 随x 增大而增大的是( )A .x y 3-= B . 5+-=x y C . 12y x = D . )0(212<=x x y 16.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x (k 2≠0)的图象有一个交点的坐标为 (-2,-1),则它的另一个交点的坐标是 ( )A . (2,1)B . (-2,-1)C . (-2,1)D . (2,-1)17.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 ( ) 18.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是 ( )A .摩托车比汽车晚到1 hB .A ,B 两地的路程为20 kmC .摩托车的速度为45 km/hD .汽车的速度为60 km/h19.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 ( ) A.20kg B .25kg C .28kg D .30kg20.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为 ( ) A .1或-2 B .2或-1 C .3 D .4火车隧道o y x o y x o y x o y x A B C DO 3050300900x (kg)y (元)三、解答题(共84分)21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米? (10分)22.已知直线经过点(1,2)和点(3,0),求这条直线的解析式.(8分)23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟.(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?(12分)24.直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组 ⎩⎨⎧+=+=nmx y x y 1请你直接写出它的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由.(10分)25.点P (1,a )在反比例函数xky =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式.(10分)26.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?(12分)27.如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC =1,OC =2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.(10分)28.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16,求此三角形面积.(12分)参考答案一、填空题1.二,三 2.0≠x 3. 331-=x y 4.如32+-=x y 5.y <-2 6.(1)3-(2).1- 7.4. 8.(4,0);(4,4);(0,4);(0,0).9.(3,-1) 10.12. 二、选择题.11. A 12.D 13.A 14.A 15.C 16.A 17. A 18.C 19.B 20.A 三、解答题(共58分)21.⑴ x y 620-= (0>x )⑵ 500米=5.0千米 1750620=⋅⨯-=y (℃) ⑶ x 62034-=- x=9千米22.解:设这直线的解析式是(0)y kx b k =+≠,将这两点的坐标(1,2)和(3,0)代入,得2,30,k b k b +=⎧⎨+=⎩,解得1,3,k b =-⎧⎨=⎩ 所以,这条直线的解析式为3y x =-+.23.解:(1)15,154(2)由图像可知,s 是t 的正比例函数设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m ∴12154+-=t s (4530≤≤t )令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。

24.(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b .(2)解是⎩⎨⎧==.2,1y x(3)直线m nx y +=也经过点P∵点P )2,1(在直线n mx y +=上, ∴2=+n m .把,1x =代入m nx y +=,得2m =+n . ∴直线m nx y +=也经过点P .25.解:点P (1,a )关于y 轴的对称点是(-1,a ),因为点(-1,a )在一次函数y=2x+4的图象上,所以a=2×(-1)+4=2因为点P (1,2)在反比例函数xky =的图象,所以k=2 所以反比例函数的解析式是2y x= 26.⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x=;②当5x = 时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月. 27.解:(1)∵AC ⊥x 轴 AC=1 OC=2 ∴点A 的坐标为(2,1)∵反比例函数xmy =的图像经过点A (2,1)∴ m =2 ∴反比例函数的解析式为xy 2=(2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21)∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)∴ ⎪⎩⎪⎨⎧-=+-=+21412b k b k 解得:k =41 b =21 ∴一次函数的解析式为2141+=x y 28.解:(1) ∵ 直线y =43-x +3与x 轴的交点坐标为(4,0),与y 轴交点坐标为(0,3), ∴函数y =43-x +3的坐标三角形的三条边长分别为3,4,5.(2) 直线y =43-x +b 与x 轴的交点坐标为(b 34,0),与y 轴交点坐标为(0,b ), 当b >0时,163534=++b b b ,得b =4,此时,坐标三角形面积为332;当b <0时,163534=---b b b ,得b =-4,此时,坐标三角形面积为332.综上,当函数y =43-x +b 的坐标三角形周长为16时,面积为332.。

相关文档
最新文档