经典三相电不平衡的危害及解决措施.ppt
三相电不平衡的危害及解决措施
三、三相电不平衡的解决措施
(一)传统解决方法
1、均匀分布负荷
将不对称负荷分散到不同的供电点,减少集中连接导致的不
平衡度超标,此种方法无需任何设备投资,只需将单相负载均匀
分布到A、B、C三相就可以改善三相不平衡,但我们需要面对一
个客观的问题,各个用户的负荷量不一致且用电时间不一致,又
不能人为控制,因此不能从根本上解决问题。
三相电不平衡的危害及解决措施
一、三相电 二、三相电不平衡的危害 三、三相电不平衡的解决措施
1
一、三相电
1.概念
三相电是一组幅值相等、频率相等、相位互相差120°的三相 交流电,由有三个绕组的三相发电机产生。
2.三相电负载的接法
分为三角形接法(符号△)和星形接法(符号Y)。 三角形接法的负载引线为三条火线和一条地线,三条火线之
三相电不平衡是指在电力系统中三相电流(或电压) 幅值不一致,且幅值差超过规定范围。各相负载分布不均、单 相负载用电的不同时性、以及单相大功率负载接入是导致三相 不平衡的主要原因,由于城市民用电网及农用电网中存在大量 单相负载,使得当今三相不平衡现象普遍存在且尤为严重。电 网中的三相不平衡会增加线路及变压器的铜损,增加变压器的 铁损,降低变压器的出力甚至会影响变压器的安全运行,会造 成因三相电压不平衡而降低供电质量,甚至会影响电能变的精 度而造成计量损失。
13
如图1所示,假设A、B、C三相负载电流分别为:5A、10A、 15A,这时候我们就认为此系统的三相电流出现了不平衡,三相 电流完全平衡的状态应该是A、B、C三相电流全部为10A。
图1
14
盛弘SVG在运行时,会通过外接电流互感器(CT)实时检测 系统电流,然后将CT采集到的电流信息发给内部控制器进行处理, 经过控制器分析之后, SVG就会发现系统的电流不平衡状态,同 时计算出三相电流达到平衡状态所需转换的电流值。以图1为例, A相电流想达到平衡状态则需要增加5A的电流,B相电流正好为 10A无需调整,C相电流想达到平衡状态则需要减少5A的电流。计 算完成之后,控制器就会通过IGBT驱动电路来驱动IGBT动作,从 而使得电流从系统C相流入SVG 5A,从SVG内部流出5A到系统A相。 从而使得A、B、C三相电流全部重新分配为10A,而系统的三相总 电流保持不变。当然,这一系列的计算及控制动作都是在很短的 时间内完成的,并且,在这一过程中 SVG只是起到一个重新分流 的作用,只需消耗很小一部分的能量(如风扇运转、控制器件的 能量消耗、开关器件的能量消耗)。
三相不平衡的原因、危害以及解决措施!
• 总之,在进行比例调节系数额设置时,需 要同时考虑功率因数的限制条件以及过补 偿限制的条件。
改进配电网三相不平衡的技术
• 3、增设对三相负荷的检测调整
• 定期开设对三相负荷的检测工作也是非常必要 的。在对三相符合的合理分配以及控制后,相 关部门应当开设检测工作。
三相不平衡的危害
• 1、增加线路的电能损耗 • 在三相四线制供电网络中,电流通过线路导线
时,因存在阻抗必将产生电能损耗,其损耗与 通过电流的平方成正比。
• 当低压电网以三相四线制供电时,由于有单相 负载存在,造成三相负载不平衡在所难免。
• 当三相负载不平衡运行时,中性线即有电流通 过。这样不但相线有损耗,而且中性线也产生 损耗,从而增加了电网线路的损耗。
三相不平衡的危害
• 假如当配变处于三相负载不平衡工况下运行, 负载轻的一相就有富余容量,从而使配变的出 力减少。其出力减少程度与三相负载的不平衡 度有关。
• 三相负载不平衡越大,配变出力减少越多。
• 为此,配变在三相负载不平衡时运行,其输出 的容量就无法达到额定值,其备用容量亦相应 减少,过载能力也降低。假如配变在过载工况 下运行,即极易引发配变发热,严重时甚至会 造成配变烧损。
• 一是需要注意到电流的治理应当有两个内容,一个 是补偿功率因数,一个是调节三相电流不平衡,这 两者共同确定了补偿所需要的无功功率。
• 第二点,在实际的工程施工时,应当采用全容性的 治理方式,与电感补偿相区分,避免出现严重过补 偿的情况。
改进配电网三相不平衡的技术
• 第三点是需要考虑到负荷是会随着时间的 变化而变化的,基于这种特性,补偿量也 应该根据负荷的变化进行适当的调整。
三相不平衡的危害以及解决措施
三相不平衡的危害以及解决措施1如果说起三相不平衡的危害就要先知道它形成的原因1.1三相负荷的不合理分配很多的工作人员并没有专业的对于三相负荷平衡的知识概念,因此在接线的时候并没有注意到要控制三相负荷平衡,只是盲目和随意的进行电路的接电荷装表,这在很大程度上造成了三相负荷的不平衡。
其次,我国的大多数电路都是动力和照明混为一体的,所以在使用单相的用电设备时,用电的效率就会降低,这样的差异进一步加剧了配电变压器三相负荷的不平衡状况。
1.2用电负荷的不断变化造成用电负荷不稳定的原因临时用电和季节性用电的不稳定性。
这样在总量上和时间上的不确定和不集中性使得用电的负荷也不得不跟随实际情况而变化。
1.3对于配变负荷的监视力度的削弱在配电网的管理上,经常会忽略三相负荷分配中的管理问题。
在配电网的检测上,对配电变压器的三相负荷也没有进行定期的检测和调整。
2三相不平衡的危害2.1增加线路的电能损耗在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。
当三相负载不平衡运行时,中性线即有电流通过。
这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
2.2增加配电变压器的电能损耗配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。
因为配变的功率损耗是随负载的不平衡度而变化的。
2.3影响用电设备的安全运行配电变压器是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。
当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。
假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。
同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。
因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。
三相电压不平衡
原因
原因
引起三相电压不平衡的原因有多种,如:单相接地、断线谐振等,运行管理人员只有将其正确区分开来,才 能快速处理。
一、断线故障如果一相断线但未接地,或断路器、隔离开关一相未接通,电压互感器保险丝熔断均造成三相 参数不对称。上一电压等级线路一相断线时,下一电压等级的电压表现为三个相电压都降低,其中一相较低,另 两相较高但二者电压值接近。本级线路断线时,断线相电压为零,未断线相电压仍为相电压。
采取的解决办法
采取的解决办法
1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。 2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。 3、加大负荷接入点的短路容量,如改变络或提高供电电压级别提高系统承受不平衡负荷的能力。
谢谢观看
对用电设备的影响。三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加, 从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设 备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交 替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。
二、接地故障当线路一相断线并单相接地时,虽引起三相电压不平衡,但接地后电压值不改变。单相接地分 为金属性接地和非金属性接地两种。金属性接地,故障相电压为零或接近零,非故障相电压升高1.732倍,且持 久不变;非金属性接地,接地相电压不为零而是降低为某一数值,其他两相升高不到1.732倍。
危害和影响
危害和影响
对变压器的危害。在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的 损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器 低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会 导致变压器烧毁。
三相不平衡的主要危害及其对策是什么?
三相不平衡的主要危害及其对策是什么?
三相不平衡同样对电力系统本身以及电力用户造成一系列的危害,
具体表现在:
(1)引起旋转电机的附加发热和振动,危及其安全运行和正常出力。
(2)引起以负序分量为启动元件的多种保护发生误动作(特别是当电网汇总同时存在谐波的时候),对电网的安全运行具有严重的威胁。
(3)电压不平衡使半导体变流设备产生附加的谐波电流(非特征谐波),而这种设备一般设计上只允许2%的电压不平衡度。
(4)电压不平衡使发电机容量的利用率下降。
这是因为不平衡时最大相电流不能超过额定值。
在极端情况下,只带单相负荷时,则设备利用率仅为。
0.577
(5)变压器的三相负荷不平衡,不仅使负荷较大的一相绕组过热导致其寿命缩短,而且还会由于磁路不平衡,大量漏磁通经箱壁、夹件等使其严重发热,造成附加损耗。
(6)在低压配电线路中,三相不平衡会影响计算机正常工作,还会引起照明电灯寿命缩短(电压过高)或者照度不足(电压过低),以及电视机的损坏。
(7)三相不平衡时,将引起电网损耗的增加。
(8)使电热炉的电能损耗增加,产量减少,炉子的效率降低。
(9)低压通信系统,电力三相不平衡时,会增大对其干扰,影响正常通信质量。
解决三相不平衡通常使用的方法为:将不对称负荷分配到不同的供电点;
将不对称负荷合理分配到各相;将不对称负荷接到更高电压等级上供电,以使连接点的短路容量足够大;采用平衡装置等等。
三相不平衡的原因危害以及解决措施!
三相不平衡的原因危害以及解决措施!三相不平衡是指三相电路中的三个相电压或电流的幅值不相等或者相角不等的情况。
三相不平衡可能由多种原因造成,例如电网电压不稳定、负载不均衡、线路阻抗不等等。
三相不平衡会给电力系统带来一系列的危害,包括降低电力系统效率、增加能耗、使设备损坏、影响电能质量等。
为了解决三相不平衡带来的问题,可以采取一系列的措施,包括优化负载分配、使用平衡设备、增加系统容量等。
首先,我们来分析一下导致三相不平衡的原因。
三相不平衡的原因可以从系统、负载和线路三个方面来分析。
从系统来看,电网电压不稳定是导致三相不平衡的主要原因之一、电网电压的不稳定性可能由于电网负荷变化大、供电线路阻抗不等、电源变压器故障等原因造成,这会导致不同相电压的幅值和相角发生变化,从而引起三相不平衡。
从负载来看,不同电器设备的功率需求不同,导致各个相的负载不均衡。
例如,在住宅区,电视、冰箱、洗衣机等电器设备的用电需求可能不同,这就会使得三相负载不平衡。
此外,由于三相线路中的负载采用的三相变压器可能存在不同的连接方式或者单相负载连接方式,也会导致三相不平衡。
从线路来看,线路阻抗不等是一种导致三相不平衡的常见现象。
由于线路长度、导线截面积、接触电阻等因素的差异,导致三相线路中的阻抗不同,进而导致电压不平衡。
三相不平衡会给电力系统带来一系列的危害。
首先,三相不平衡会降低电力系统的效率,增加系统能耗。
由于系统的三相电压或电流不平衡,会导致电能在传输过程中的损耗增加,使得系统的能效降低。
其次,三相不平衡会导致设备损坏。
由于系统中存在电流不平衡,会导致电机、变压器等设备的工作不平稳,增加设备的运行负荷,导致设备过热、烧损等问题。
此外,三相不平衡还会给用户带来电能质量问题,例如电压波动、谐波等,影响用电设备的正常运行。
为了解决三相不平衡带来的问题,可以采取以下措施。
首先,需要优化负载分配。
可以通过合理规划电器设备的用电方式、改善负载的均衡性,尽量减小三相负载不平衡。
三相电不平衡的危害及解决措施
三相电不平衡的危害及解决措施三相电不平衡指的是三相电网中的三相电流或电压之间存在不平衡的情况。
当电网中出现三相电不平衡时,会引起一系列的危害,包括设备寿命缩短、能源浪费、安全事故等。
因此,为了确保电力系统的正常运行,需要采取相应的解决措施。
首先,三相电不平衡会引起设备寿命缩短。
当三相电流或电压不平衡时,会导致各个设备的负荷不均衡,从而使得设备在运行过程中承受不均衡的负荷。
这样会导致设备的热负荷不均衡,加速设备的温度上升,缩短设备的寿命。
另外,不平衡的电流还会使电机发生轴向力,进一步损坏设备。
其次,三相电不平衡会导致能源浪费。
在三相电不平衡的情况下,不同的负载和设备承受的电流或电压不同,这将使得电能的分配不均匀。
有些电压和电流会被过载,而有些电压和电流则会被低负载。
一方面,过载电压和电流会浪费能源,另一方面,低负载电压和电流则不能发挥其最佳效能,也浪费了能源。
三相电不平衡还会引起电力系统的安全事故。
电力系统中的不平衡电流会导致线路过热、设备绝缘老化、电弧产生等问题,增加了火灾和电击的风险。
根据统计数据,电力系统的三相电不平衡是导致大部分电力设备事故的主要原因之一、因此,必须采取措施来解决三相电不平衡问题。
解决三相电不平衡问题的措施如下:1.定期检测和监测电力系统的三相电压和电流,发现不平衡的情况及时进行处理。
可以使用专业的电能质量分析仪器,对电力系统进行全面的检测和分析,找出不平衡的原因。
2.进行负载均衡。
根据电能质量分析的结果,可以调整电力系统中各个负载的接入方式,使各个负载平均分布,降低三相电不平衡。
3.安装三相电流互感器或电流差动保护装置。
三相电流互感器可以实时监测电力系统中三相电流的大小和不平衡度,并及时提醒操作人员进行处理。
电流差动保护装置可以感知不平衡电流,并迅速切断供电,保护设备和人员的安全。
4.安装无功补偿装置。
无功补偿装置可以在电力系统产生无功电流时进行调节,提高电力系统的功率因数,减少电力系统的负荷不平衡。
三相电不平衡的危害及解决措施分析
三相电不平衡的危害及解决措施分析首先,三相电不平衡会导致线电流不平衡。
当三相电流不平衡时,电阻负载会导致线电流不平衡,并产生负序分量。
这会导致供电系统过负荷运行,降低设备的寿命,并可能引发设备的过热、损坏甚至火灾事故。
此外,不平衡电流还会增加配电系统和电能质量监控设备的空运行损耗。
其次,三相电不平衡会导致接地故障。
当三相电压不平衡时,可能会引发系统的中性点漂移,导致接地故障。
中性点漂移会导致对地电压不稳定,给设备和人员带来安全风险。
而接地故障会导致电流的不均匀分布,从而引发设备损坏和电气火灾的危险。
再次,三相电不平衡会降低系统的功率因数。
不平衡电流会引起功率因数下降,并增加无功功率消耗。
功率因数下降会导致电网效率低下,并增加电网输电线路的电流损耗和线损。
此外,功率因数下降还会导致发电机容量减小,从而限制了系统的供电能力。
最后,三相电不平衡会影响设备的正常运行。
在不平衡电压情况下,设备的运行特性可能会发生变化,导致设备运行不稳定甚至无法正常工作。
例如,不平衡电压会导致电机转矩不均匀分布,从而降低电机的动力性能和效率。
不平衡电压还可能引起设备的振动和噪声,并加剧设备的磨损和损坏。
为了解决三相电不平衡问题,可以采取以下措施:1.均匀分布负载。
通过合理规划负载,确保每相电流均衡吸收。
2.安装平衡装置。
如安装三相电流平衡器、平衡变压器、平衡电抗器等设备来实现三相电压、电流的均衡。
3.加强系统监测和检测。
通过实时检测和分析电压、电流数据,可以及时发现和处理不平衡问题。
4.配电线路的改进和优化。
可采用合适的导线截面和电缆,避免由于线路阻抗不平衡而产生负序电流。
5.系统中性点的可控接地。
通过控制中性点的接地方式,可以减少中性点漂移和接地故障的发生。
综上所述,三相电不平衡会给电力系统带来线电流不平衡、接地故障、功率因数下降和设备运行问题等危害。
为了解决不平衡问题,需要采取合适的措施,包括均匀分布负载、安装平衡装置、加强系统监测和优化配电线路等。
三相电不平衡危害及解决措施
条火线之间的电压为380V,任一火线对零线或对地线的电压为 220V。
三相电电器的总功率等于每相电压乘以每相电流再乘于3, 即总功率=电流×电压(220V)×3(p=U×I×3)
2
3
二、三相电不平衡的危害 1.概述
三相电不平衡的危害及解决措施
一、三相电 二、三相电不平衡的危害 三、三相电不平衡的解决措施
1
一、三相电
1.概念
三相电是一组幅值相等、频率相等、相位互相差120°的三相 交流电,由有三个绕组的三相发电机产生。
2.三相电负载的接法
分为三角形接法(符号△)和星形接法(符号Y)。 三角形接法的负载引线为三条火线和一条地线,三条火线之
13
如图1所示,假设A、B、C三相负载电流分别为:5A、10A、 15A,这时候我们就认为此系统的三相电流出现了不平衡,三相 电流完全平衡的状态应该是A、B、C三相电流全部为10A。
图1
14
盛弘SVG在运行时,会通过外接电流互感器(CT)实时检测 系统电流,然后将CT采集到的电流信息发给内部控制器进行处理, 经过控制器分析之后, SVG就会发现系统的电流不平衡状态,同 时计算出三相电流达到平衡状态所需转换的电流值。以图1为例, A相电流想达到平衡状态则需要增加5A的电流,B相电流正好为 10A无需调整,C相电流想达到平衡状态则需要减少5A的电流。计 算完成之后,控制器就会通过IGBT驱动电路来驱动IGBT动作,从 而使得电流从系统C相流入SVG 5A,从SVG内部流出5A到系统A相。 从而使得A、B、C三相电流全部重新分配为10A,而系统的三相总 电流保持不变。当然,这一系列的计算及控制动作都是在很短的 时间内完成的,并且,在这一过程中 SVG只是起到一个重新分流 的作用,只需消耗很小一部分的能量(如风扇运转、控制器件的 能量消耗、开关器件的能量消耗)。
三相电不平衡的危害及解决措施参考资料
三相电不平衡的危害及解决措施参考资料危害:1.设备损坏:三相电不平衡会使设备产生不均匀负载,造成设备的过载、过热、寿命缩短甚至损坏。
尤其对于电动机等负载变化较大的设备来说更为明显。
2.效率降低:不平衡电压会导致三相电流不等,从而使电流负载在各相之间不平衡分布,导致功率因数下降,使电气设备的效率降低。
3.负载不平衡:三相电不平衡使得三相负载在各相中不均匀分布,从而导致各相的电流和功率不同,进而影响整个电气网的平衡性。
4.电网临界:不平衡的负载分布会对电网产生较大的冲击,瞬间电压跌落或电流阶跃,甚至导致电网的跳闸。
5.浪费能源:不平衡负载会导致电网中的功率损失增加,从而浪费了宝贵的电能资源。
解决措施:1.平衡负载:通过调整和优化负载,使得三相电流在各相中均衡分布。
可以采用对称负载的方法,即在各相间均匀分配负载;也可以采用将非对称负载转变为对称负载的方法,即通过相应的控制和调整,使得非对称负载向对称负载过渡。
2.选择合适的电缆:合理选用电缆截面积,减少线路电阻,降低传输损耗,从而提高供电质量。
3.采用三相自动电压调整器:通过自动调节电压,使三相电压在合理范围内,尽量达到平衡。
4.定期维护检修:定期对电气设备进行维护和检修,及时发现和修复可能存在的不平衡问题,确保设备的正常运行。
5.舒适性控制:在室内空调等大功率负载运行时,尽量避免同一时间段内多个大功率设备同时启动。
6.合理设计:在设计电气系统时,应合理布置电缆和设备,确保平衡负载,减少潜在的不平衡问题。
综上所述,三相电不平衡会给电气系统的正常运行带来很多危害,并且会导致效率降低、设备损坏、浪费能源等问题。
因此,我们需要采取相应的解决措施来保证三相电系统的平衡和稳定运行,以提高电气设备的使用寿命和效率,同时降低能源的意外浪费。
参考资料:1.电力系统实验技术,刘德洲,中国电力出版社,2024年。
2.电力系统稳定与控制,罗泽勇,清华大学出版社,2024年。
三相不平衡的危害及解决办法
三相不平衡的危害及解决办法三相不平衡的危害及解决办法三相不平衡的危害及解决办现代电力系统除了满足电能的供求需要外,也必须保障供电系统及用户对电能质量的要求。
电能是电力系统的唯一产品,电能质量的好坏,直接影响到电网和工业生产,及人民生活的正常秩序。
大量非线性设备及负荷的干扰会使电网电能质量下降,其对电网及用户的危害是多方面的,严重时会造成设备损坏和电网事故。
一、三相电压或电流不平衡等因素产生的主要危害:1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使电机出现振动。
对发电机而言,在定子中还会形成一系列高次谐波。
2、引起以负序分量为启动元件的多种保护发生误动作,直接威胁电网运行。
3、不平衡电压使硅整流设备出现非特征性谐波。
4、对发电机、变压器而言,当三相负荷不平衡时,如控制最大相电流为额定值,则其余两相就不能满载,因而设备利用率下降,反之如要维持额定容量,将会造成负荷较大的一相过负荷,而且还会出现磁路不平衡致使波形畸变,设备附加损耗增加等。
二、由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。
2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。
3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。
4、装设平衡装置。
简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。
具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。
--来源网络整理,仅供学习参考。
三相不平衡的危害以及解决措施
三相不平衡的危害以及解决措施三相不平衡是指三相电源中的电流或电压之间存在不相等的情况。
这种不平衡可能会导致多种危害,包括功率损失、设备故障、电网不稳定等。
为了解决这个问题,可以采取多种措施,如调整电源接线、使用三相平衡装置、进行定期检测和维护等。
三相不平衡会导致功率损失。
在三相不平衡的情况下,三个相的电流或电压之间不相等,导致整个系统的功率因数下降,造成不必要的能量损失。
这将使电网的效率降低,不仅令用户电费增加,还可能导致电网过载,影响电网的供电能力。
三相不平衡也会导致设备故障。
在不平衡的情况下,设备可能会受到不均匀的电流或电压的冲击,加速设备的损坏和老化。
例如,电动机加速过程中可能会发生热量不均匀分布,导致绕组温度不均匀,从而影响电机的寿命。
不平衡还可能导致设备振动,增加设备的故障风险。
三相不平衡还会导致电网不稳定。
由于不平衡的电流或电压会引起电网电压的扰动,可能导致电网电压过高或过低的情况。
过高的电压可能损坏设备,甚至引发火灾;而过低的电压则可能影响设备正常运行。
此外,不平衡还可能引发谐波,进一步影响电网的稳定性。
为了解决三相不平衡的问题,可以采取以下措施:1.调整电源接线:通过改变电源的接线方式,可以尽量减小电源电压或电流的不平衡。
例如,使用星形接线方式可以减小不平衡程度,而使用三角形接线方式则可能造成更大不平衡。
2.使用三相平衡装置:三相平衡装置可以在电网中实时监测电流或电压的不平衡情况,并通过自动调节相间的电流或电压来保持三相的平衡。
这可以有效地减小不平衡造成的危害。
3.进行定期检测和维护:定期对电网进行检测和维护是预防和解决三相不平衡问题的重要措施。
通过定期测量和分析电流和电压的数据,可以及时发现不平衡的情况,并采取相应的措施进行调整。
4.平衡负载:负载平衡是保持三相平衡的重要方式之一、通过合理规划负载分配,避免其中一相负载过重,可以有效地减小不平衡的发生。
5.防止谐波影响:谐波可能是引起三相不平衡的一种原因。
三相电不平衡的危害及解决措施
05
案例分析
某工厂三相电不平衡案例
危害
由于三相电不平衡,导致工厂的电动 机运行不稳定,设备磨损加速,生产 效率降低,甚至引发安全事故。
解决措施
对工厂的电力系统进行全面检查,调 整三相电源的负荷分配,确保三相电 的平衡。同时,加强设备的维护和保 养,定期检查电动机等设备的运行状 况。
变压器保护装置误动作
严重的不平衡可能使变压器保护装置 误判为故障,导致变压器非正常停运 。
变压器损耗增加
不平衡的三相电会导致变压器铁损和 铜损增加,降低变压器的效率和使用 寿命。
对电动机的影响
电动机效率降低
三相电不平衡导致电动机运行效率降低,增加能耗。
电动机温升过高
不平衡的三相电可能导致电动机某相绕组过热,引发电动机故障。
电源电压波动
总结词
电源电压波动是导致三相电不平衡的常见原因之一。
详细描述
电源电压波动会导致三相电压的大小和相位发生变化,从而引起三相电不平衡 。这种情况通常与电力系统的稳定性有关,如果电力系统不稳定,就容易出现 电压波动。
接地故障
总结词
接地故障可以导致三相电不平衡,因为它改变了系统的中性点电位。
详细描述
接地故障可能导致相电压偏差和电流不平衡 。为了解决这个问题,需要对接地系统进行 定期检查,及时发现并修复接地故障。同时 ,应采用合适的接地材料和施工方法,提高 接地系统的可靠性和稳定性。
排除短路故障
总结词
短路故障可能导致三相电不平衡,及时排除 是重要的解决措施。
详细描述
短路故障会导致电流瞬间增大,破坏三相电 的平衡。为了解决这个问题,需要对线路进 行定期巡检,及时发现并排除短路故障。同 时,应采用合适的电缆和设备,提高线路的
三相电不平衡的危害及解决措施
05
案例分析与实践
案例一:某工厂三相电不平衡问题的解决
问题诊断
工厂在生产过程中,由于设备 负载不均衡,导致三相电出现
严重的不平衡现象。
影响分析
三相电不平衡会引起设备效率 下降、电力损耗增加、设备寿 命缩短等一系列问题。
中线电流不为零:在 三相四线制系统中, 当三相电流不平衡时 ,中线电流不为零, 可能导致中线过热甚 至火灾。
电力设备损坏:三相 电不平衡会导致电力 设备的损坏,如电机 、变压器等。
系统效率低下:三相 电不平衡会降低电力 系统的运行效率,增 加能耗。
请注意,以上只是关 于三相电不平衡的概 述,实际上三相电不 平衡的危害及解决措 施涉及更多的专业知 识和技术细节,需要 在实际应用中进行深 入研究和探讨。
02
三相电不平衡的危害
对电力设备的危害
过热损坏
三相电不平衡会导致某些相电流 过大,使得相关电力设备(如变 压器、电机等)过热,进而损坏 绝缘,缩短设备寿命。
设备效率下降
三相不平衡还会使得设备运行效 率降低,增加能耗,不利于节能 减排。
对电力系统的危害
系统稳定性下降
三相电不平衡会影响电力系统的稳定 性,可能导致系统振荡,甚至引发大 面积停电事故。
解决措施
通过对照明、空调等设备进行合理布 局和调度,优化办公楼电力系统的三 相平衡。
实施效果
办公楼电力设备运行更加稳定,电压 波动减小,员工工作环境得到改善。
实践建议与未来展望
实践建议
• 定期进行电力设备检查,及时发现并解决三相电不平衡问题。
• 在设备布局和调度时,充分考虑电力负载的均衡分配,避免三相电不平衡现象的 产生。
三相不平衡的危害以及解决措施
三相不平衡的危害以及解决措施
1.功率损失:三相不平衡会导致电流不平衡,从而产生失配损耗。
由
于电力系统中大多数电器设备都是为均衡三相电流设计的,当电流不平衡时,电动机的效率会降低,导致额外的功率损耗。
2.设备过热:电流不平衡会导致设备过热,这可能会影响设备的寿命,并导致设备故障和维修成本的增加。
过热还可能会导致绝缘材料老化,从
而增加触电等安全风险。
3.不稳定电压:三相不平衡会导致电压不稳定,从而使设备的工作环
境不稳定。
这可能会导致设备的故障,甚至更严重的是引发电气事故。
解决三相不平衡问题的一些措施如下:
1.定期检查和维护:定期检查电力系统的各个部分,包括变压器、开
关设备和电缆线路,确保其良好运行。
这可以帮助检测和解决潜在的电流
不平衡问题,保证设备的正常运行。
2.平衡负载:通过平衡负荷来减轻电力系统的三相不平衡。
可以根据
各个相之间的负载需求来适当安排设备的运行,确保各相电流均匀分布。
3.安装三相干预装置:这些装置可以监测电力系统的三相情况,并通
过自动调整电流或电压来均衡负载。
这些装置可以帮助消除电流不平衡,
维持正常稳定的工作环境。
4.配电系统改造:在设计配电系统时,可以采用合适的设备和线缆来
减少电流不平衡的发生。
例如,使用高质量的电缆和电源线可以提高电压
和电流的传输效果,减少功率损耗。
综上所述,三相不平衡可能会对电力系统和设备产生严重的危害,但通过定期检查和维护、平衡负载、安装三相干预装置以及改造配电系统等措施,可以有效地解决这些问题,保持电力系统的稳定性和设备的正常运行。
第8章电力系统三相不平衡及其改善措施ppt课件
为减少平稳负荷的测量次数: 日波动性小:应与实测值的5次邻近数值的算术平均值对比 日波动性大:应与实测值的95%概率大值
为减少偶然性波动的影响: 对于离散采样,每次测量按3s均方根取值。
ε
1 m
m
ε
2 k
k 1
.
2. 测量仪
(1)负序滤过器测量仪 在110kV及以上系统〔精度要求不高〕广泛应用 结构简单,单精度不太高 影响因素:元件参数的匹配 1〕环境温度,元件老化 2〕高次谐波,频率偏差 措施: (1〕采用高级材料和精密元件 (2〕温度补偿措施
30min越限累积;(5〕存储、打印以前;(6〕不平衡度
越限报警。
.
.
8.3 三相不平衡的危害和改善措施
8.3.1 三相不平衡产生原因
(1〕事故性不平衡 不对称故障:单相接地、两相接地短路、两相短路 (2〕非事故性不平衡 发电机、变压器:对称 线路:三相阻抗不等,中低压短线路可能不对称 负荷:三相负荷可能不对称,尤其是单相大容量负荷〔电气 化铁路、电弧炉、电焊机)
.
(4〕在两相之间并联电容 电容的大小和连接位置取决于各相的等值负序电流的大小 和相位 (5〕引入附加电动势 此附加电动势的大小应抵消负序电压 如:利用可调节抽头的变压器
.
计算
εU
SL Sd
100%
SL为单相负荷容量
.
8.2 三相不平衡的国家标准和测量
8.2.1 我国标准:
GB/T 15543—2019电能质量 三相电压允许不平衡度 ∙PCC〔公共连接点) : 正常运行:2%;短时:4% ∙ 接于PCC的用户: 引起该点正常电压不平衡度允许值一般为1.3%
.
8.2.2 三相不平衡的测量
三相电流不平衡的原因及危害
三相电流不平衡的原因及危害1、三相负荷不平衡的原因低压电网三相负荷失衡有以下数种原因:(1)低压电网三相负荷不平衡要增加损耗,虽然是早已被提出来了的。
但在农网改造前,由于①农村低压电网不在电业部门的必管范围,设备线路状况极差,线损很高,收不够上缴电费就涨电价,即线损水平虽高但降损的压力不大。
②农村照明等单相负荷很小,只占总用电负荷的5~20%左右,故虽进行过低压整改,多是把配电变压器移到负荷中心、改造低压线路、整改户内线路等。
三相负荷不平衡由于是较次要的因素,没有也不可能引起人们足够注意,故实践很少,亦不可能提出调平三相负荷的具体方法。
(2)农网改造由于规模大、任务重、时间紧,不可能面面俱到(如规划调平三相负荷);加之改造资金有限,为了降低费用,架设了一定数量的单相两线线路,尤其是低压分支线路中,单相两线线路占一定比例;还有在下户线接火施工中,一些施工人员素质低,没有三相负荷平衡的概念,施工中或随意接单相负荷,或为了不接成380V,把单相负荷都接到中间两根线上。
这在一定程度上加重了三相不平衡度。
(3)运行管理中,农村低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相上,也不知道该怎样做才能均衡,造成某相或某两相负荷过多。
更有甚者,有些地方供电所部署对于只有单相负荷且量值较小的三相四线线路,停用两根相线,只用单相两线供电,加重了三相不平衡度。
(4)有的各相负荷看上去比较接近,各相电流也较相近,但中性线电流却很大,甚至超过最大相电流,这是因三相负荷的性质不同所引起的。
如某三相四线供电线路,测得相电压UA =UB=UC=220V,IA=IB=4A,IC=3.2A,IN=4.2A。
为了验证IN 的值,测得各相负荷的相位|ΦA|=|ΦB|=40°,ΦC=0°,则ZA和ZB 中必有一相为感性,一相为容性。
设ZA为感性, ZB为容性,向量图如图1所示。
|IA +IB|=2cos20°IA=7.5(A)则IN =|IA+IB+IC|=4.3(A),理论计算和仪表测量结果基本吻合,说明中性线电流大确因三相负荷的性质不同所引起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、三相电不平衡的解决措施
(一)传统解决方法
1、均匀分布负荷
将不对称负荷分散到不同的供电点,减少集中连接导致的不 平衡度超标,此种方法无需任何设备投资,只需将单相负载均匀 分布到A、B、C三相就可以改善三相不平衡,但我们需要面对一 个客观的问题,各个用户的负荷量不一致且用电时间不一致,又 不能人为控制,因此不能从根本上解决问题。 2 、增加短路容量
课件
6. 影响电能计量影响
根据对称分量法,三相不平衡电流可以分解为三相平衡的 正序、负序、和零序三个分量。负序和零序电流分量的存在必 然会对计量仪表的精度产生影响。即使在高压侧,虽然零序电 流在变压器内环流,不会向系统传递,但负序电流分量可以豪 无阻碍地向系统传递,因此仍然会对计量仪表的精度产生影响。
三相电不平衡是指在电力系统中三相电流(或电压) 幅值不一致,且幅值差超过规定范围。各相负载分布不均、单 相负载用电的不同时性、以及单相大功率负载接入是导致三相 不平衡的主要原因,由于城市民用电网及农用电网中存在大量 单相负载,使得当今三相不平衡现象普遍存在且尤为严重。电 网中的三相不平衡会增加线路及变压器的铜损,增加变压器的 铁损,降低变压器的出力甚至会影响变压器的安全运行,会造 成因三相电压不平衡而降低供电质量,甚至会影响电能变的精 度而造成计量损失。
课件
在电压不平衡状况下供电,即容易造成电压高的一相接带 的用户用电设备烧坏,而电压低的一相接带的用户用电设备则 可能无法使用。所以三相负载不平衡运行时,将严重危及用电 设备的安全运行。
5. 影响用户用电质量
当三相负荷严重不对称,中性点电位就会发生偏移,线路 压降和功率损失就会大大增加。接在重负荷相的单相用户易出 现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。 而接在轻负荷相的单相用户易出现电压偏高,可能造成电器Байду номын сангаас 缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三 相电压不平衡,会引起电机过热现象。所以只有三相负荷平衡 才能保证用户的电能质量。
三相电不平衡的危害及解决措施
一、三相电 二、三相电不平衡的危害 三、三相电不平衡的解决措施
课件
一、三相电
1.概念
三相电是一组幅值相等、频率相等、相位互相差120°的三相 交流电,由有三个绕组的三相发电机产生。
2.三相电负载的接法
分为三角形接法(符号△)和星形接法(符号Y)。 三角形接法的负载引线为三条火线和一条地线,三条火线之
课件
高压侧没有零序电流这迫使零序磁通只能以油箱壁及钢构
件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构 件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温 度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿 命降低。同时,零序电流的存也会增加配变的损耗。
3.电动机效率降低
配变在三相负载不平衡工况下运行,将引起输出电压三相 不平衡。 由于不平衡电压存在着正序、负序、零序三个电压分 量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁 场与正序电压产生的旋转磁场相反,起到制动作用。但由于正 序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。 而由于负序磁场的制动作用,必将引起电动机输出功率减少, 从而导致电动机效率降低。同时,电动机的温升和无功损耗, 也将随三相电压的不平衡度而增大。所以电动机在三相电压不 平衡状况下运行,是非常不经济课和件不安全的。
课件
2.危害
1.增加线路的电能损耗
在三相四线制供电网络中,电流通过线路导线时,因存在阻
抗必将产生电能损耗,其损耗与通过电流的平方成正比,当相电流 平衡的时候,系统的电能损耗最小。
例如设某系统的三相线路、变压器绕组每相的总阻抗为Z(暂不 记中性线),如果三相电流平衡,IA=100A,IB=100A,IC=100A, 总损耗=100²Z+100²Z+100²Z=30000Z。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A, 总损耗=50²Z+100²Z+150²Z=35000Z。 比平衡状态的损耗增加了17%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A, 总损耗=300²Z =90000Z。比平衡状态的损耗增加了3倍。 可见不平衡度愈严重,所造成损课耗件越大。
2.降低配变变压器出力以及增加铁损
配变设计时,其绕组结构是按负载平衡运行工况设计的,
其绕组性能基本一致,各相额定容量相等。配变的最大允许出 力要受到每相额定容量的限制。假如当配变处于三相负载不平 衡工况下运行,负载轻的一相就有富余容量,从而使配变的出 力减少。其出力减少程度与三相负载的不平衡度有关。三相负 载不平衡越大,配变出力减少越多。为此,配变在三相负载不 平衡时运行,其输出的容量就无法达到额定值,其备用容量亦 相应减少,过载能力也降低。假如配变在过载工况下运行,即 极易引发配变发热,严重时甚至会造成配变烧损。配变产生零 序电流。配变在三相负载不平衡工况下运行,将产生零序电流, 该电流将随三相负载不平衡的程度而变化,不平衡度越大,则 零序电流也越大。运行中的配变若存在零序电流,则其铁芯中 将产生零序磁通。
间的电压为380V,任一火线对地线的电压为220V; Y形接法的负载引线为三条火线、一条零线和一条地线,三
条火线之间的电压为380V,任一火线对零线或对地线的电压为 220V。
三相电电器的总功率等于每相电压乘以每相电流再乘于3, 即总功率=电流×电压(220V)×3(p=U×I×3)
课件
课件
二、三相电不平衡的危害 1.概述
4.影响用电设备的安全运行
三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则 降低线路和配电变压器的供电效率,重则会因重负荷相超载过 多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧 毁等严重后果。由于配变是根据三相负载平衡运行工况设计的, 其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相 负载平衡时运行,其三相电流基本相等,配变内部每相压降也 基本相同,则配变输出的三相电压也是平衡的。当配变在三相 负载不平衡时运行,其各相输出电流就不相等,其配变内部三 相压降就不相等,这必将导致配变输出电压三相不平衡。同时, 配变在三相负载不平衡时运行,三相输出电流不一样,而中性 线就会有电流通过。因而使中性线产生阻抗压降,从而导致中 性点漂移,致使各相相电压发生变化。负载重的一相电压降低, 而负载轻的一相电压升高。