标准偏差与相对标准偏差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准偏差
标准偏差(也称标准离差或均方根差)是反映一组测量数据离散程度的统计指标。是指统计结果在某一个时段内误差上下波动的幅度。是正态分布的重要参数之一。是测量变动的统计测算法。它通常不用作独立的指标而与其它指标配合使用。
标准偏差在误差理论、质量管理、计量型抽样检验等领域中均得到了广泛的应用。因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按贝塞尔公式计算。
样本标准差的表示公式
数学表达式:
•S-标准偏差(%)
•n-试样总数或测量次数,一般n值不应少于20-30个
•i-物料中某成分的各次测量值,1~n;
标准偏差的使用方法
z
•在价格变化剧烈时,该指标值通常很高。
•如果价格保持平稳,这个指标值不高。
•在价格发生剧烈的上涨/下降之前,该指标值总是很
低。
标准偏差的计算步骤
标准偏差的计算步骤是:
步骤一、(每个样本数据-样本全部数据之平均值)2。
步骤二、把步骤一所得的各个数值相加。
步骤三、把步骤二的结果除以(n - 1)(“n”指样本数目)。
步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。
六个计算标准偏差的公式[1]
标准偏差的理论计算公式
设对真值为X的某量进行一组等精度测量, 其测得值为l
1、l
2、……l n。令测得值l与该量真
值X之差为真差占σ, 则有σ
1 = l i− X
σ
2 = l2− X
……
σ
n = l n− X
我们定义标准偏差(也称标准差)σ为
(1)
由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式
由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值
来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值l
i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即
设一组等精度测量值为l
1、l
2、……l n
则
……
通过数学推导可得真差σ与剩余误差V的关系为
将上式代入式(1)有
(2)
式(2)就是著名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。由于当时,
,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为
(2')
在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有
于是, 式(2')可写为
(2")
按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺, 即可。
标准偏差σ的无偏估计
数理统计中定义S2为样本方差
数学上已经证明S2是总体方差σ2的无偏估计。即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也就是说S和σ之间存在系统误差。概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差σ的无偏估计值为
(3)
令
则
,Kσ是与样本个数测量次数有关的一个系数, Kσ值见表。
即S
1和S仅相差一个系数Kσ
计算K
σ时用到
Γ(n + 1) = nΓ(n)
Γ(1) = 1
由表1知, 当n>30时, 。因此, 当n>30时, 式(3')和式(2')之间的
差异可略而不计。在n=30~50时, 最宜用贝塞尔公式求标准偏差。当n<10时, 由于K
σ值的影响已不可忽略, 宜用式(3'), 求标准偏差。这时再用贝塞尔公式显然是不妥的。
标准偏差的最大似然估计
将σ的定义式(1)中的真值X用算术平均值代替且当n有限时就得到
(4)
式(4)适用于n>50时的情况, 当n>50时,n和(n-1)对计算结果的影响就很小了。
2.5标准偏差σ的极差估计由于以上几个标准偏差的计算公式计算量较大, 不宜现场采用, 而极差估计的方法则有运算简便, 计算量小宜于现场采用的特点。
极差用"R"表示。所谓极差就是从正态总体中随机抽取的n个样本测得值中的最大值与最小值之差。
若对某量作次等精度测量测得l
1、,且它们服从正态分布, 则
R = l
max− l min
概率统计告诉我们用极差来估计总体标准偏差的计算公式为
(5)
S
3称为标准偏差σ的无偏极差估计, d2为与样本个数n(测得值个数)有关的无偏极差系数, 其值见表2
由表2知, 当n≤15时,, 因此, 标准偏差σ更粗略的估计值为
(5')
还可以看出, 当200≤n≤1000时,因而又有
(5")
显然, 不需查表利用式(5')和(5")了即可对标准偏差值作出快速估计, 用以对用贝塞尔公式
及其他公式的计算结果进行校核。
应指出,式(5)的准确度比用其他公式的准确度要低, 但当5≤n≤15时,式(5)不仅大大提高了计算速度, 而且还颇为准确。当n>10时, 由于舍去数据信息较多, 因此误差较大, 为了提高准确度,
这时应将测得值分成四个或五个一组, 先求出各组的极差R
1、, 再由各组极差求出极差平均值。
极差平均值和总体标准偏差的关系为
需指出, 此时d
2大小要用每组的数据个数n而不是用数据总数N(=nK)去查表2。再则, 分组时一定要按测得值的先后顺序排列,不能打乱或颠倒。
标准偏差σ的平均误差估计
平均误差的定义为