不同光谱下的伏安特性曲线

合集下载

光电效应(包含实验报告和数据处理)

光电效应(包含实验报告和数据处理)

北京科技大学实验报告光电效应实验原理:原理图如右图所示:入射光照射到光电管阴极K上,产生的光电子在电场的作用下向阳极A迁移形成光电流。

改变外加电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。

1)对于某一频率,光电效应I-V AK关系如图所示。

从图中可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0,这个电压V0叫做截止电压。

2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。

3)对于不同频率的光来说,其截止频率的数值不同,如右图:4)对于截止频率V0与频率的关系图如下所示。

V0与成正比关系。

当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。

5)光电流效应是瞬时效应。

即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。

实验内容及测量:1将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。

从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下:波长/nm365404.7435.8546.1577频率/8.2147.408 6.897 5.49 5.196截止电压/V 1.679 1.335 1.1070.5570.434频率和截止电压的变化关系如图所示:由图可知:直线的方程是:y=0.4098x-1.6988所以:h/e=0.4098×,当y=0,即时,,即该金属的截止频率为。

也就是说,如果入射光如果频率低于上值时,不管光强多大也不能产生光电流;频率高于上值,就可以产生光电流。

根据线性回归理论:可得:k=0.40975,与EXCEL给出的直线斜率相同。

我们知道普朗克常量,所以,相对误差:2测量光电管的伏安特性曲线1)用435.8nm的滤色片和4mm的光阑实验数据如下表所示:435.8nm4mm光阑I-V AK的关系V AK I V AK I V AK I V AK I V AK I V AK I 0.040 1.90.858 4.2 2.3009.3 6.60019.512.00027.322.00035.8 0.089 2.10.935 4.4 2.50010 6.80019.912.50027.722.70036.2 0.151 2.3 1.096 4.9 2.70010.67.20020.513.00028.324.10037 0.211 2.4 1.208 5.3 2.90011.17.80021.514.20029.425.70037.9 0.340 2.7 1.325 5.6 3.200128.7002315.00030.126.80038.30.395 2.9 1.468 6.1 3.80013.99.10023.616.10031.127.50038.7 0.470 3.1 1.637 6.7 4.20014.89.80024.616.60031.629.50039.5 0.561 3.3 1.7797.2 4.90016.410.20025.117.50032.330.90040.1 0.656 3.6 1.9307.8 5.40017.410.70025.818.600330.725 3.8 2.0008.3 6.10018.711.10026.319.60033.72)用546.1nm的滤光片和4mm的光阑数据如下表所示:546.1nm4mm光阑I-V AK的关系V AK I V AK I V AK I V AK I0.3 1.3 5.99.113.213.023.815.91.02.6 6.89.814.113.325.316.11.4 3.47.610.415.113.726.416.51.8 4.18.210.816.114.027.216.62.2 4.98.811.117.114.228.016.72.8 5.79.811.617.814.428.916.73.2 6.310.011.918.914.729.716.83.97.111.412.319.714.930.716.94.37.612.112.620.115.031.217.04.98.212.712.920.915.2作两种情况下,光电管得伏安特性曲线:Z实验4.3光电效应和普朗克常数的测量1887年德国物理学家H.R.赫兹发现电火花间隙受到紫外线照射时会产生更强的电火花。

光敏电阻

光敏电阻

光敏电阻————————————————————————————————作者:————————————————————————————————日期:光敏电阻光敏电阻又称光导管,为纯电阻元件,其工作原理是基于光电导效应(半导体材料受光照射后,其导电率发生变化的现象)。

常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。

这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。

这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻 器的阻值迅速下降。

半导体材料受到光照时会产生电子一空穴对,使其导电性能增强,其阻值随光照增强而减小,光线越强,阻值越低。

光敏电阻是一种没有极性的电阻器件。

光敏电阻的响应时间一般为2---50ms 。

光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。

光敏电阻器在电路中用字母“R ”或“RL ”、“RG ”表示。

光敏电阻的工作原理当光照射到光电导体上时,若光电导体为本征半导体材料,而且光辐射能量又足够强,光导材料价带上的电子将激发到导带上去,从而使导带的电子和价带的空穴增加,致使光导体的电导率变大。

为实现能级的跃迁,入射光的能量必须大于光导体材料的禁带宽度Eg ,即 h ν== ≥Eg (eV)式中ν和λ—入射光的频率和波长。

一种光电导体,存在一个照射光的波长限λC ,只有波长小于λC 的光照射在光电导体上,才能产生电子在能级间的跃迁,从而使光电导体电导率增加。

光敏电阻的灵敏度易受湿度的影响,因此要将导光电导体严密封装在玻璃壳体中。

如果把光敏电阻连接到外电路中,在外加电压的作用下,用光照射就能改变电路中电流的大小,其连线电路如图所示。

光敏电阻具有很高的灵敏度,很好的光谱特性,光谱响应可从紫外区到红外区范围内。

而且体积小、重量轻、性能稳定、价格便宜,因此应用比较广泛。

光敏电阻分类按半导体材料分:本征型光敏电阻、掺杂型光敏电阻。

实验七、八__硅光电池实验

实验七、八__硅光电池实验

实验七光电池的光电特性及伏安特性一、实验目的1、了解硅光电池的光照特性,即短路电流及开路电压与光照的关系。

2、了解光电池在照度一定得情况下,它的输出电流与电压随负载变化的关系。

二、实验原理PN结的形成及单向导电性采用反型工艺在一块N型(P型)半导体的局部掺入浓度较大的三价(五价)杂质,使其变为P型(N型)半导体。

如果采用特殊工艺措施,使一块硅片的一边为P型半导体,另一边为N型半导体则在P型半导体和N型半导体的交界面附近形成PN结。

PN结是构成各种半导体器件的基础,许多半导体器件都含有PN结。

如图1所示,Θ代表得到一个电子的三价杂质(例如硼)离子,带负电; 代表失去一个电子的五价杂质(例如磷)离子,带正电。

由于P区有大量空穴(浓度大),而N区的空穴极少(浓度小),即P区的空穴浓度远远高于N区,因此空穴要从浓度大的P区向浓度小的N区扩散,并与N区的电子复合,在交界面附近的空穴扩散到N区,在交界面附近一侧的P区留下一些带负电的三价杂质离子,形成负空间电荷区。

同样,N区的自由电子也要向P区扩散,并与P区的空穴复合,在交界面附近一侧的N区留下一些带正电的五价杂质离子,形成正空间电荷区。

这些离子是不能移动的,因而在P型半导体和N型半导体交界面两侧形成一层很薄的空间电荷区,也称为耗尽层,这个空间电荷区就是PN结。

形成空间电荷区的正负离子虽然带电,但是它们不能移动,不参与导电。

而在这个区域内,载流子极少,所以空间电荷区的电阻率很高。

此外,这个区域内多数载流子已扩散到对方并复合掉了,或者说消耗尽了,所以空间电荷区有时称为耗尽层。

正负空间电荷在交界面两侧形成一个电场,成为内电场,其方向从带正电的N区指向带负电的P区,如图1所示。

由P区向N区扩散的空穴在空间电荷区将受到内电场的阻力,而由N区向P区扩散的自由电子也将受到内电场的阻力,即内电场对多数载流子(P区的空穴和N区的自由电子)的扩散运动起阻挡作用,所以空间电荷区又称为阻挡层。

光敏三极管的主要技术特性及参数

光敏三极管的主要技术特性及参数

3、光电特性
光敏三极管的光电特性反映了当外加电压恒定时,光电流I L与光照度之间的关系。

下图给出了光敏三极管的光电特性曲线光敏三极管的光电特性曲线的线性度不如光敏二极管好,且在弱光时光电流增加较慢。

4、温度特性
温度对光敏三极管的暗电流及光电流都有影响。

由于光电流比暗电流大得多,在一定温度范围内温度对光电流的影响比对暗电流的影响要小。

下两图中分别给出了光敏三极管的温度特性曲线及光敏三极管相对灵敏度和温度的关系曲线。

5、暗电流I D
在无光照的情况下,集电极与发射极间的电压为规定值时,流过集电极的反向漏电流称为光敏三极管的暗电流。

6、光电流I L
在规定光照下,当施加规定的工作电压时,流过光敏三极管的电流称为光电流,光电流越大,说明光敏三极管的灵敏度越高。

点击下载光敏三极管的主要技术特性及参数。

半导体发光二极管测试国标(精)

半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。

1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。

由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。

通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。

图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。

2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。

(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。

变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。

如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。

_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。

图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。

而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。

(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。

因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。

稳压二极管伏安特性

稳压二极管伏安特性

实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。

通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。

这种研究元件特性的方法称为伏安法。

伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。

伏安法的主要用途是测量研究线性和非线性元件的电特性。

非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。

【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。

击穿电压等)。

【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。

仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。

图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。

2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。

3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V电压挡。

24、 在接线的过程中,注意不要将各个元件的正负向接反。

5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。

6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。

如果观测到反向电流有突变趋势,应该立即减小电压。

图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。

实验48 光电效应的研究

实验48 光电效应的研究

实验48 光电效应的研究光电效应是由赫兹在1887年首先发现的,这一发现对认识光的本质具有极其重要的意义。

1905年,爱因斯坦从普朗克的能量子假设中得到启发,提出光量子的概念,成功地说明了光电效应的实验规律。

1916年,密立根以精确的光电效应实验证实了爱因斯坦的光电方程,测出的普朗克常数与普朗克按绝对黑体辐射定律中的计算值完全一致。

爱因斯坦和密立根分别于1921年和1923年获得诺贝尔物理学奖。

利用光电效应已制成光电管、光电倍增管等光电器件,在科学技术中得到广泛应用。

【实验目的】1.了解光的量子性,光电效应的规律,通过实验加深对光的量子性的理解。

2.测量光电管的伏安特性曲线,找出不同光频率下的截止电压。

3.验证爱因斯坦方程,并求出普朗克常数。

【实验仪器】DH —CD —1型普朗克常数测定仪【实验原理】在光的照射下,从金属表面释放电子的现象称为光电效应。

光电效应的基本实验事实可归纳为:⑴ 光电发射率(光电流)与光强成正比;⑵ 光电效应存在一个截止频率(阈频率),当入射光的频率低于某一阈值时,不论光的强度如何,都没有光电子产生;⑶ 光电子的动能与光强无关,但与入射光的频率成正比;⑷ 光电效应是瞬时效应,一经光线照射,立刻产生光电子。

爱因斯坦突破了光的能量连续分布的观念,认为频率为ν的光,是以光量子的形式,将一份一份大小为hν的能量向外辐射。

当能量为hν的一个光子与金属中的电子碰撞,其能量全部被这个电子吸收时,电子有可能克服表面势垒逸出金属表面,这就是1887年赫兹观察到的光电效应。

由于光的照射而逸出金属表面的电子称为光电子,由光电子的运动产生的电流,称为光电流。

如果电子从金属表面逸出时所需的逸出功为A ,逸出时电子的动能为1/2mv 2,根据能量守恒定律,应有A mv h +=221ν (1) 其中,h :普朗克常数,公认值为6.62916×10-34J·s ;m :电子的质量;ν:入射光的频率;v :光电子逸出金属表面时的初速度;A :电子从金属表面逸出时所需逸出功。

太阳能光伏电池实验

太阳能光伏电池实验

0
图1.单晶硅太阳能电池板(25℃)实际测量得到的暗特性I-V曲线
图2.不同温度时单晶硅太阳能电池片的输出伏安特性
亮特性
光电流IL在负载上产生电压降,这个电压降可以使pn 结正偏。如图3所示,正偏电压产生正偏电流IF。在 反偏情况下,pn结电流为:
从亮特性伏安曲线可直接读出
图5.实测单晶硅太阳能电池板输出伏安特性曲线
太阳能电池的效率图6.最大源自率矩形太阳能电池的光谱响应
【1】近代物理实验,西北大学物理学系 【2】安毓英,刘继芳光电子技术(第三版),电子 工 业出版设,北京:117-119,136-141 【3】茅倾青,潘立栋,陈骏逸等,太阳能电池基本特性测 定实验,物理实验[J],2004,24(11):6-9 【4】周孑民,太阳能光伏电池特性实验研究,能源与 环境[J],2011,4:72-73
1.光生伏特效应 2.无光情况下的电流电压关系 (暗特性) 3.光照情况下的电流电压关系 (亮特性) 4.太阳能电池的效率 5.太阳能电池的光谱响应 6.参考文献
光生福特效应
暗特性
无光照情况下的太阳能电池等价于一个理想pn结, 其电流电压关系为肖克莱方程:
pn结的单向导通性 (整流特性): 暗条件下太阳能 电池IV曲线不对称

太阳能电池的暗伏安特性与光谱特性实验

太阳能电池的暗伏安特性与光谱特性实验

四、太阳能光伏电池暗伏安特性与光谱特性实验1.实验目的1.了解太阳能光伏电池暗伏安特性2.了解太阳能光伏电池光谱特性3.掌握太阳能光伏电池的暗伏安特性曲线绘制2.实验原理(1)光伏电池暗伏安特性光伏电池暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。

太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。

在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。

为得到所需输出电压,通常将若干已并联的电池组串连。

因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。

(2)光伏电池光谱特性太阳能电池的光谱特性是指太阳能电池随能量相同但波长不同的入射光而变化的关系。

在太阳能电池中只有那些能量大于其材料禁带宽度的光子才能在被吸收时在光伏材料中产生电子空穴对,而那些能量小于禁带宽度的光子即使被吸收也不能产生电子空穴对(它们只能是使光伏材料变热)。

光伏材料对光的吸收存在一个截止波长。

理论分析表明,对太阳光而言,能得到最佳工作性能的光伏材料应有1.5电子伏的禁带宽度,当禁带宽度增加时,被光伏材料吸收的总太阳能就会越来越少。

每种太阳能电池对太阳光都有自己的光谱响应曲线,它表明太阳能电池对不同波长光的灵敏度(光电转换能力)。

当日光照到太阳能电池上时,某一种波长的光和该波长的太阳能电池光谱灵敏度,决定该波长的光电流值,而总的光电流值是各个波长光电流值的总和。

3.实验内容与步骤(1)光伏电池暗伏安特性曲线绘制1)关闭模拟光源,将挡光板遮住电池组件A,调节直流恒压源电压到零点,用实验导线连结如图2-1所示电路,调节电阻箱的电阻至50欧姆(限流),旋转恒压源电压旋钮,间隔0.5V左右,记录一次电压、电流值。

图2-1光伏电池暗伏安特性正向测量电路2)将直流恒压源电压调到零,调换电池组件A的正负极,再间隔0.5V左右,记录电压、电流值。

非线性元件

非线性元件

实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。

通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。

这种研究元件特性的方法称为伏安法。

伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。

伏安法的主要用途是测量研究线性和非线性元件的电特性。

非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。

【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。

击穿电压等)。

【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。

仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。

图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。

2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。

3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V电压挡。

4、 在接线的过程中,注意不要将各个元件的正负向接反。

5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。

6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。

如果观测到反向电流有突变趋势,应该立即减小电压。

图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。

光敏电阻的物理特性

光敏电阻的物理特性

Ⅰ.光敏电阻的物理特性光敏电阻:常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。

这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。

这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。

Ⅱ.组成特性光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器;入射光强,电阻减小,入射光弱,电阻增大。

还有另一种入射光弱,电阻减小,入射光强,电阻增大。

Ⅲ.作用光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。

常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。

光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。

设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。

根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器、红外光敏电阻器、可见光光敏电阻器。

Ⅳ.参数特性(1)光电流、亮电阻。

光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用“100LX”表示。

(2)暗电流、暗电阻。

光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。

外加电压与暗电流之比称为暗电阻,常用“0LX”表示。

(3)灵敏度。

灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。

(4)光谱响应。

光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。

若将不同波长下的灵敏度画成曲线,就可以得到光谱响应的曲线。

(5)光照特性。

光照特性指光敏电阻输出的电信号随光照度而变化的特性。

从光敏电阻的光照特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻值开始迅速下降。

太阳能电池伏安特性

太阳能电池伏安特性

太阳能灯具
太阳能灯具是利用太阳能电池将 光能转换为电能,为照明设备提
供电力的系统。
太阳能灯具具有环保、节能、安 全、方便等优点,广泛应用于城 市道路、公园、庭院等公共场所
的照明。
太阳能灯具的性能与太阳能电池 的伏安特性密切相关,需要选择 合适的太阳能电池板和控制器以
保证照明的稳定性和效果。
06
结论
短路电流是指在电路短路时,流过太阳能电池板的电流大小。它是评估太阳能电池板光能转换效率的 重要参数,反映了电池板在最佳工作状态下的性能。在一定光照条件下,短路电流越大,表示电池板 的光电转换效率越高。
最大功率点
要点一
总结词
最大功率点是指在特定光照条件下,太阳能电池板输出功 率最大的点。
要点二
详细描述
伏安特性曲线的绘制方法
测量方法
在太阳能电池表面施加不同的光 照强度,测量对应的电流和电压 值,并记录数据。
数据处理
将测量数据绘制成散点图,并使 用曲线拟合软件进行拟合,得到 伏安特性曲线。
伏安特性曲线的影响因素
01
光照强度
随着光照强度的增加,太阳能电池的短路电流和开路电压均有所提高,
但最大功率点基本保持不变。
太阳能热水器是利用太阳能光热转换 原理,将太阳辐射能转化为热能,为 家庭或商业设施提供热水和供暖的系 统。
太阳能热水器的性能与太阳能电池的 伏安特性密切相关,需要选择合适的 太阳能电池板和控制器以保证系统的 稳定性和效率。
太阳能热水器具有环保、节能、安全、 经济等优点,是当前绿色建筑和可再 生能源利用的重要方向之一。
太阳能电池的应用
光伏发电系统
光伏发电系统是利用太阳能电池将光能转换为直流电的系统,广泛应用于分布式发 电、离网发电和并网发电等领域。

光电池

光电池

光电池简介一、光生伏特效应当用适当波长的光照射非均匀半导体(PN结等)时,由于内建场的作用(不加外电场),半导体内部结区两侧产生电动势(光生电压),如将PN结外部短路,则会出现电流(光生电流)。

这种由于光照引起的物质内部的电场的变化也称光电效应,为了与引起光电子发射的光电效应有所区别,也叫内光电效应。

在技术领域通常把上述现象称为光生伏特效应。

1.PN结的光生伏特效应设入射光垂直PN结面。

如结较浅,光子将进入PN结区,甚至更深入到半导体内部。

能量大于禁带宽度的光子,由本征吸收在结的两边产生电子—空穴对。

在光激发下多数载流子浓度一般改变很小,而少数载流子浓度却变化很大,因此应主要研究光生少数载流子的运动。

由于PN结势垒区内存在较强的内建场(自N区指向P区),结两边的光生少数载流子受该场的作用,各自向相反方向运动:P区的电子穿过PN结进入N区;N区的空穴进入P区,使P端电势升高,N端电势降低,于是在PN结两端形成了光生电动势,这就是PN 结的光生伏特效应。

由于光照产生的载流子各自向相反方向运动,从而在PN结内部形成自N区向P区的光生电流I L见下图(b)。

(a)无光照(b)光照激发图1 PN结能带图由于光照在PN结两端产生光生电动势,相当于在PN结两端加正向电压V,使势垒降低为qV D-qV,产生正向电流I F。

在PN结开路情况下,光生电流和正向电流相等时,PN 结两端建立起稳定的电势差V0。

(P区相对于N区是正的),这就是光电池的开路电压。

如将PN结与外电路接通,只要光照不停止,就会有源源不断的电流通过电路,PN结起了电源的作用。

这就是光电池(也称光电二极管)的基本原理。

金属-半导休形成的肖持基势垒层也能产生光生伏特效应(肖特基光电二极管),其电子过程和PN 结相类似,不再赘述。

2.光电池的电流电压特性光电池工作时共有三股电流:光生电流I L ,在光生电压V 作用下的PN 结正向电流I F ,流经外电路的电流I 。

光电池伏安特性曲线与普通半导体二极管相同

光电池伏安特性曲线与普通半导体二极管相同
0 .3 0 .6
流 光 电 /mA
0 .2 2
0 .4 0 .2 0
0 .1
0
2 00 0 照度 / lx
4 00 0
图2.4.4 硅光电池的光照特性
V 光 生 电 /压
1
因此,光电池作为测量元件使用时,应利用短路 电流与照度有较好线性关系的特点,可当作电流 源使用,而不宜当作电压源使用。所谓短路电流 是指外接负载电阻远小于光电池内阻时的电流。 从实验可知 , 负载越小 , 光电流与照度之间的线 性关系越好 , 而且线性范围越宽。负载在 100Ω 以下,线性还是比较好的 , 负载电阻太大 ,则线性 变坏,如图2.4.5所示。
4) 温度特性 光电池的温度特性是指开路电压 Uoc 和 短 路 电 流 Isc 随 温 度 变 化 的 关 系 。 图 2.4.7 为硅光电池在照度为 1000lx 下的温 度特性曲线。由图可知 ,开路电压随温度 上升下降很快 ,但短路电流随温度的变化 较慢。 温度特性影响应用光电池的仪器设备 的温度漂移 , 以及测量精度或控制精度等 重要指标。当其用作测量器件时 ,最好能 保持温度恒定或采取温度补偿措施。
光电池在不同的光强照射下可产生不同的光电流和光 生电动势。 短路电流在很大范围内与光强成线性关系。 开路电压随光强变化是非线性的,并且当照度在 2000lx时趋于饱和。
硅光电池的光照特性,如图2.4.4所示。 开路电压输出:非线性(电压---光强),灵敏度高 短路电流输出:线性好(电流---光强) ,灵敏度低 开关测量(开路电压输出),线性检测(短路电流输 出)
I / mA 0 .5 k 9 00 (lx ) 0 .6 A 8 00 0 .5 0 .4 0 .3 0 .2 0 .1 0 7 00 6 00 5 00 4 00 3 00 2 00 1 00 1 00 2 00 3 00 4 00 U / mV 3 k 1 k

太阳能电池伏安特性

太阳能电池伏安特性
1)最大输出功率
Pm J mVm
2)填充因子
Pm J mVm FF J sc Voc J sc Voc
3)光电转换效率
Pm J mVm (%) ,Pin 表示入射到太阳能电池 上的辐照度 Pin Pin
材料的禁带宽度直接影响到光能转换为电能的效率,理想 的情况是用Eg值介于1.2~1.6eV的材料制作成太阳能电池, GaAs和CdTe是带隙较为理想的材料
太阳能电池伏安特性影响因素
(1)辐照度影响
不同辐照强度太阳电池的J-V曲线
(2)温度的影响
太阳能电池的效率随温度的升高而下降,主要原因是电池的开 路电压随温度的升高而下降,电池的短路电流对温度不敏感, 且随温度升高略有上升
太阳能电池的伏安特性
太阳能电池的工作原理 理想太阳能电池等效电路图和伏 安特性曲线 实际太阳能电池等效电路图和伏 安特性曲线 太阳能电池伏安特性测试和影响 因素
太阳能电池的工作原理
当太阳光照射到太阳能电池上并被吸收时,其中能量大于 电池吸收材料禁带宽度Eg的光子把价带中电子激发到导带 上去,形成导带电子,价带中留下带正电的空穴,即电 子——空穴对,通常称它们为光生载流子。导带电子和价 带空穴在不停的运动中扩散到pn结的空间电荷区,被该区 的内建电场分离,电子被扫到电池的n型一侧,空穴被扫 到电池的p型一侧,从而在电池上下两面(两极)分别形成 了正负电荷积累,产生“光生电压”。如果在电池的两端 接上负载,在持续的太阳光照下,就会不断有电流经过负 载,这就是太阳能电池的基本工作原理。
J sc k BT pn结两端的电压即为开路 电压Voc,Voc ln(1 ) q J0
3)外接负载,正常工作状态
理想太阳能电池伏安特性曲线

测量辉光放电伏安特性曲线验证帕邢定律击穿电压

测量辉光放电伏安特性曲线验证帕邢定律击穿电压

条件
2W,20Pa 2W,40Pa 4W,40Pa
电子温度 (104k)
8.31
7.33
8.44
(由于两个探针的面积并不完全相同,在探针电压反向时可能 会出现电流波动,故在U=0点附近线性可能不那么好,数值会出 现一定误差)
由表中数据可知,放电功率一定,气压增大电子温度随之减小, 这是因为增加气压时电子增加,要保持放电功率相同,需要降 低电子能量,同时电子平均自由程也较小;而气压一定时,功 率增大电子温度随之增大,因为功率大则场强较大,在相同平 均自由程内电子获得能量大。
双探针法测量电子温度
公式: Te 2k
eI dI
dV (v 0)
其中e=1.6*10-19库,k=1.38*10-23,
所以只要知道饱和离子流I+和I-V曲线零点的斜率dI/dV即可求得电子温
度Te。 如图:
此直线可求得过 零点斜率
求此交点纵 坐标即可得 饱和离子流
将2W,20Pa、2W,40Pa和4W,40Pa条件下探针测量所求得的电子温度制表 如下:
① 阿斯顿暗区:阴极前面的很薄的一 层暗区,是F.W.阿斯顿于1968年在实验 中发现的。在本区中,电子刚刚离开阴 极,飞行距离尚短,从电场得到的能量 不足以激发气体原子,因此没有发光。
② 阴极辉区:由于电子已具有足以激 发原子的能量,在本区造成激发而形成 的区域,当激发态原子恢复为基态时就 发光。(发热较大,使放电管受热不均)
实验操作中的一些问题
⒈ 仪器精度有待提高,抽气、进气的平衡很难控制,导致测量的 放电电流常处于变化中,经常是边测量边调节气压平衡,浪费大量 的时间,也造成测量数据误差。
2. 放电管的长度可以适当加长。可以使极距调节有较大空间,可 能能够看到更多辉光放电的不区域,也能使正柱区更明显。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:光电效应测普朗克常量学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、 实验目的:1、研究光电管的伏安特性及光电特性。

2、比较不同频率光强的伏安特性曲线与遏制电压。

3、了解光电效应的规律,加深对光的量子性的理解。

4、验证爱因斯坦光电效应方程,并测定普朗克常量h 。

二、 实验仪器:YGD-1 普朗克常量测定仪(内有75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)图(1)1—电流量程调节旋钮及其量程指示; 2—光电管输出微电流指示表; 3—光电管工作电压指示表; 4—微电流指示表调零旋钮;5—光电管工作电压调节(粗调); 6—光电管工作电压调节(细调); 7—光电管工作电压转换按钮; 8—光电管暗箱;9—滤色片,光阑(可调节)总成; 10—档光罩;11—汞灯电源箱; 12—汞灯灯箱。

三、 实验原理:光电效应的实验示意图如图1所示,图中GD 是光电管,K 是光电管阴极,A 为光电管阳极,G 为微电流计,V 为电压表,E 为电源,R 为滑线变阻器,调节R 可以得到实验所需要的加速电位差AK U 。

光电管的A 、K 之间可获得从 U -到0再到 U +连续变化的电压。

实验时用的单色光是从低压汞灯光谱中用干涉滤色片过滤得到,其波长分别为: nm nm nm nm nm 577 ,546 ,436 ,405 ,365。

无光照阴极时,由于阳极和阴极是断路的,所以G 中无电流通过。

用光照射阴极时,由于阴极释放出电子而形成阴极光电流(简称阴极电流)。

加速电位差AK U 越大,阴极电流越大,当AK U 增加到一定数值后,阴极电流不 再增大而达到某一饱和值H I ,H I 的大小和照射光的强度成正比(如图2所示)。

加速电位差AK U 变为负值时,阴极电流会迅速减少,当加速电位差AK U 负到一定数值时,阴极电流变为“0”,与此对应的电位差称为遏止电位差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档