2012年考研数学一真题及解析

合集下载

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

2012考研《数学》大纲解析及备考指导汇总

2012考研《数学》大纲解析及备考指导汇总

2012考研《数学》大纲综述及备考指导2011年9月15日教育部考试中心发布了2012年全国硕士研究生入学统一考试数学考试大纲,与去年相比考试内容和考试要求上没有变化,具体如下:试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分.数学一高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学二高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学三2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.农学数学高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.大纲在考试要求和考试内容上没有变化,对于考生来说可以按照既定的复习计划,按部就班的进行备考了。

与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方方面,可以形成知识体系脉络。

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一(二维随机变量及其分布)历年真题试卷汇编2(总分150, 做题时间180分钟)选择题1.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y(z)为随机变量Z=XY的分布函数,则函的概率分布P(Y=0)=P(Y=1)=1/2.记FZ数F(z)的间断点的个数为( ).ZSSS_SINGLE_SELAB1C2D3分值: 7.5答案:BF(z)=P(Z≤z)=P(XY≤z)=P(XY≤z|Y=0)P(Y=0)+P(XY≤z|Y=1)P(Y=1)Z=[P(XY≤z|Y=0)+P(XY≤z|Y=1)]/5.又X,Y相互独立,故 F(z)=[P(X·0≤z)+P(X≤z)]/2.Z(z)=[+ф(z)]/2=ф(z)/2.当z<0时, FZ(z)=[P(Ω)+P(X≤z)]/2=[1+ф(z)]/2.当z≥0时, FZ综上所述,得到因(z)只有一个间断点z=0.仅B入选.所以FZ2.[2012年] 设随机变量X与Y相互独立,且分别服从参数为1和参数为4的指数分布,则P(X<Y)=( ).SSS_SINGLE_SELA1/5B1/3C2/5D4/5分值: 7.5答案:A由题设有而X与Y相互独立,故f(x,y)=fX (x)fY(y)=则P(X<Y)= f(x,y)dxdy=∫0+∞∫x+∞4e-(x+4y)dxdy=一∫+∞e-x dx∫x+∞e-4y d(一4y)=∫0+∞e-x·e-4x dx=∫+∞e-5x dx=仅A入选.3.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则( ).SSS_SINGLE_SELAa=0.2,b=0.3Ba=0.4,b=0.1Ca=0.3,b=0.2Da=0.1,b=0.4分值: 7.5答案:B由=(a+0.4)+(b+0.1)=a+b+0.5=1(归一性)知,a+b=0.5.又由事件{X=0}与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故 a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4.从而b=0.5一a=0.1.填空题4.[2003年] 设二维随机变量(X,Y)的概率密度为则P(X+Y≤1)=______.SSS_FILL分值: 7.5答案:首先求出积分区域D ∩ G.D ∩ G实质上是G={(x,y)|0≤x≤y≤1}与D={(x,y)|x+y≤1}交集.可知,0≤x≤y≤1是在y=x上方的区域,而x+y≤1是直线x+y=1下方的区域.两者之交即为D ∩ G(见图),故5.[2015年] 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY—Y<0}=_______.SSS_FILL分值: 7.5答案:因(X,Y)~N(1,1;0,1;0),ρ=0,故X,Y相互独立,则P{XY—y<0}=P{(X一1)Y<0}=P{X一1<0,Y>0}+P{X一1>0,Y<0}=P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1}=P{X>1}=.因Y~N(0,1),故P{Y>0}=P{Y<0}=.所以6.[2006年] 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P(max{X,Y}≤1)=______.SSS_FILL分值: 7.5答案:1/9P(max(X,Y)≤1)=P({X≤1}{Y≤1})=P(X≤1,Y≤1)=P(X≤1)P(Y≤1)=[(1一0)/(3—0)][(1一0)/(3一0)]=(1/3)×(1/3)=1/9.解答题[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=一1,0,1),Y的概率密度为记Z=X+Y.SSS_TEXT_QUSTI7.求P(Z≤1/2|X=0);分值: 7.5答案:由于X,Y相互独立,有P(Z≤1/2 |X=0)=P(X+Y≤1/2|X=0)=P(y≤1/2|X=0)SSS_TEXT_QUSTI8.求Z的概率密度fZ(z).分值: 7.5答案:因X的可能取值为一1,0,1,而fY(y)取非零值的自变量的变化范围为0≤y≤1,一1≤z=x+y≤2.(1)当z≥2时,X,Y的所有取值均满足上式,故F(z)=P(Z≤z)=P(X+Y≤z)=1.(2)当z=x+y<一1时,X,Y的取值为空值,则P(X+Y≤z)==0.(3)当一1≤z<2时,下面用全概率公式求出FZ(z)的表示式:FZ(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=一1)P(X=一1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1)(Fy(z)为y的分布函数),则fZ (z)=F'Z(z)=[FY(z+1)+fY(z)+fY(z—1)].当0<z+1<1或0<z<1或0<z—1<1,即一1<z<2时,FZ(z)=;其他情况下,fZ(z)=0.[2017年] 设随机变量X,Y相互独立,,Y的概率密度为fY(y)=SSS_TEXT_QUSTI9.求P{Y≤E(Y)};分值: 7.5答案:因E(Y)=∫-∞+∞yfY(y)dy=∫1y·2ydy=,故SSS_TEXT_QUSTI10.求Z=X+Y的概率密度.分值: 7.5答案:Z的分布函数FZ(Z)=P{X+Y≤z,X=0}+P{X+Y≤z,X=2} =P{X=0,Y≤z}+P{X=2,Y+2≤z}=,故Z的概率密度函数为[2014年] 设随机变量X的概率分布为P(X=1)=P(X=2)=,在给定X=i的条件下,随机变量y服从均匀分布U(0,i)(i=1,2).SSS_TEXT_QUSTI11.求Y的分布函数F(y);Y分值: 7.5答案:记U(0,i)的分布函数为F(x)(i=1,2),则i(y)=p(Y≤Y)=P(x=1)P(Y≤y|X=1)+P(X=2)P(Y≤y|X=2)于是FY因在X=i的条件下,Y服从均匀分布U(0,i)(i=1,2),故当y≤0时,(y)=0.Fi当0<y≤1时,当1<y<2时,当y≥2时,所以SSS_TEXT_QUSTI12.求期望E(Y).分值: 7.5答案:(y)可得概率密度函数为由Y的分布函数FY+∞yfy(y)dy=故E(Y)=∫-∞[2013年] 设随机变量X的概率密度为令随机变量,SSS_TEXT_QUSTI13.求y的分布函数;分值: 7.5答案:+∞f(x)dx=,得到a=9.此时,X的利用概率密度函数的归一性,由1=∫-∞概率密度为(y).由题设知,Y的取值范围为1≤Y≤2,故设Y的分布函数为FY(y)=P{Y≤y}=0;P(1≤Y≤2)=1.因而当y<1时,FY当1≤Y<2时,F(y)=P{Y≤y}=P{Y<1}+P{Y=1}+P{1<Y≤y}Y=0+P{X≥2}+P{1<X≤Y}=(y)=P{Y≤y}=P{Y≤2}=1.当Y≥2时,FY综上得到y的分布函数为SSS_TEXT_QUSTI14.求概率P{X≤Y}.分值: 7.5答案:由随机变量y的分段表示式易看出,满足x≤y的x的取值范围为x<2.因而所求概率为P{X≤Y}=P{X<2}=[2016年]设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<y<)上服从均匀分布.令SSS_TEXT_QUSTI15.写出(X,Y)的概率密度;分值: 7.5答案:易求得区域D的面积,故(X,Y)的概率密度SSS_TEXT_QUSTI16.问U与X是否相互独立?并说明理由;分值: 7.5答案:考查事件{U=0}与乘积的概率是否与事件{U=0}的概率的乘积相等.事实上,它们不相等.易求得显然,故U与X不独立.SSS_TEXT_QUSTI17.求Z=U+X的分布函数FZ(z).分值: 7.5答案:下面用全集分解法求f(u,v)的分布函数FZ(z)=P(Z≤z)=P(U+X≤z).FZ(z)=P(U+X≤z)=P(U=0,U+X≤z)+P(U=1,U+X≤z)=P(U=0,X≤z)+P(U=1,U≤z—1)=P(X>y,X≤z)+P(X≤Y,X≤z一1)注意到x取值的边界点为0,1,而U取值边界点也为0,1,因而z的取值的分段点为0,1,2.于是应分下述四种情况分别求出FZ(z)的表示式.①z<0时,则P(X≤z)==0,P(X≤z—1)==0,故FZ(z)=0.②0≤z<1时,③1≤z<2时,④z≥2时,FZ(z)=P(X>Y)+P(X≤y)=P(U=0)+P(U=1)=1.综上所述,Z的分布函数为[2009年] 袋中有一个红球、两个黑球、三个白球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球个数.SSS_TEXT_QUSTI18.求P(X=1|Z=0);分值: 7.5答案:(I)用缩减样本空间的方法求之.求时应注意两次取球取到的是不同类的球,要讲次序.因而两次都没取到白球(Z=0)的条件下,只能取红、黑两种球,且每次都要取到一个红球,其可能性为C11×C21+C21×C11=4,总的可能性为C 31×C31=3×3=9,故SSS_TEXT_QUSTI19.求二维随机变量(X,Y)的概率分布.分值: 7.5答案:由题设知X与Y的所有可能取值均为0,1,2,而取值的概率可由古典概率的计算公式得到.计算时要注意两次取球取到的是不同类的球要讲次序,取到的是同类的球不讲次序.故(X,Y)的概率分布为20.设随机变量X的概率密度为f(x)=e-|x|/2,一∞<x<+∞,问随机变量X 与|X|是否相互独立?为什么?SSS_TEXT_QUSTI分值: 7.5答案:因X和|X|为两个随机变量,下面证明对于给定的a(0<a<+∞),式P(X<x,Y<y)=P(X<x)P(Y<y)不成立,从而X与|X|不相互独立.事实上,因事件{|X|<a}包含在事件{X<a}之中,即{X<a} {|X|<a},故P(X<a,|X|<a)=P({X<a}∩{|X|<a})=P(|X|<a).又P(X<a)<1,P(|X|<a)>0,因而P(X<a)P(|X|<a)<P(|X|<a).于是P(X<a,|X|<a)=P(|X|<a)>P(X>a)P(|X|<a),故P(X>a,|X|<a)≠P(X<a)P(|X|<a) (0<a<+∞).可知,X与|X|不相互独立.1。

2012考研数学一真题及解析

2012考研数学一真题及解析

2012考研数学一真题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 【答案】:C【解析】:221lim1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2) 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n -- (3) 【答案】:【解析】:由于(,)f x y 在()0,0处连续,可知如果22(,)limx y f x y x y →→+存在,则必有0(0,0)lim (,)0x y f f x y →→== 这样,220(,)limx y f x y x y →→+就可以写成2200(,)(0,0)lim x y f x y f x y ∆→∆→∆∆-∆+∆,也即极限220(,)(0,0)limx y f x y f x y ∆→∆→∆∆-∆+∆存在,可知lim 0x y ∆→∆→=,也即(,)(0,0)00f x y f x y o∆∆-=∆+∆+。

由可微的定义可知(,)f x y 在(0,0)处可微。

(4) 【答案】:(D) 【解析】:2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (1998年)已知函数y=y(x)在任意点x处的增量且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于( )(A)2π(B)π(C)(D)2 (2016年)若是微分方程y′+p(x)y=q(x)的两个解,则q(x)=( )(A)3x(1+x2)(B)一3x(1+x2)(C)(D)3 (2008年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )(A)y"′+y"一4y′一4y=0(B)y"′+y"+4y′+4y=0(C)y"′一y"一4y′+4y=0(D)y"′一y"+4y′一4y=04 (2015年)设是二阶常系数非齐次线性微分方程y"+ay′+by=ce x的一个特解,则( )(A)a=一3,b=2,c=一1(B)a=3,b=2,c=一1(C)a=一3,b=2,c=1(D)a=3,b=2,c=1二、填空题5 (2006年)微分方程的通解是__________。

6 (2008年)微分方程xy′+y=0满足条件y(1)=1的解是y=___________。

7 (2014年)微分方程xy′+y(lnx—lny)=0满足y(1)=e3的解为y=____________。

8 (2005年)微分方程xy′+2y=zlnx满足的解为___________。

9 (2011年)微分方程y′+y=e-x cosx满足条件y(0)=0的解为y=__________。

10 (2000年)微分方程xy"+3y′=0的通解为_____________。

11 (2002年)微分方程xy"+y′2=0满足初始条件的特解是____________。

昆明理工大学考研试题数学分析(2012-2016年)

昆明理工大学考研试题数学分析(2012-2016年)

(2)用上、下确界的定义验证所得两个结果中的一个.
二、(10 分)叙述函数极限 lim f (x) 的归结原则,并运用它证明 lim cos x 不存在.
x
x
三、(15
分)设
f
(x)
x2,
x 3,
ax b, x 3,
试确定 a,b 的值,使 f 在 x 3 处可导.
四、(15 分)求下列极限
证明:(1) F ( x) 2 ; (2)方程 F ( x) 0 在区间 (a, b) 内有且仅有一个根.(15 分)
4、求幂级数 nx n1
n1
的收敛区间及和函数,并利用所得的结果求级数
n1
n 2n1
的和.(15 分)
5、已知函数
f
( x,
y)
x2 (1
x2 ) x2
y2 (1 y2
(3) f (x, y) 在点 (0, 0) 可微.(15 分)
Ñ 9、 计算曲线积分 (x y )ds, 其中 L 为由方程 y x2 与 y x 所围成的闭曲线.(15 分)
L
10、利用高斯公式计算曲面积分
2x3dydz 2 y3dzdx 3(z2 1)dxdy,
其中 是曲面 z 1 x2 y2 (z 0) 的上侧.(15 分)
ln(1 x 3 )
2、设
f
(x)
, x2 1 sin 2x, 2
x0 ,求 f ( x) ,并讨论 f ( x) 的连续性.(15 分)
x0
x
x
3、设 f ( x) 在区间[a, b]上连续,且 f ( x) 0 , F ( x) f (t )dt
dt
, x [a, b].
a

浙江理工大学数学分析2012年考研专业课初试真题

浙江理工大学数学分析2012年考研专业课初试真题


sin( xy ) , dy 在区间 y 0
上一致收敛(其中 0 ),但在区间 (0,) 内不一致收敛.
第 2 页 ,共 2 页
u
n 1

n
,若 u n 0 , n 1,2, ,且 lim
n
u n 1 l 1 存在,则 un
u
n 1

n
收敛.( )
4.若二元函数 f 在其定义域的某一内点具有一阶偏导数,则 f 在该点必连续.( )

5.若 f 在 1 x 上单调,且
x
1
p
f ( x)dx 存在,则 lim x p 1 f ( x) 0 .( )
x
e x sin x x(1 x) 二、计算题(15分)求极限 lim . x 0 x3
三、计算题(15分)求极限 lim
n 0
1
xn dx . 2 sin nx
四、计算题(15分) 求由方程 x 2 y 2 的极大值点及极大值. 五、计算题(15分) 求 I
L

4x
2
2
y 2 所确定的隐函数 y f ( x)


xdy ydx ,其中 L 为圆周 4x 2 y 2
( x 1) 2 y 2 2 ,并取依顺时针方向为 L 的正方向. 六、计算题(15分)
计算 I
S
dS x 2 y 2 ( z a) 2
成立.试证明 f 在区域 D 上处处连续. 八、计算题(15分)设一元函数 f 在区间 I R 上有界,记
M sup f ( x) , m inf f ( x) .
xI

2000~2012年苏州大学数学分析考研真题

2000~2012年苏州大学数学分析考研真题

苏州大学2012年攻读硕士学位研究生入学考试数学分析试题一、下列命题中正确的给予证明,错误的举反例或说明理由。

共4题,计30分。

1. 设()f x 在[],a b 上连续,且()0ba f x dx =∫,则[],x ab ∀∈,()0f x =。

2. 在有界闭区间[],a b 上可导的函数()f x 是一致连续的。

3. 设()f x 的导函数()f x ′在有限区间I 上有界,则()f x 也在I 上有界。

4. 条件收敛的级数1n n a∞=∑任意交换求和次序得到的新级数也是收敛的。

二、下列4题每题15分,计60分。

1. 计算下列极限:(1) 111lim 12nn n →∞ +++ ; (2) sin 0lim sin x xx e e x x→−−。

2. 求积分2D I x y dxdy =−∫∫,其中(){},:01,11Dx y x y =≤≤−≤≤。

3. 设L 为单位圆周221x y +=,方向为逆时针,求积分 ()()224L x y dx x y dy I x y −++=+∫。

4. 计算曲面积分 ()42sinz S xdydz e dzdx z dxdy ++∫∫, 其中S 为半球面2221x y z ++=,0z ≥,定向为上侧。

三、下列3题,计36分。

1. 设()f x 在[],a b 上可微,证明:存在(),a b ξ∈,使成立 ()()()()()222f b f a b a f ξξ′−=−。

2. 设()2sin x f x e x =,求()()20120f 。

3. 设()f x 在闭区间[],a b 上二阶可导且()0f x ′′<,证明不等式()()2ba ab f x dx f b a + ≤−∫。

四、下列3题选做2题,计24分。

1.(1) 设{}n a 是正数列,且lim 0n n a →∞=。

证明:存在另一个正数列{}n b ,使得lim 0n n b →∞=,lim 0n n na b →∞=; (2) 设1n n a∞=∑为收敛的正项级数。

考研数学一(一元函数微分学)历年真题试卷汇编3(题后含答案及解析)

考研数学一(一元函数微分学)历年真题试卷汇编3(题后含答案及解析)

考研数学一(一元函数微分学)历年真题试卷汇编3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2004年)设函数f(x)连续,且f’(0)>0,则存在δ>0。

使得A.f(x)在(0,δ)内单调增加B.f(x)在(一δ,0)内单凋减少C.对任意的x∈(0,δ)有f(x)>f(0)D.对任意的x∈(一δ,0)有f(x)>f(0)正确答案:C解析:由于由极限的保号性知,存在δ>0,当x∈(一δ,0)或x∈(0,δ)时,而当∈(0,δ)时x>0,则此时f(x)一f(0)>0,即f(x)>f(0),故应选(C).知识模块:一元函数微分学2.(2005年)设函数则f(x)在(一∞,+∞)内A.处处可导B.恰有一个不可导点C.恰有两个不可导点D.至少有三个不可导点正确答案:C解析:当|x|≤1时,当|x|>1时,则而f’+(一1)≠f’-(一1),则f(x)在x=一1不可导.同理则f(x)在x=1处不可导,故应选(C).知识模块:一元函数微分学3.(2006年)设函数y=f(x)具有二阶导数,且f’(x)>0.f”(x)>0,△x为自变量x在x11处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则A.0<dy<△yB.0<△y<dyC.△y<dy<0D.dy<△y<0正确答案:A解析:解1 直接法:dy=f’(x0)△x,△y=f(x0+△x)一f(x0)=f’(ξ)△x,x0<ξ<x0+△x由于f”(x)>0,则f’(x)单调增,从而有f(x0)<f’(ξ),故dy<△y 由于f’(x)>0,△x>0,则0<dy<△y,故应选(A).解2 排除法:取f(x)=x2,在(0,+∞)上,f’(x)=2x>0,f”(x)一2>0,取x0=1,则dy=f’(x0)△x=2△x △y=f(1+△x)一f(1)=(1+△x)2一1=2△x+(△x)2由于△x>0,显然有0<dy<△y,由此可知,选项(B),(C),(D)均不正确,故应选(A)。

2012年考研高数一真题及解析

2012年考研高数一真题及解析

4n 2 4n 3 2 n x 2n 2n . x ( 2 n 1 ) x 2 2n 1 n 0 n 0 n 0 2n 1
由于
1 x2 x 2n 2 n 1 (1 x 1) = ( 2 n 1 ) x ( x ) ( ) (1 x 2 ) 2 1 x2 n 0 n 0
向量组线性相关的为 (A) 1 , 2 , 3 (B) (C)
1,2 ,4
(C) 1 , 3 , 4
1
(D)
2 ,3 ,4
1 0 0 (6) 设 A 为 3 阶矩阵, P 为三阶可逆矩阵,且 P AP 0 1 0 , P (1,2 ,3 ) , 0 0 2
1 2
y( x 1)e , B f xy
2

x2 y2 2
x( y 1)e ,C f yy
2
1 2

x2 y 2 2
……6 分
2 1 在点(1,0)处,由于 B AC 2e 0 , A 2e
0,
……8 分
1 2
故 f (1,0) e
sin 2 tdt
0 2 0

……9 分 ……10 分
1 4
(19) (本题满分 10 分) 已知 L 是第一象限中从点 (0, 0) 沿圆周 x2 y2 2x 到点 (2, 0) ,再沿圆周 x2 y 2 4 到点 (0, 2) 的曲线段,计算曲线积分 I
3x
(A)
(B)
0 0 2
2 0 0 (D) 0 2 0 0 0 1
与参数为 4 的指数分布,则 (A) (D)

2012年考研199管理类联考综合数学真题以及答案

2012年考研199管理类联考综合数学真题以及答案

2012年1月真题一、问题求解:第1~15小题,每小题3分,共45分。

下列每题给出的,,,,A B C D E 五个选项中,只有一项是符合试题要求的。

请在答题卡上将所选项的字母涂黑。

1、某商品定价200元,受金融危机影响,连续2次降价20%后的售价为( ).114 B.120 C.128 D.144E.160A2、如图2,三个边长为1的正方形所组成区域(实线区域)的面积( )32333A. 32 B.3 C.3 3 D.3 E.3424---3、在一次捐赠活动中,某人将捐赠的物品打包成件,其中帐篷和食品共320件,帐篷比食品多80件,则帐篷的件数是( )A.180B.200C.220D.240E.2604、如图,三角形ABC 是直角三角形,,,为正方形,已知,,a b c 分别是为,,的边长,则:( )222222333333 ...22.22 A a b c B a b c C a b c D a b c E a b c=+=+=+=+=+5、如图,一个储物罐的下半部分是底面直径与高均是20m的圆柱体,上半部分(顶部)是半球形的,已知底面与项部的造价是400元/,侧面的造价是300元/,该储物罐的造价是()万元A.56.52B.62.8C.75.36D.87.92E.100.486、在一次商品促销活动中,主持人出示了一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右面相邻的3个数字组成的3位数,若主持人出示的是的513535319,则一顾客猜中价格的概率是()11121.....96572A B C D E7、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列()次.3000 B.3003 C.4000 D.4003 E.4300A8、甲、乙、丙三个地区公务员参加一次测评,其人数和如下表:三个地区按平均分从高到低的排列顺序为()A.乙、丙、甲B. 乙、甲、丙C. 甲、丙、乙D.丙、甲、乙E. 丙、乙、甲地区/分数6 7 8 9 甲 10 10 10 10 乙 15 15 10 20 丙101015159、经统计,某机构的一个安检口每天中午办理安检手续的乘客人数及对应的概率如下表: 安检口2天中至少有1天中午办理安检手续的乘客人数大于15人的概率是( )顾客人数 0--5 6--10 11--15 16--20 21--25 26以上 概率0.10.20.20.250.20.05.0.2.0.25 .0.4 .0.5 E. 0.75A B C D10、某人在保险柜中存放了M 元现金,第一天取出它的,以后每天取出的前一天所取的,共取了7天,保险柜中剩余的现金为( )77766222.....[1()]33333M M M M A B C D E M- 11、在直角坐标系中,若平面区域D 中虽有的点的坐标(),x y 均满足:,,,则面积是( )999.(14).9(4).9(3).(2).(1)44444A B C D E πππππ+--++ 12、某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组共用3天完成,已知甲组每天比乙组多植树4棵,则甲组每天植树( )棵A.11B.12C.13D.15E.17 13、有两队打羽毛球,每队派出3男2女参加5局单打比赛,第二局和第四局为女生,那么每队派队员出场的方式有几种?( )A. 12B.10C.8D.6E.414、若32x x ax b +++能被232x x -+整除,则( ).4,4.4,4.10,8.10,8.2,0A a b B a b C a b D a b E a b ===-=-==-=-==-=15、某公司计划运送180台电视机和110台洗衣机下乡,现有两种货车,甲种货车每辆最多可载40台电视机和10台洗衣机,乙种货车每辆最多可载20台电视机和20台洗衣机,已知甲、乙两种货车的租金分别是每辆400元和360元,则最少的运费是( )元A. 2560B.2600C.2640D.2680E.2720二、充分性条件判断:第16~25小题小题,每小题3分,共30分。

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2xy x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰Ñ= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x ∂∂∂∂(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn ∞=+-∑ (A)发散 (B)绝对收敛(C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a -(D)n a六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),xx f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤,求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上) (1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是 (A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小(D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值(B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x yu yf xg y x=+其中函数f 、g 具有二阶连续导数,求222.u u x yx x y ∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,xy y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x = 六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M沿直线y =自(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________. (2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =-的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lx y ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e x x π=-⎰在区间(0,)+∞内有且仅有两个不同实根. 七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分) 设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________. (3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t=-+(1)过点(1,21)M-且与直线34y t=-垂直的平面方程是_____________.1z t=-(2)设a为非零常数,则lim()xxx ax a→∞+-=_____________.(3)设函数()f x=111xx≤>,则[()]f f x=_____________.(4)积分222e yxdx dy-⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x是连续函数,且e()(),xxF x f t dt-=⎰则()F x'等于(A)e(e)()x xf f x----(B)e(e)()x xf f x---+(C)e(e)()x xf f x---(D)e(e)()x xf f x--+(2)已知函数()f x具有任意阶导数,且2()[()],f x f x'=则当n为大于2的正整数时,()f x的n阶导数()()nf x是(A)1![()]nn f x+(B)1[()]nn f x+(C)2[()]nf x(D)2![()]nn f x(3)设a为常数,则级数21sin()[nnan∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a的取值有关(4)已知()f x在0x=的某个邻域内连续,且()(0)0,lim2,1cosxf xfx→==-则在点0x=处()f x(A)不可导(B)可导,且(0)0f'≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b的两个不同的解1,α、2α是对应其次线性方程组=AX0的基础解析1,k、2k为任意常数,则方程组=AX b的通解(一般解)必是(A)1211212()2k k-+++ββααα(B)1211212()2k k++-+ββααα(C)1211212()2k k-+++ββαββ(D)1211212()2k k++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求12ln(1).(2)xdxx+-⎰(2)设(2,sin),z f x y y x=-其中(,)f u v具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'> 七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________. (4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20).x π+→(2)设n r 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方向n r 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程ecos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu =_____________.(3)设()f x =211x -+0x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(nn an∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y ∂∂∂(3)设()f x = 21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分) 求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________. (2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=⎰.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点. (2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011limcot ()sin x x xπ→-= _____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P <<(D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛 (C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu==-⎰,求dydx 、22d y dx 在t =. (2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分) 设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-则级数 (A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x = e 0x - 0x x ≥<,求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e xy y y '''-+=的通解为_____________. (4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x ⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b f c a '≤+设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T=ξξ (2)当1T=ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:(2)求随机变量X 的数学期望().E X。

2012年考研会计硕士管理类综合数学真题及参考答案

2012年考研会计硕士管理类综合数学真题及参考答案

2012年考研会计硕士管理类综合数学真题及参考答案2012年全国MBA联考1月7日举行,考生人数再创新高。

学苑教育将在第一时间为考生送上2012年MBA、MPA、MPAcc管理类联考真题进行解析课,课上学苑名师将就2012年MBA、MPA、MPAcc管理类联考真题做详细解析,现在先向广大考生独家提供部分试题及答案,请考生们参照进行估分,了解自己和其他考生状态及2012年MBA联考的全部情况。

2012年MBA|MPA|MPAcc管理类联考真题数学答案1.C2.A3.C4.B5.B6.E7.E8.A9.C 10.D11.A 12.D 13.B 14.E 15.B16.D 17.E 18.A 19.B 20.D21.E 22.D 23.D 24.C 25.A一、问题求解,共计15题。

1、某商品的定价为200元,受金融危机的影响,连续两次降价20%后的售价为:(A) 114元 (B) 120元(C) 128元 (D) 144元(E) 160元参考答案:(C) 128元2、如图1,三角形ABC是直角三角形,S1,S2,S3为正方形,已知a,b,c分别是S1,S2,S3边长,则:(A) a=b+c (B) a2 =b2 +c 2(C)a2 =2b2 +2c 2 (D) a 3=b 3+c 3(E)a 3=2b 3+2c 3参考答案:(A) a=b+c3、如图2,一个储物罐的下半部分是底面直径与高均是20m的圆柱形,上半部分(顶部)是半球形,已知地面与顶部的造价是400元/m2,侧面的造价是300元/m2,该储物罐的造价是(π=3.14)(A) 56.52万元 (B) 62.8万元(C) 75.36万元 (D) 87.92万元(E) 100.48万元参考答案:(C) 75.36万元4、在一次商品促销活动中,主持人出示一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右相邻的3个数字组成的3位数,若主持人出示的是513535319,则顾客一次猜中价格的概率是:(A) 1/7 (B) 1/6(C) 1/5 (D) 2/7(E) 1/3参考答案:(B) 1/65、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列(A)3000次 (B) 3003次(C)4000次 (D) 4003次(E)4300次参考答案:(B) 3003次6、甲乙丙三个地区的公务员参加一次测评,其人数和考分情况如下表:分数(右上)地区(下)人数(右下)6789甲10101010乙15151020丙10101515三个地区按平均分由高到低的排名顺序为(A)乙、丙、甲 (B) 乙、甲、丙(C)甲、丙、乙 (D) 丙、甲、乙(E)丙、乙、甲参考答案:(E)丙、乙、甲7、经统计,某机场的一个安检口每天中午办理安检手续的乘客人数及相应的概率如下表:乘客人数0-56-1011-1516-2021-2525以上概率0.10.20.20.250.20.05该安检口2天中至少有1天中午办理安检手续的乘客人数超过15的概率是(A)0.2 (B) 0.25(C)0.4 (D) 0.5(E)0.75参考答案:(E)0.758、某人在保险柜中存放了M元现金,第一天取出他的2/3,以后每天取出前一天所取的1/3,共取了7天,保险柜中剩余的现金为(A) M/37 元 (B) M/36 元(C) 2M/36 元 (D)元(E) [1-7*(2/3)7 M元参考答案:(A) M/37元9. 在直角坐标系中,若平面区域D中所有点的坐标(x,y)均满足0≤x≤60≤y≤6,|y-x|≤3,x2+y2≥9,则D的面积是(A)9/4(1+4π)(B)9(4 –π/4)(C)9(3 -π/4 )(D) 9/4(2+π)(E) 9/4(1+π)参考答案:(C)9(3 -π/4 )10. 某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组用3天完成。

2012数学一考研真题答案解析

2012数学一考研真题答案解析

2012年全国硕士研究生考试数学一试题答案解析一、 选择题1. 解析:C由lim 1,1x y y →∞==得为水平渐近线由1lim 1x y x →=∞=得为垂直渐近线12.)3.4. 解析: D22222111sin |sin |.xxI I e xdx I ex dx I ππππ=+=-<⎰⎰2223312|sin |sin .xxI I ex dx e xdx ππππ=-+⎰⎰而2232()2sin sin xt e xdx x t etdt ππππππ+=+-⎰⎰2222()|sin ||sin |.x xex dx ex dx πππππ+=>⎰⎰31312..I I I I I ∴>∴>>5. 解析:C343400c c αα⎛⎫ ⎪+= ⎪ ⎪+⎝⎭,34αα+ 与1α成比例.6.110111010012012 ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭7. 解析:A~(1)X E ,,0~(4)()0,x x e x Y E f x x -⎧>⇒=⎨≤⎩.4,40()0,0y Y e y f y y -⎧>=⎨≤⎩.,X Y ∴独立.44,0,0(,)0,x y e e x y f x y --⎧>>∴=⎨⎩其他8.cov(,)(1)(1)X Y EX X EX E x =---2()[1]E X X EX EX =--- 22()EX EX EX EX =-+ 22()EXEX DX =-+=-1ρ∴=,选项D二、 填空题1. 解析:212202,1λλλλ+-=⇒=-=212()()2()0(),xxf x f x f x f x C e C e -"+'-=⇒=+代入12()()20, 1.xf x f x e C C '+===得2.3.4.121,:1(0,0)z x y D x y x y =--+≤≥≥112222x Dy ds y dx y dy δ-=⋅=⎰⎰⎰⎰⎰1134(1)(1)31212x dx x =-=--=⎰5. 解析:2.设2,TA E XX A A =-=()() 3.r A r E A ⇒+-=()()()1Tr E A r XX r X -=== () 2.r A ∴=6.11xx --2211lnsin 11x x x x xx++=+--- 01x <<时. 1ln01x x+>-,2211x x x x+≥-,又sin x x ≤.()0x ϕ∴>’;10x -<<时,1ln01x x+<-,2211x x x x+≤-,又sin x x ≥.()0x ϕ∴<’.0x ⇒=为()x ϕ在(-1,1)内最小点,而ϕ(0)=0 ∴当-1<x<1时. ϕ()0x ≥,即21x x+20A C B -> 且0A >,0y ∴⎨=⎩为极小点.极小值为12(1,0).f e--=-当1x y =⎧⎨=⎩时,11222,0,,A e B C e --=-==-2100,0x AC B A y =⎧-><∴⎨=⎩ 且为极大点 极大值为12(1,0)f e -=3. 解: 由1lim1n x na a +→∞=得R =1.当∴令n ==n ∞=⎛= ⎝⎛= ⎝当当x ≠0时,xS 1(x )=021n n =+∑[]2121()1nn xS x xx∞===-∑’111111()ln,()ln.2121x x xS x S x xxx++=∴=--223,0()111ln ,110(1)1x S x x xx x x x x =⎧⎪∴=++⎨+-<<≠⎪--⎩且4. 解析: ①/sin ./()dy dy dt t k dxdx dtf t -==='x ⇒ (f ②=⎰5. 解析:012:0(2,0)L L L L x y y I +====-⎰⎰22(313)x x d =+-σ=⎰2d dx σ=-而20⎰∴∴∴((当1a =时,A =11 0 0 1⎛⎫ ⎪0 1 1 0 -1⎪ ⎪0 0 1 1 0 ⎪1 0 0 1 0⎝⎭→100120101100110000⎛⎫⎪-- ⎪ ⎪⎪⎝⎭通解为12111010x k -⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ 当1a =-时.A 11001100100110101011001100011011000--⎛⎫⎛⎫⎪ ⎪---- ⎪⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭通解为10111010x k ⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 解析:A T A=1010010111a a -⎛⎫ ⎪ ⎪ ⎪-⎝⎭1010111001a a⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭22201011113a aa a aa -⎛⎫⎪=+-⎪ ⎪--+⎝⎭TT(A A )x x 秩为2. ∴TT(A A )2((A A )(A )2)r r r ===也可以利用 ⇒TA A 01a =⇒=- ( T22A A (3)(1)a a =++)(II)令T202A A =B =022224⎛⎫ ⎪ ⎪ ⎪⎝⎭ 由E λ-20-2λ-B =0λ-2-2-2-2λ-4=λ(λ-2)(λ-6)=0解λ当λ当λ当λ取r 令2223111.12026Q f x x x Q y y y T=-⎝=B = +8. 解析:(1)(2)=X ∴D 2222cov(,)13333X Y Y -=-⨯-=-.9. 解析:22~(,),~(,2)X N Y N μσμσ,,X Y 独立,0σ>,未知Z X Y =-. 解:(1)Z 的密度2(,)f z σ22~(,),~(,2),,X N Y N X Yμσμσ独立.2~(0,3)Z X Y Nσ=-22222236(,)z zf zσσσ--⋅∴==(2)设1nZ Z…样本.2n2~(0,3)iZ Nσ,~(0,1)ZN-∴,iZ是简单随机样本.221~(),niZnχ=⎛⎫⎝∑223iZE nσ∑∴=,223iE Z nσ∑=.。

2012考研数学一真题及答案

2012考研数学一真题及答案

2011考研数学一真题试卷一选择题1.曲线222)4()3()2)(1(----=x x x x y 拐点A (1,0)B (2,0)C (3,0)D (4,0) 2设数列{}n a 单调递减,∑=∞→⋯===nk kn n n n aS a 1,2,1(,0lim )无界,则幂级数∑=-nk nk x a 1)1(的收敛域A(-1,1] B[-1,1) C[0,2) D(0,2]3.设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件 A 0)0(,1)0(>''>f f B 0)0(,1)0(<''>f f C 0)0(,1)0(>''<f f D 0)0(,1)0(<''<f f 4.设⎰⎰⎰===444cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I5.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第一行得单位矩阵。

记,010100001,010********⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=P P 则A=A 21P PB 211P P- C 12P P D 112P P-6.设),,,(4321αααα=A 是4阶矩阵,*A 是A 的伴随矩阵,若T )0,1,0,1(是方程组0=Ax 的一个基础解系,则0*=x A 的基础解系可为 A 31,αα B 21,αα C 321,,ααα D 432,,ααα7.设)(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是A )()(21x f x fB )()(222x F x fC )()(21x F x fD )()()()(1221x F x f x F x f +8.设随机变量X 与Y 相互独立,且EX 与EY 存在,记U=max{x,y},V={x,y},则E(UV)= A EUEV B EXEY C EUEY D EXEV 二填空题 9.曲线)40(tan 0⎰≤≤=x x tdt y π的弧长s=____________10.微分方程x ey y xcos -=+'满足条件y(0)=0的解为y=____________11.设函数⎰+=xydttt y x F 021sin ),(,则__________22=∂∂=x xF12.设L 是柱面方程为122=+y x 与平面z=x+y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=++___________22dz yxdy xzdx13.若二次曲面的方程为42223222=+++++yz xz axy z y x ,经正交变换化为442121=+z y ,则=a _______________ 三解答题 15求极限110))1ln((lim -→+xex xx16设))(,(x yg xy f z =,其中函数f 具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求1,12==∂∂∂y x yx z17求方程0arctan=-x x k 不同实根的个数,其中k 为参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档