压力容器设计基本知识

合集下载

压力容器设计基础

压力容器设计基础

压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。

正确完整的设计应达到保证完成工艺生产。

正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。

压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。

在本节中,主要讨论压力容器设计中的有关强度问题。

所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。

具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。

压力容器的设计计算就是围绕这一关系式而进行的。

公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。

求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。

应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。

求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。

一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。

公式(1)中的右端项是强度控制指标,即材料的许用应力。

它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。

当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。

压力容器设计思路及相关知识

压力容器设计思路及相关知识

压力容器设计思路及相关知识压力容器是一种能够承受内部压力的设备,常常用于承载气体、液体或气体与液体的混合物。

它们广泛应用于化工、能源、石油和其他工业领域中,用于储存或运输危险物质、提供对压缩气体的储存和释放、或作为部分工艺装置的一部分。

1.压力容器设计标准:压力容器的设计必须符合一些国际和行业标准,如美国的ASME标准和欧洲的PED指令。

这些标准规定了压力容器的设计要求、材料选择、焊接、检验和试验等方面的内容。

2.材料选择:压力容器的材料选择对其性能和安全性非常重要。

常见的材料包括碳钢、不锈钢和合金钢等。

根据所需的耐腐蚀性、耐高温性和机械强度等特性,需要选择适当的材料。

3.设计压力:设计压力是指压力容器能够安全承受的最大内部压力。

在设计过程中,需要考虑正常操作压力、工艺变动时的压力波动以及临时过载压力等因素。

4.壁厚计算:为了确保容器的稳定性和强度,需要对其壁厚进行计算。

设计壁厚应满足内压力、外压力、温度、容器直径和材料强度等因素的要求。

5.焊接:焊接是连接压力容器部件的常用方法,但焊接质量对容器的安全性有重要影响。

焊接应符合标准规范,并进行非破坏性测试以确保焊缝的质量。

6.热传导:压力容器中的热量传递是一个重要的问题,特别是在换热器中。

合理的换热器设计可以提高热能利用效率,减少能源损耗。

7.板式换热器设计:板式换热器通过一系列的平行板组成,热介质通过板的两侧流动,实现热量传递。

板式换热器的设计涉及到板的材料选择、板间距、板型和板的密封等方面。

8.管式换热器设计:管式换热器使用管道来传递热量,冷、热介质通过管道内外流动,实现热量传递。

管式换热器的设计涉及到管子的材料选择、管道布局、管道尺寸和管道的密封等方面。

9.安全阀:为了保证压力容器在超出设计压力时能够安全释放压力,需要安装安全阀。

安全阀的设计应符合标准,并确保在超压时能够可靠启动和关闭。

10.检验和试验:在压力容器设计完成后,需要进行一系列的检验和试验,以确保容器满足设计要求和标准规范。

压力容器设计基本知识

压力容器设计基本知识

压力容器设计基本知识(讲稿)北京二零零六年三月制订目录一.基本概念1.1 压力容器设计应遵循的法规和规程1.2 标准和法规(规程)的关系。

1.3 压力容器的含义(定义)1.4 压力容器设计标准简述1.5 D1级和D2级压力容器说明二.GB150-1998《钢制压力容器》1.范围2.标准3.总论3.1 设计单位的资格和职责3.3 GB150管辖的容器范围3.4 定义及含义3.5 设计参数选用的一般规定3.6 许用应力3.7 焊接接头系数3.8 压力试验和试验压力4.对材料的要求4.1 选择压力容器用钢应考虑的因素4. 2 D类压力容器受压元件用钢板4.3 钢管4.4 钢锻件4. 5 焊接材料4.6 采用国外钢材的要求4.7 钢材的代用规定4.8 特殊工作环境下的选材5.内压圆筒和内压球体的计算5. 1 内压圆筒和内压球体计算的理论基础5.2 内压圆筒计算5.3 球壳计算6.外压圆筒和外压球壳的设计6.1 受均匀外压的圆筒(和外压管子)6.2 外压球壳6.3 受外压圆筒和球壳计算图的来源简介6.4 外压圆筒加强圈的计算7.封头的设计和计算7.1 封头标准7.2 椭圆形封头7. 3 碟形封头7.4 球冠形封头7.5 锥壳8.开孔和开孔补强8.1 开孔的作用8.2 开检查孔的要求8.3 开孔的形状和尺寸限制8.4 补强要求8.5 有效补强范围及补强面积8.6 多个开孔的补强9 法兰连接9.1 简介9.2 法兰连接密封原理9. 3 法兰密封面的常用型式及优缺点9.4 法兰型式9.5 法兰连接计算要点9.6 管法兰连接10.压力容器的制造、检验和验收10.1 制造许可10.2 材料验收及加工成形10. 3 焊接10.4 D类压力容器热处理10.5 试板和试样10.8 无损检测10. 9 液压试验10.10 容器出厂证明文件。

11.安全附件和超压泄放装置11.1 安全附件11.2 超压泄放装置11.3 压力容器的安全泄放量11.4 安全阀GB151-1999《管壳式换热器》01 简述02 标准与GB150-1998《钢制压力容器》的关系。

压力容器基础知识

压力容器基础知识

第三类压力容器
压力容器的典型结构

低压压力容器
— 夹套式低压 压力容器
压力容器的典型结构

中压压力容器
— 球型储罐
压力容器的典型结构

中压压力容器
— 固定管板式 列管换热器
压力容器的典型结构

中压压力容器
— 立式压力 容器
压力容器的典型结构

中压压力容器 — 中压卧式U型管换热器
压力容器的典型结构
压力容器的主要安全附件





安全阀 爆破片 压力表 温度计 液位计 紧急切断装置 快开门式压力容器的安全联锁装置
压力容器法规及技术标准
1.《特种设备安全监察条例》
对生产(含设计、制造、安装、改造、维修)、使用、
检验检测及其监督检查的全过程安全监察。 2. 《压力容器安全技术监察规程》 3. 《锅炉压力容器使用登记管理办法》
压力容器的普查
在用压力容器定期检验
外部检查——运行中在线检查,每年至少一次
内外部检验——停机时的全面检验


检验周期
1级、2级容器:每6年至少一次 3级容器:每3年至少一次

耐压试验:停机时的液压或气压试验

每两次内外部检验期间至少一次
在用压力容器定期检验
常见检验方法及使用范围 一般检测方法 宏观检查 壁厚测定 表面探伤:磁粉探伤、渗透探伤 射线探伤 超声波探伤 硬度测定 金相检验 应力测定 声发射检测 强度校核 耐压试验 气密试验

弹性失效设计准则 塑性失效设计准则 爆破失效设计准则
压力容器的设计

强度理论

7.第七章 压力容器设计基础

7.第七章 压力容器设计基础

1800 (1900) 2000 (2100) 2200 (2300) 2400 2500 2600 2800 3000 3200 3400 3500 3600 3800 4000 4200 4400 4500 4600 4800 5000 5200 5400 5500 5600 5800 6000
缺点
(1)只能套合短筒,筒节间深环焊缝多。
(2)要求准确的过盈量,对筒节的制造要求高。
16
绕板式
优点:(1)机械化程度高,操作简便,材料利用率高 优点 (2)纵焊缝少。 缺点:(1)绕板薄,不宜制造壁厚很大的容器。 缺点 (2)层间松动问题。
17
槽形绕带式
优点 (1)筒壁应力分布均匀且能承受一部分由内压产生的 轴向力。 缺点 (2)机械化程度高,材料利用率高。 (1)钢带成本高,公差要求严格。
(1) 中压容器; (2) 毒性程度为极度和高度危害介质的低压容器; (3) 易燃介质或毒性程度为中度危害介质的低压反应容器和 低压储存容器; (4) 低压管壳式余热锅炉; (5) 低压搪玻璃压力容器。
不在第三类、第二类压力容器之内的低压容器为第一类压力容器。
三类容器
二类容器
一类容器
介质毒性分 级 指 标 Ⅰ 极度危害
31
⑵公称压力
工作压力不同,相同公称直径的压力容器其筒体及其零部件
的尺寸也不同,标准零部件尺寸需按压力确定。
将承受的压力范围分为若干个标准压力等级,即公称压力。 表7-3 压力容器法兰与管法兰的公称压力PN 压力容器法 兰(MPa) 管法兰 (MPa) - 0.25 - 0.6 1.0 1.6 2.5 4.0 6.4


日本国家标准(JIS);
德国压力容器规范(AD)。

压力容器设计基础讲义

压力容器设计基础讲义

压⼒容器设计基础讲义压⼒容器设计基础讲义第⼀部分、压⼒容器设计基础知识第⼀章压⼒容器失效模式压⼒容器在载荷作⽤下丧失了正常的⼯作能⼒称为失效。

压⼒容器所考虑的失效模式主要为断裂、泄漏、过度变形和失稳。

压⼒容器失效常以三种形式表现出来:强度、刚度、稳定性。

压⼒容器建造标准中主要考虑的失效模式:1)短期失效模式:(1)脆性断裂(2)韧性断裂(3)超量变形引起的接头泄漏(4)超量局部应变引起的裂纹形成或韧性剪切(5)弹性、塑性或弹塑性失稳2)长期失效模式:(1)蠕变断裂(2)蠕变超量变形(3)蠕变失稳(4)冲蚀、腐蚀(5)环境助长开裂,如:应⼒腐蚀开裂3)循环失效(1)扩展性塑性变形(2)交替塑性(3)弹性应变疲劳或弹-塑性应变疲劳(4)环境助长疲劳,如:腐蚀疲劳第⼆章 GB150适⽤范围(1)适⽤的设计压⼒①对于钢制容器不⼤于35MPa;②其它⾦属材料制容器的设计压⼒适⽤范围按相应引⽤标准确定。

(2)适⽤的设计温度范围①设计温度范围:-269℃~900℃。

②钢制容器不得超过按GB 150.2 中列⼊材料的允许使⽤温度范围。

③其他⾦属材料制容器按本部分相应引⽤标准中列⼊的材料允许使⽤温度确定。

(3)下列各类容器不在标准的适⽤范围内:①设计压⼒低于0.1MPa且真空度低于0.02MPa的容器;②《移动式压⼒容器安全监察规程》管辖的容器;③旋转或往复运动机械设备中⾃成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等);④核能装置中存在中⼦辐射损伤失效风险的容器;⑤直接⽕焰加热的容器;⑥内直径(对⾮圆形截⾯,指截⾯内边界的最⼤⼏何尺⼨,如:矩形为对⾓线,椭圆为长轴)⼩于150mm的容器;⑦搪玻璃容器和制冷空调⾏业中另有国家标准或⾏业标准的容器。

(4)对不能按 GB 150.3确定结构尺⼨的容器或受压元件,允许采⽤以下⽅法进⾏设计:①按照附录C的规定,进⾏验证性实验分析(如实验应⼒分析、验证性液压试验)。

压力容器设计培训

压力容器设计培训
率。
可靠性设计
综合考虑各种因素,提高压力容 器的可靠性和安全性。
可维护性设计
优化压力容器的维护和检修方案, 降低维护成本。
04 压力容器制造工艺
压力容器制造流程
原材料验收
对压力容器制造所需的原材料进行质量检查和 验收,确保符合相关标准和设计要求。
01
焊接组装
将卷制和冲压完成的筒体、封头以及 其他零部件进行焊接组装,形成完整
详细描述
压力容器作为一种特种设备,其设计、制造、使用等环节需遵循一系列国际、国家和行业标准与规范。如欧洲的 EN13445标准、美国的ASME标准等。这些标准与规范对压力容器的材料、设计参数、制造工艺等方面都有明确 规定,以确保容器的质量和安全性能。
压力容器设计基本原则
总结词
压力容器设计应遵循的基本原则包括安全性、可靠性、经 济性等方面。设计师需综合考虑各种因素,确保容器在正 常工况和异常情况下都能安全、可靠地运行。
06
防腐与涂装
对压力容器表面进行防腐和涂装处理,以提高 容器的耐腐蚀性能和使用寿命。
焊接工艺与质量控制
焊接工艺评定
焊接材料选择与验收
根据压力容器的设计要求和相关标准,对 焊接工艺进行评定,确保焊接工艺的可靠 性和可行性。
根据母材的化学成分和力学性能,选择合 适的焊接材料,并进行质量检查和验收。
焊接方法与操作规程
机械性能
材料的机械性能如强度、 韧性等对压力容器的设计 至关重要,直接影响到容 器的承载能力和安全性。
材料腐蚀与防护
电化学腐蚀
金属材料在电解质溶液中发生的腐蚀 现象,可以通过涂层、电化学保护等 措施进行防护。
化学腐蚀
应力腐蚀
金属材料在拉应力和特定腐蚀介质共 同作用下发生的腐蚀现象,可以通过 降低应力集中、控制介质成分等措施 进行防护。

压力容器基本知识

压力容器基本知识

第一部复习提纲第一章压力容器基本知识一、基本概念(应知)1、压力:垂直作用于物体表面上的力。

单位是“帕斯卡”,简称“帕”,用“Pa”表示。

表压:压力表的读数;表示压力容器内介质压力高出大气压力的部分。

真空度:真空表的读数;表示压力容器内介质压力低出大气压力的部分。

绝对压力:以绝对零压为基础的压力。

P绝=P表+P大气P绝=P大气–P真空一、基本概念(应知)2、压力容器:所有承受压力的密闭容器。

3、工作压力:系指容器顶部在正常工艺操作时的压力。

4、设计压力:系指在相应设计温度下用以确定容器计算壁厚及其元件尺寸的压力。

一、基本概念(应知)5、强度:对于某种材料所能承受的压力有一定的限度,超过了这个限度,物体就会破坏,这一限度称为强度。

6、设计温度:系指压力容器在正常操作过程中,在相应设计压力下,表壁或元件金属可能达到的最高或最低温度。

(只有当元件金属的温度低于-20℃时,在按最低温度确定设计温度)二、基本知识(应知)1、压力容器的分类:压力容器分类主要考虑事故发生的可能性与事故危害性的大小两个方面。

(1)按最高工作压力分:低压容器L(0.1≤P W<1.6MPa)、中压容器M(1.6≤P W<10Ma)、高压H(10≤P W<100MPa)容器、超高压容器U(P W≥100MPa)。

(2)按壳体承压方式分:内压容器、外压容器。

1、压力容器的分类(3)按设计温度分:低温容器(t≤-20℃)、常温容器(-20℃<t<450℃)、高温容器(t≥450℃)。

(4)按作用原理分:反应容器、换热器、分离器、贮运容器。

1、压力容器的分类(5)《容规》根据容器的压力高低、介质的危害程度及在生成过程中的重要作用将压容器分为三类:第一类容器:低压容器(非易燃、无毒、低压,属于第二、第三类的除外);第二类容器:中圧(属于第三类除外)、低压锅炉、毒性低压容器等。

第三类容器:高压、超高圧、毒性中圧、移动式、球形等。

2、确定设计压力的方法(1)当容器装有安全泄放装置时,设计压力应不小于安全的开启压力。

压力容器设计工程师应掌握的知识

压力容器设计工程师应掌握的知识

压力容器设计工程师应掌握的知识
作为一名压力容器设计工程师,需要掌握以下知识和技能:
1.材料知识:了解不同类型的材料,如金属材料(如碳钢、不锈钢、
铝合金)和非金属材料(如复合材料、玻璃钢),以及它们在压力容器设
计中的应用和性能特点。

2.强度学知识:了解材料的本构关系、力学性质和强度设计原理,掌
握强度和刚度计算方法。

3.压力容器设计规范:熟悉国家和行业相关规范,如《压力容器设计
规范》和《压力容器制造与安全技术规则》,并能够合理应用这些规范进
行设计。

4.液体和气体力学:了解流体静力学和流体动力学的基本理论,包括
压力、流速、流量、液位等参数的计算和分析。

5.焊接技术:熟悉焊接工艺和焊接缺陷产生的原因,能够合理选择适
用的焊接方法和焊接材料。

6.非破坏检测技术:了解常用的非破坏检测方法,如超声波检测、射
线检测、磁粉检测和渗透检测,能够判断和评估可能存在的缺陷或损伤。

7.工程制图:能够读取和绘制工程图纸,包括设计图、组装图和制造
图等,掌握相关绘图软件的应用。

8.压力容器设计计算:能够进行承载力和刚度计算,考虑压力、温度、荷载和外部环境等因素对容器的影响。

9.安全性评估:能够进行压力容器的安全性评估和风险分析,包括应
力和应变分析、疲劳分析和破裂分析等。

10.安全阀选择:了解不同类型和规格的安全阀,根据设计参数和要
求选择合适的安全阀。

此外,压力容器设计工程师还需要具备良好的理论基础,包括数学、
力学、热力学和材料力学等基础知识。

同时,需要有一定的工程实践经验,能够解决实际工程中遇到的问题,并能够进行设计优化和改进。

压力容器基础知识

压力容器基础知识

第3部分承压类特种设备—压力容器1压力容器基础知识主要内容:1 压力容器的含义、参数、级别、介质2 压力容器的基本结构3 运行与维护保养及异常情况处理4 定期检查与定期检验3压力容器基础知识压力容器基础知识1 压力容器的含义、参数、级别、介质1.1压力容器的含义(种类)《特种设备目录》中所定义的压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于30L且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa•L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱。

压力容器基础知识压力容器的压力来源(1)来自容器外部①由各类气体、液化气体压缩机泵供给压力,工作压力取决于压缩机出口和泵出口的压力。

②由蒸汽锅炉、废热锅炉供给的压力。

工作压力取决于锅炉出口的蒸汽压力或经减压后的蒸汽压力。

(2)来自容器内部①气态介质由于温度升高,导致体积膨胀受限,产生压力或使压力增大。

②液体介质受热汽化,压力即为该温度下的饱和蒸汽压。

以水为例,当工作温度为120℃时,饱和蒸汽压约为0.20MPa,当工作温度为200℃时,饱和蒸汽压约为1.56MPa。

压力容器基础知识③液化气体介质,以气液两相共存,压力就是随温度变化的饱和蒸汽压。

各种不同液体在不同温度下有不同饱和蒸汽压,例如液氨20℃时的饱和蒸气压是0.75MPa,50℃时的饱和蒸气压是1.93MPa;丙烷50℃时的饱和蒸气压是1.704MPa。

④充满液态介质,由于温度升高导致液体体积膨胀,容器的压力取决于液体的体积膨胀系数。

例如液化石油气的体积膨胀系数是水的10~16倍,当液化石油气以液态充满整个容器时,压力随温度上升十分迅速。

压力容器基础知识全解

压力容器基础知识全解

压力容器基础知识全解压力容器是一种专用的容器,它能够承受高压气体或液体,并且必须具备较高的安全性能。

压力容器广泛应用于石油、化工、电力、燃料等领域,为工业生产提供了重要的技术支持。

以下是压力容器的基础知识讲解。

一、压力容器的分类1.按形状分类圆柱形、球形、卵圆形、多边形和特殊形式。

2.按应用场合分类工业用压力容器、燃气用压力容器、危险化学品用压力容器、食品用压力容器和医用压力容器。

3.按制造材料分类钢制压力容器、合金钢制压力容器、铝制压力容器、铜制压力容器、塑料制压力容器和复合材料制压力容器。

二、压力容器的结构大致可分为壳体、封头、法兰、支座、管路、附件等部分。

1.壳体:包括筒体、球罐、卵圆罐等,壳体的结构要求有足够的强度和刚度,其厚度和连接方式要满足设计要求。

2.封头:包括圆头和翻边头,工艺要求高,尤其在比较大的压力容器中更要注意。

3.法兰:用于连接各个部件,其质量直接影响压力容器的安全性能。

4.支座:支持压力容器的重量和沉降,具备一定的抗震、抗风等能力。

5.管路:用于导入或导出气体或液体,在设计中要对管路进行合理安排。

6.附件:包括压力表、安全阀、液位计、温度计等,用于检测和控制压力容器内部情况。

三、压力容器的设计原则1.力学原则:在承受同样的压力下,薄壁的压力容器在受力时的应变比厚壁小,因此薄壁压力容器的应变能力更好。

2.稳定原则:压力容器的稳定性必须得到保证,如圆柱壳的稳定性也受到长度和直径的影响。

3.耐腐蚀原则:对于受腐蚀性气体或液体的压力容器,应选用耐腐蚀性的材料,以保证容器长期使用的稳定性和安全性。

4.安全原则:压力容器的设计应遵循“安全第一”的原则,重点考虑容器的安全范围、安全功能和安全边界的设置。

四、压力容器的安全措施1.使用合格材料,压力容器材料应符合相关标准。

2.合理选择和设计,压力容器应合理选择和设计,符合技术规范要求。

3.经常检查和维护,压力容器要经常进行检查和维护,详细记录检查结果和维护情况。

压力容器基本知识

压力容器基本知识

第四节 压力容器常用的钢材
3.耐热钢:主要是钼钢、铬钼钢。12 CrMo、15CrMo、 12 Cr1MoV等,均含Mo,提高钢材的高温持久强度。 4.低温压力容器用钢:工作温度≤-20℃。 ①与普通低合金钢相比,低温钢必须保证在相应的低温下 具有足够的低温冲击韧性,防止冷脆破裂。其它特性与普 通低合金钢相似。②必须是镇静钢 5.不锈钢: 马氏体不锈钢:耐大气腐蚀; 奥氏体不锈钢:铬镍型钢,如0Cr18Ni9、1Cr18Ni11Ti等 6.复合钢板:基层:碳素钢或低合金钢,起承压作用; 复层:不锈钢或镍、钛、铜,起耐腐蚀或防止介质被污染 作用。
第三节
压力容器的分类
五、按照在生产过程中的作用原理进行分类: 1. 反应压力容器(代号R): 主要用于完成介质的物理、 化学反应。如反应器、反应釜、聚合釜、分解塔、合成塔、 超高压反应釜等。 2. 换热压力容器(代号E):主要用于完成介质的热量交 换。如管壳式余热锅炉、蒸发器、冷凝器、加热器等。 3. 分离压力容器(代号S):主要用于完成介质的液体压 力平衡缓冲和气体净化分离。如分离器、过滤器、缓冲器、 吸收塔、干燥塔、汽提塔、除氧器等。 4. 储存压力容器(代号C,其中球罐代号B): 主要用于盛 装生产用的原料气体、液体、液化气体等。如各种型式的 储罐。
第三节

压力容器的分类
六、按照压力容器的设计压力分类: 1.低压压力容器(代号L):0.1MPa≤P<1.6MPa 2.中压压力容器(代号M):1.6MPa≤P<10.0MPa 3.高压压力容器(代号H):10.0MPa≤P<100.0MPa 4.超高压压力容器(代号U):P≥100.0MPa 。
第四节 压力容器常用的钢材

第四讲:压力容器设计

第四讲:压力容器设计
化工常用标准椭圆形封头,a/b=2,故
顶点处:
边缘处:
顶点应力最大,经向应力与环向应力是相等的拉应力。 顶点的经向应力比边缘处的经向应力大一倍; 顶点处的环向应力和边缘处相等但符号相反。 应力值连续变化。
(4-3)——平衡方程
(4-4)——区域平衡方程
无力矩理论基本方程式:
三、基本方程式的应用
1.圆筒形壳体 第一曲率半径R1=∞, 第二曲率半径R2=D/2 代入方程(4-3)和(4-4)得:
与式(4-1)、(4-2)同。
2.球形壳体
2.球形壳体
球壳 R1=R2=D/2,得:
六、最小壁厚
设计压力较低的容器计算厚度很薄。 大型容器刚度不足,不满足运输、安装。 限定最小厚度以满足刚度和稳定性要求。
壳体加工成形后不包括腐蚀裕量最小厚度dmin: a. 碳素钢和低合金钢制容器不小于3mm b.对高合金钢制容器,不小于2mm
七、压力试验
为什麽要进行压力试验呢? 制造加工过程不完善,导致不安全,发生过大变形或渗漏。 最常用的压力试验方法是液压试验。 常温水。也可用不会发生危险的其它液体 试验时液体的温度应低于其闪点或沸点。
压力试验时,由于容器承受的压力pT 高于设计压力p,故必要时需进行强度效核。
气压试验
(4-18
(4-20)
pT -试验压力, MPa; p -设计压力, MPa; [s] 一试验温度下的材料许用应力, MPa; [s]T 一设计温度下的材料许用应力, MPa
液压试验时水温不能过低(碳素钢、16MnR不低于5℃,其它低合金钢不低于15℃),外壳应保持干燥。 设备充满水后,待壁温大致相等时,缓慢升压到规定试验压力,稳压30min,然后将压力降低到设计压力,保持30min以检查有无损坏,有无宏观变形,有无泄漏及微量渗透。 水压试验后及时排水,用压缩空气及其它惰性气体,将容器内表面吹干

压力容器基础知识全解

压力容器基础知识全解

压力容器基础知识全解概述压力容器是用于存储或传输可压缩气体或液体的容器,通常会承受很高的压力。

在工业生产和科学实验中,压力容器是一种非常常见的设备,它们在化工、石油、天然气等领域中得到广泛应用。

了解压力容器的基础知识,对于进行安全操作和预防事故至关重要。

压力容器的种类1. 常压容器常压容器也被称为零压力容器,指能承受大气压力或低于大气压力的容器。

常见的常压容器有水箱、燃油箱、水塔、储油罐等等。

2. 低压容器低压容器常见于液化气储存和输送中,分为无火烧、火烧两类。

无火烧低压容器有液化石油气钢瓶、超高分子聚乙烯罐等;火烧低压容器有储油罐、平衡储气罐等。

3. 中压容器中压容器的设计压力介于0.1-10MPa,常见有输气管道、调压房、储气库等。

4. 高压容器高压容器是指压力介于10MPa-100MPa的容器,常见的有酸洗塔、反应釜、CO2气瓶、氢气气瓶等。

5. 超高压容器超高压容器的压力一般超过100MPa,常见的有高压水管、高压清洗机、高压注塑机等。

压力容器的设计压力容器的设计包括容器本身的结构形式和使用环境的适应性,通常设计中要考虑以下几方面因素:1. 确定容器设计压力设计压力是指容器在使用过程中产生的最大压力。

设计压力要满足工艺过程的工作条件和容器本身的强度条件,但不能超过容器材料允许的最大应力。

2. 选择材料和密度容器材料要有足够的强度和导热性能,常用的材料有碳钢、不锈钢、镍基合金等。

密度的选择要考虑到容器的重量、成本、使用环境等因素。

3. 确定尺寸和形状容器的尺寸和形状要根据使用场合、存放空间的限制以及工艺过程要求等因素来确定。

4. 设计附件和支撑附件包括压力表、安全阀、排放阀、进出口管道等,支撑要满足容器稳定的要求。

压力容器的工作原理压力容器的工作原理与理想气体的状态方程有关。

气体的状态可以用压力、温度和容积来确定,理想气体的状态方程为:PV=nRT其中,P表示压力,V表示容积,n表示气体的物质量,R是气体通用常数,T表示气体的温度。

压力容器设计

压力容器设计
失效原因 ① 容器厚度不够。 ② 压力过大。
返回
脆性断裂
(低应力脆断)
器壁中的应力远低于材料强度极限时发生的断裂。
特点 ① 断口平齐,且与最大主应力方向垂直。
② 容器断裂时可能裂成碎片飞出,往往引起严重 后果。
③ 断裂前没有明显塑性变形,断裂时应力很低, 安全阀、爆破膜等安全附件不起作用,断裂具有 突发性。
焊接接头系数
材料许用应力
强度极限值
[ ] 安全系数
安全系数
碳素钢、低合金钢及铁素体高合金钢: nb≥3.0 ns≥1.6 nD≥1.5 nn≥1.0
奥氏体高合金钢: nb≥3.0 ns≥1.5 nD≥1.5 nn≥1.0
压力试验
压力试验
耐压试验
液压试验 气压试验
气密性试验
2、强度校核
T

pT (Di e ) 2 e
0.8 S ( 0.2 )
气密性试验
● 容器上没有安全泄放装置,气密性试验压力 PT=1.0P。 ● 容器上设置了安全泄放装置,气密性试验压力应 低于安全阀的开启压力或爆破片的设计爆破压力。
通常取PT=1.0PW。
练习题
设 计 压 力 为 1.6 Mpa 的 储 液 罐 罐 体 , 材 料 Q235-A , Di=1800mm , 罐 体 高 度 4500mm , 液 料 高 度 3000mm , C1=0.8mm,腐蚀裕量C2=1.5mm,焊缝系数φ=1.0,液体密 度为1325kg/m3,罐内最高工作温度50ºC 。
元件金属温度高于零度时,设计温度不得低于元 件可能达到的最高温度; 元件金属温度低于零度时,设计温度不得高于元 件可能达到的最低温度。
钢板厚度负偏差
根据规定:当钢板厚度负偏差不大于0.25mm,且不超过名 义厚度的6%时,可取C1=0。所以在设计计算中,对于 GB6654-1996、GB3531-1996种的钢板(如20R、16MnR、 16MnDR等),均可取C1=0。

压力容器基础知识(三篇)

压力容器基础知识(三篇)

压力容器基础知识(1)压力。

压力容器的压力可以来自两个方面,一是来自压力容器外,一是来自压力容器内。

压力容器的最高工作压力,对于承受内压的压力容器,是指压力容器在正常使用过程中,容器顶部可能出现的最高压力;对于承受外压的压力容器,是指压力容器在正常使用过程中,夹套顶部可能出现的最高压力。

压力容器的设计压力,是指在相应设计温度下用以确定容器壳体厚度的压力,亦即标注在铭牌上的容器设计压力,其值不得小于最大工作压力。

当容器各部位或受压元件所承受的液桂静压力达到5%设计压力时,则应取设计压力和液柱静压力之和进行该部位或元件的设计计算;装有安全泄放装置的压力容器,其设计压力不得低于安全泄放装置的开启压力或爆破压力。

容器的设计压力应按GB150的相应规定确定。

(2)温度。

金属温度,系指容器受压元件沿截面厚度的平均温度。

任何情况下,元件金属的表面温度不得超过钢材的允许使用温度。

设计温度,系指容器在正常操作情况下,在相应设计压力下设定的受压元件的金属温度,其值不得低于元件金属可能达到的最高金属温度;对于0℃以下的金属温度,则设计温度不得高于元件金属可能达到的最低金属温度。

容器设计温度(即标注在容器铭牌上的设计介质温度)是指壳体的设计温度。

(3)介质。

生产工艺过程所涉及的工艺介质品种繁多,分类方法也有多种。

按物质状态分类,有气体、液体、液化气体、单质和混合物等;按化学特性分类,则有可燃、易燃、惰性和助燃四种;按它们对人类毒害程度,又可分为极度危害(Ⅰ)、高度危害(Ⅱ)、中度危害(Ⅲ)、轻度危害(Ⅳ)四级。

易燃介质:是指与空气混合的爆炸下限小于10%,或爆炸上限和下限之差值大于等于20%的气体,如一甲胺、乙烷、乙烯等。

毒性介质:《压力容器安全技术监察规程》(以下简称《容规》)对介质毒性程度的划分参照GB5044《职业性接触毒物危害程度分级》分为四级。

其最高容许浓度分别为:极度危害(Ⅰ级)<0.1mg/m3;高度危害(Ⅱ级)0.1~<1.0mg/m3;中度危害(Ⅲ级)1.0~<10mg /m3;轻度危害(Ⅳ级)≥10mg/m3。

压力容器基本知识(PPT 52张)

压力容器基本知识(PPT 52张)

容器内部产生或增大
三、受监管的压力容器的界定
压力容器监察范围应该主要从发生事故 的可能性和事故危害的严重性来考虑。 一般来说,压力容器发生爆破事故时, 其危害的严重程度与压力容器的工作介质、 工作压力及容积等因素有关。
工作压力越高,容积 越大,储存能量越大, 爆破释放能量越大, 危害大。
1.液体介质:压缩性极小, 爆破膨胀功(即释放能量)小, 危害小。 2.气体介质:压缩性很大, 爆破膨胀功(即释放能量)大, 危害大。
各种气体的临界温度是不同的,在此温度以上,它只能处于气体状态,不能单有压缩气体 的方法使其液化。 气体的临界温度越高,就越容易液化;其温度比临界温度越低,液化所需的压力就越小。 对于已经液化的物质,一旦温度升至临界温度时,就必然会由液态迅速转变为气态。
介质
所谓介质是指容器所盛装的,或在容器中参 与反应的物质 。 介质危害性指压力容器在生产过程中因事故 致使介质与人体大量接触,发生爆炸或者因经常 泄漏引起职业性慢性危害的严重程度,用介质毒 性程度和爆炸危害程度表示。
设 计 温 度
临 界 温 度
毒 性 程 度
易 燃 易 爆
压力
工作压力也称为操作压力,是指正常工艺操作情况下,容器顶 部的最高压力(不包括液体静压力)。
最高允许工作压力是根据容器的有效厚度计算得到的容器实际可 承受压力。 设计压力是指设定的容器顶部的最高压力,与相应的设计温度一 起作为设计载荷条件,其值不低于工作压力设计压力选取方法 计算压力是指在相应设计温度下,用以确定元件厚度的压力,并 且应当考虑液柱静压力等附加载荷。 各种压力之间的关系
(1)由压缩机或泵产生的压力,此时压力容器中的介质压 力取决于压缩机或泵出口的压力。 (2)由蒸汽锅炉或余热锅炉产生的压力,此时压力容器中 的介质压力取决于蒸汽锅炉或余热锅炉产生的压力或减压后的 蒸汽压力。

压力容器设计综合知识要点

压力容器设计综合知识要点

压力容器设计综合知识要点压力容器是广泛应用于化工、石油、航空、航天等领域的一种特殊设备,其设计和制造要求十分严格。

设计压力容器需要掌握大量综合知识,本文将从压力容器基本概念、设计规范、材料选择、受力分析以及安全性评价等方面,进行深入剖析。

一、压力容器基本概念压力容器是一种密闭容器,能够在设计压力下承受内外静、动力作用,并能保证容器内介质不泄漏的设备。

其主要部件有壳体、封头、支承和附件等。

在使用中,压力容器必须经过设计定型、制造、安装验收、使用和维护检查等多个环节,确保其安全可靠。

二、设计规范压力容器的设计必须符合规范,主要包括国家标准、行业标准、地方标准和企业标准等。

其中最为常见的有《蒸汽锅炉安全技术监察规程》、《压力容器安全技术监察规程》、《压力容器设计规范》等。

设计时必须按照国家和行业标准的要求进行设计、计算和制造。

同时,必须进行设计审查、制造过程控制、技术文件管理等程序,确保设计、制造、使用过程中的安全可靠。

三、材料选择压力容器的材料选择必须符合规范要求和技术条件。

常用的材料有碳钢、合金钢、不锈钢、铜合金等。

材料的选择主要考虑材料的化学成分、机械性能、耐腐蚀性、温度下限和上限等多种因素。

在选择材料时要尽可能选择好的材料,确保容器在使用中的安全可靠。

四、受力分析受力分析是压力容器设计的核心内容,其主要包括静力分析和动力分析。

静力分析主要考虑容器在静止状态下的受力情况,包括内外压力、重力、温度应力等;动力分析主要考虑容器在运行状态下受到的动态载荷以及荷载的频率和幅值等。

同时,在分析中还需考虑材料的弹性和塑性变形,以及应力应变的限制等因素。

五、安全性评价压力容器的使用安全性评价是指在容器运行过程中,通过数据收集、安全分析等多种手段获取相关信息,判断容器的实际运行状态和安全状况。

主要包括容器的安全工况评价、安全控制评价、检测与监控评价等。

安全性评价可通过计算模拟、试验监测等方法进行,旨在最大程度地保证容器的安全性和稳定性。

压力容器设计综合知识要点

压力容器设计综合知识要点

压力容器设计综合知识要点第一部分总论一:填空:1 《特种设备安全监察条例》是一部行政法规。

2 《压力容器安全技术监察规程》中规定,压力容器设计总图上必须压力容器设计资格印章(复印章无效),该总图是指蓝图。

3 极限载荷是相对一次加载而言;安定载荷是相对反复加载而言。

4 低循环和低频是不同的概念,低循环是指循环次数 102~105间,而低频是循环频率均为300 ~600次/分。

5 容器计算中所用的弹性名义应力是指材料进入塑性后,假定应力与应变关系仍服从虎克定律。

6 GB150规定,超压泄放装置不适用于操作过程中可能产生压力剧增,反应速度达到爆轰时的压力容器。

7 有一只压力容器,其最高工作压力为真空度670mmHg,设计压力为0.15Mpa,其容器类别为无类别。

按《容规》第2 条8压力容器检验孔的最少数量:《容规》表3-6300mm<Di≤500mm :2个手孔;500mm<Di≤1000mm :1个人孔或 2个手孔(不能开设手孔);Di>1000mm :1个人孔或 2个手孔(不能开设手孔)。

9符合下列条件之一的压力容器可不开设检查孔:《容规》第46 条1) 筒体内径小于等于 300 mm 的压力容器。

2) 压力容器上设有可以拆卸的封头、盖板或其他能够开关的盖子,它的尺寸不小于所规定的检查孔尺寸。

3) 无腐蚀或轻微腐蚀,检查和清理的。

4) 制冷装置用压力容器。

5) 换热器。

10常温下盛装混合液化石油气的压力容器(储存容器或移动式压力容器罐体)应进行炉内整体热处理。

《容规》第73 条11按《容规》规定,压力容器安全附件包括:安全阀、爆破片装置、紧急切断装置、压力表、液面计、测温仪表和快开门式压力容器的安全联锁装置。

《容规》第2 条12 《钢制压力容器》GB150-1998 不适用于设计压力低于 0.1MPa ;真空度低于 0.02MPa 的容器;要求作疲劳分析的容器。

GB150 1.3 条二:选择1 《压力容器安全技术监察规程规定》规定:压力容器介质为混合物质时,应按《压力容器安全技术监察规程规定》毒性程度或易燃介质的划分原则,由(d)提供介质毒性程度或是否属于易燃介质的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
压力容器设计基本知识
(讲稿) 一.基本概念 1.1 压力容器设计应遵循的法规和规程 1) 《特种设备安全监察条例》 (本文简称《条例》 ) , 是国务院 2003 年 3 月 11 日公布的条例,条例自 2003 年 6 月 1 日起施行。原《锅炉压力容器 安全监察暂行条例》同时废止。 2) 《压力容器安全技术监察规程》 (本文简称《容规》 ) ,此《容规》自 2000 年 1 月 1 日起正式实施。在安全监察中,包括的七个环节是:设计、制造、安装、 使用、检验、改造和修理。此规程与《条例》有不一致之处,应按《条例》的内 容修改。 3) 《压力容器压力管道设计单位资格许可与管理规则》 ,此规则自 2003 年 1 月 1 日起实施。 1.2 标准和法规(规程)的关系。 《容规》第 4 条规定,压力容器的设计、制造(组焊) 、安装、使用、检修、 修理和改造,均应严格执行本规程的规定;第 5 条规定:本规程是压力容器质量 监督和安全监察的基本要求, 有关压力容器标准、 部门规章、 企事业单位规定等, 如果与本规程的规定相抵触时,应以本规程为准。 GB150 总论第 3.1 条规定:容器的设计、制造、检验和验收除必须符合本标 准规定外,还应遵守国家颁布的有关法令、法规和规章。 因此,当标准与法规或规程有不一致时,应按法规(和规程)的规定执行。 1.3 压力容器的含义(定义) 根据《条例》第八十八条中的规定,压力容器用语的含义是: “压力容器, 是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压 力大于或等于 0.1MPa(表压) ,且压力与容积的乘积大于或等于 2.5MPa·L 的气 体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移 动式容器;盛装公称工作压力大于或等于 0.2MPa(表压) ,且压力与容积的乘积 大于或等于 1.0MPa·L 的气体液化气体和标准沸点等于或者低于 60℃液体的气 瓶;氧舱等。 ” 1.4 压力容器设计标准简述 我国压力容器专业性的具有一定规模的压力容器的设计和制造,起于五十 年代初期。 1980 年起,压力容器设计方面依据为: 《钢制石油化工压力容器设计规定》 和《钢制管壳式换热器设计规定》 。 GB150-1998《钢制压力容器》是强制性的压力容器国家标准。该标准对钢制 压力容器的设计、制造、检验和验收作出具体的规定。是压力容器的基本标准。 对压力小于 O.1MPa 的钢制容器的设计, 按压力容器行业标准 JB/T4735-1997 《钢制焊接常压容器》的规定。 卧式容器和立式容器的设计尚应符合行业标准 JB4710-2000《钢制塔式容 器》和 JB4731-2005《钢制卧式容器》的规定。 GB151-1999《管壳式换热器》标准,是用钢、铝、铜、钛和镍等材料制造的 管壳式换热器的设计制造和验收标准。 化工行业标准 HG20580~HG20585–1998, 是针对化工设备的特点,对钢制压
GB151-1999《管壳式换热器》
01 简述 02 标准与 GB150-1998《钢制压力容器》的关系。 03 基本章节 1 适用范围 2 组成 3 型号表示法 4 有关参数的确定 5 焊接接头系数 6 试验压力和试验温度 7 其它要点 8 管板计算 9 制造、检验与验收
3
附录
受内压薄壁容器的应力分析目录
1.薄壁旋转壳体的几何概念和基本假设 1.1 几何概念 1.2 薄壁壳体的基本假设 2 薄壁圆筒的应力分析 2.1 轴向应力的计算 2.2 环向应力的计算 3 旋转薄壁容器的应力分析 3.1 薄壁壳体的一般方程式 3.2 经向应力σ1 和环向应力σ2 的计算 4.应用举例 4.1 圆筒形壳体 4.2 球壳 4.3 椭球壳(椭圆封头) 4.4 锥形壳(锥形头) 4,5 薄壁圆环(弯管段)
2
8.开孔和开孔补强 8.1 开孔的作用 8.2 开检查孔的要求 8.3 开孔的形状和尺寸限制 8.4 补强要求 8.5 有效补强范围及补强面积 8.6 多个开孔的补强 9 法兰连接 9.1 简介 9.2 法兰连接密封原理 9. 3 法兰密封面的常用型式及优缺点 9.4 法兰型式 9.5 法兰连接计算要点 9.6 管法兰连接 10.压力容器的制造、检验和验收 10.1 制造许可 10.2 材料验收及加工成形 10. 3 焊接 10.4 D 类压力容器热处理 10.5 试板和试样 10.8 无损检测 10. 9 液压试验 10.10 容器出厂证明文件。 11.安全附件和超压泄放装置 11.1 安全附件 11.2 超压泄放装置 11.3 压力容器的安全泄放量 11.4 安全阀
压力容器设计基本知识
(讲稿)


二零零六年三月制订
1
目录 一. 1.1 1.2 1.3 1.4 1.5 基本概念 压力容器设计应遵循的法规和规程 标准和法规(规程)的关系。 压力容器的含义(定义) 压力容器设计标准简述 D1 级和 D2 级压力容器说明
二.GB150-1998《钢制压力容器》 1.范围 2.标准 3.总论 3.1 设计单位的资格和职责 3.3 GB150 管辖的容器范围 3.4 定义及含义 3.5 设计参数选用的一般规定 3.6 许用应力 3.7 焊接接头系数 3.8 压力试验和试验压力 4.对材料的要求 4.1 选择压力容器用钢应考虑的因素 4. 2 D 类压力容器受压元件用钢板 4.3 钢管 4.4 钢锻件 4. 5 焊接材料 4.6 采用国外钢材的要求 4.7 钢材的代用规定 4.8 特殊工作环境下的选材 5.内压圆筒和内压球体的计算 5. 1 内压圆筒和内压球体计算的理论基础 5.2 内压圆筒计算 5.3 球壳计算 6.外压圆筒和外压球壳的设计 6.1 受均匀外压的圆筒(和外压管子) 6.2 外压球壳 6.3 受外压圆筒和球壳计算图的来源简介 6.4 外压圆筒加强圈的计算 7.封头的设计和计算 7.1 封头标准 7.2 椭圆形封头 7. 3 碟形封头 7.4 球冠形封头 7.5 锥壳
相关文档
最新文档