生活中的立体图形课后作业
生活中的立体图形 (1)
请同学们思考,下列几个几何体应该怎么命名?你命名的依据 边 棱 数柱 是什么呢?小组讨论一下
三棱柱
四棱柱
五棱 柱
六棱柱
来、 命棱 名锥 的的 命结 名论 是 按 底 面 的
三棱锥
四棱锥
五棱锥
六棱锥
合作探究二
观察下列两幅图,小组讨论怎么识别这两 种几何体的特征,尽量用自己的语言说出 来。
结论
棱柱有直棱 柱和斜棱柱。 本书只讨论 直棱柱简称 棱柱
只有一个面,并且是 这 个面曲面。
圆锥
球体
球
学以致用
1、下列物体可以近似地看作是由什么几何体组成的? 你在生活中还见过哪些物体是由两个或两个以上的几何体组 成的?举例说明。
练一练
图中的棱柱、圆锥分别是由几个面组成的? 它们是平的还是曲的?
1、圆柱体是由
个面围成,这些面相交共得 ;它有
条线. 个面组成;它有 个顶点;
1、自学课本P2—3页 思考下面的问题:
点 、___ 线 、___ 面 构成的。 1.图形是由___
2.正方体是由_____ 六 个面围成的,它们都是_____ 平面 。 直 线 3.每两个面之间相交成一条______ 八 个顶点,经过每个顶点有 十二条棱。 三 4.正方体有___ __条棱,共_____ 5.圆柱是由____ _____。 三 个面围成的,其中___ 两 个面是_____ 平面,侧面是 曲面
图形
主要特征
侧面、底面都是平 面,有多个侧面,两 个底面,并且底面互 相平行。 侧面是曲面、底面是 平面,只有一个侧 面、两个底面,并且 底面互相平行。
柱体
圆柱
棱锥(三棱锥、 四棱锥、五棱锥 等)
锥体
侧面、底面都是平 面,有多个侧面,只 有一个底面。 侧面是曲面、底面是 平面,只有一个侧面 和一个底面。
生活中的立体图形课后题(题目+答案)
【采分点】面的个数(4分)
【采分点】判断平曲面(2分)
【题干】2.你认为生活中有哪些几何体可以由平面图形旋转而得到?你能想象它们是由什么平面图形旋转而成的吗?举例说明.
【答案】比如:篮球是由圆旋转而成;圆锥形的沙堆是由三角形旋转而成;水杯是由四边形旋转而成的;易拉罐是由矩形旋转而成的;.
【答案】(1)圆柱体和长方体(2)圆柱体(3)圆柱体和圆锥(4)长方体和球
【采分点】每幅图(1.5分)
【题干】6.圆柱和棱柱有很多相同点,下面的这个几何体也有这样的相同点吗?
【答案】有,上下底面相同且平行;侧面展开是矩形.
【采分点】有(2分)
【采分点】相同点(4分)
【大题】习题1.2(每小题6分)
【题干】1.图中的棱柱,圆锥分别是由几个面围成的?他们分别是平的还是曲的?
【采分点】正确举例3个(6分)
【题干】3.下列几何体可以由平面图形绕其中一条直线旋转一周得到吗?
【答案】(1)(3)(4)可以由平面图形绕其中一条直线旋转一周得到
【采分点】(1)(3)(4)(6分)
【小题】(2)这个六棱柱的所有侧面的面积之和是多少?
【答案】侧面积之和:5×4×6=120cm2
【采分点】120cm2(4分)
【问答题】
【题干】3.将下列几何体分类,并说明理由.
正方体长方体球圆柱圆锥四棱柱三棱柱
【答案】这些几何体分别是正方体、长方体、球、圆柱、圆锥、四棱柱、三棱柱
可以分为柱体、锥体、球体三类;
【综合题】
【题干】2.一个六棱柱模型如图所示,它的底面边长都是5cm,侧棱长4cm观察这个模型,回答下列问题:
1.1生活中的立体图形(一)
几何体的分类
三棱柱 棱柱 柱 圆柱 棱锥 锥 圆锥 球 三棱锥 四棱锥 五棱锥。。。 四棱柱 五棱柱。。。
球
想一想
小结及作业
议一议
用自己的语言描述一下:
1 圆柱与圆锥的相同与不同
相同点:底面都是圆,侧面都有一个底面 (2)圆柱没有顶点, 而圆锥有一个顶点
2 棱柱与圆柱的相同与不同
相同点:都有上、下两个底面,都有侧面 不同点:(1)棱柱的底面是形状和大小完全相同的多边形, 圆柱的底面是圆 (2)棱柱的侧面是长方形,圆柱的侧面是曲面 (3)棱柱有顶点,圆柱没有顶点
北师大版七年级(上册) 教育部审定义务教育教科书
1.1 生活中的立体图形(一)
下列图片中有哪些你熟悉的几何体呢?
我 的 简 易 书 架
⑴在小明的书房中,哪些物体的形状与你在小学学 过的几何体类似? ⑵ 书房中哪些物品的形状与圆柱、圆锥类似? (3)请在房中找出与笔筒形状类似的物品?
常见的几何体
四棱柱
五棱柱
六棱柱
三棱锥
四棱锥
五棱锥
六棱锥
棱柱有直棱柱和斜棱柱。
本书只讨 论直棱柱 简称棱柱
斜棱柱
直棱柱
请你按适当的标准对下列几何体
进行分类。
1
2
3
4
5
6
按“柱锥球划”分:(1)(2)(4)(6)是柱体 (5)是锥体 (3)是球体
1
2
3
4
5
6
按面的曲或平划分: (3)(4)(5)是一类,组成它们的面中至少有一 个是曲的; (1)(2)(6)一类,组成它们的各面都是平的.
正方体
长方体
棱柱
圆柱
棱锥
圆锥
球
北师大版初一(上)数学配套习题第一章:丰富的图形世界
第一章:丰富的图形世界1.1生活中的立体图形■课后作业 家长签字:1、长方体共有( )个面.A.8B.6 C 。
5 D.4 2、六棱柱共有( )条棱.A 。
16 B.17 C.18 D 。
20 3、下列说法,不正确的是( )A 、圆锥和圆柱的底面都是圆。
B 、棱锥底面边数与侧棱数相等。
C 、棱柱的上、下底面是形状、大小相同的多边形。
D 、长方体是四棱柱,四棱柱是长方体。
4、判断题:(1)棱柱侧面的形状可能是一个三角形 ( ) (2)棱柱的每条棱长都相等. ( )(3)正方体和长方体是特殊的四棱柱,有是特殊的六面体。
( )5、正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2。
6、长方体有 个顶点, 条棱, 个面.7、五棱柱是由 个面围成的,它有 个顶点,有 条棱.8、一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm,那么它所有棱长的和是 cm 。
9、如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由 个面围成的,其中正方形有 个,长方形有 个.10、已知一圆柱内恰好能容纳一个球体,请画出示意图并尽可能多地写出一些你发现的关系式.11、在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12、如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和。
13、长方体属于( ) A.棱锥 B 。
棱柱 C.圆柱 D 。
以上都不对 14、下列几何体中(如图)属于棱锥的是( )(1) (2) (3) (4) (5) (6)A 。
(1)(5)B 。
(1) C.(1)(5)(6) D 。
(5)(6)15、下列所讲述的物体,_______与圆锥的形状类似( )A.香烟盒B。
生活中的立体图形(家庭作业)
第一章丰富的图形世界1.1生活中的立体图形第1课时认识几何体基础题知识点1常见几何体的认识1.下列物体中,类似圆锥的是( )A.茶杯B.圣诞帽C.乒乓球D.铅笔知识点2棱柱的相关概念及特征2.如图,下列几何体中,是棱柱的是( )3.直四棱柱、长方体和正方体之间的包含关系是( )4.如图所示是一个棱柱,请问:(1)这个棱柱由几个面围成?棱的条数为几条?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?知识点3几何体的分类6.如图,下列几何体中,柱体--------------- ,锥体有-------,球体有-------.中档题7.下列说法中,正确的有( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个.8.(郑州五中月考)直六棱柱的其中一条侧棱长为 5 cm,那么它的所有侧棱长度之和为---------cm.9.(教材P4习题T1变式)如图,下列几何体分别是三棱柱、四棱柱、五棱柱,观察图形并填空.(1)三棱柱有-- 个面,--- 条棱,--- 个顶点;(2)四棱柱有---- 个面,----- 条棱----- 个顶点;(3)五棱柱有---- 个面,----- 条棱,---- 个顶点;(4)由此猜想:六棱柱有----- 个面,------ 条棱,----- 个顶点.10.指出图中各物体是由哪些几何体组成的.第2课时点、线、面、体基础题知识点1图形的构成元素1.下列几何体中,有五个面的是( )A.圆柱B.三棱柱C.四棱柱D.五棱柱2.圆锥有两个面,其中一个是------- 面,另一个------- 面,这两个面相交成一条--------- 线.知识点2点动成线、线动成面、面动成体3.流星划过天空时留下一道明亮的光线,用数学知识解释为( )A.点动成线B.线动成面C.面动成体D.以上都不对4.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( )A.点动成线B.线动成面C.面动成体D.以上都不对6.以如图所示的三角形的边为轴旋转一周后所得到的几何体可以是右图中的--------------)(填序号).中档题7.将右边图形绕直线l旋转一周,可以得到如图所示的立体图形的是( )A B C D8.(太原五中检测)观察下图,请把如图的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )A B C D9.我们曾学过圆柱的体积计算公式:V=Sh=πr2h(r是圆柱底面半径,h为圆柱的高).现有一个长方形,长为2 cm,宽为1 cm,以它的一边所在的直线为轴旋转一周,得到的几何体的体积是多少?1.2展开与折叠第1课时正方体的展开与折叠基础题知识点正方体的展开与折叠1.(长春中考)下列图形中,可以是正方体表面展开图的是( )2.(仙桃中考)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A.传B.统C.文D.化3.(河北中考改编)图1和图2中所有的正方形都相同,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是( )图1图2A.①B.②C.③D.④中档题5.(包头中考)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )6.(资阳中考)如图是一个正方体纸盒的外表面展开图,则这个正方体是( )7.(宝鸡期中)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.下图是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示上面,则“祝”、“你”、“前”分别表示正方体的-------------------.8.如图,在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体,则一共有---------种方式.综合题9.如图是一个正方体的表面展开图,把1,2,3,4,5,6分别填入六个小正方形内,使按虚线折成正方体后,相对的两个面上的数字之和相等.请你尝试不同的填法,并与同伴交流.第2课时棱柱、圆柱、圆锥的展开与折叠基础题知识点1棱柱的展开与折叠1.(北京中考)如图是某个几何体的展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱2.如图是一个长方体包装盒,则它的平面展开图是( )知识点2圆柱、圆锥的展开与折叠4.如图,圆柱的表面展开后得到的平面图形是( )5.如图所示的平面图形中,不可能围成圆锥的是( )6.(宝鸡渭滨区期中)圆锥的侧面展开图是---------------(填图形的名称).中档题7.下列图形中,能通过折叠围成一个三棱柱的是( )8.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是( )9.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面(字母朝外),那么在上面的字母是------------。
1.1 生活中的立体图形(2)练习
1.1 生活中的立体图形(2)练习一、目标导航1.熟悉圆柱、圆锥、正方体、长方体、棱柱、球等,并能用自己的语言描述它们的某些特征.2.通过一系列活动,培养学生的语言表达能力、总结归纳能力、实际动手能力及探索发现能力.3.加深生活中一些常见几何体的认识.4.能熟练从具体实物中抽象出几何体的概念和动手做几何图形,并轻松用自己的语言准确地描述简单的几何体.二、基础过关1.长方体共有( )个面.A.8B.6C.5D.42.六棱柱共有( )条棱.A.16B.17C.18D.203.用扇形可以围成哪种几何体的表面( )A.圆锥B.圆柱C.球D.棱柱4.下列说法中,正确的是( )A.圆柱的侧面是长方形B.棱柱的底面是三角形或四边形C.棱锥的侧面都是三角形D.圆锥的侧面是扇形5.粉笔在黑板上划过写出一个又一个字母,画出一个个图案,这说明 .6.在魔术表演中,有个节目叫火绳舞,表演者舞动火绳,绳的两端及绳子就形成了一个圆面的整体,这说明了;小明把一枚硬币立在桌面后让其快速转动起来,近似形成了一个,这说明了 .7.正方体有个面,个顶点,经过每个顶点有条棱.这些棱的长度 (填相同或不同).棱长为a cm的正方体的表面积为 cm.8.圆锥体有个顶点,条棱,个面.9.五棱柱是由个面围成的,它有个顶点,有条棱.10.如果六棱柱的底面边长都是2cm,侧棱长都是4cm,那么它所有棱长的和是 cm.三、能力提升11.画连接线,如图给上排的各个平面图形配上一个下排的旋转体.⑴⑵⑶⑷⑸⑹a b c d e f12.长和宽分别是6cm和3cm的长方形分别绕长、宽所在的直线旋转一周后,得到的两个几何体中哪个体积更大?画图说明并求解具体数值证明你的观点.13.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.14.将如下图所示的圆心角为90的扇形纸片AOB围成圆椎形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆椎形纸帽是( )15.如图,把一个长方体的礼品盒用丝带打上包装,打蝴蝶结部分需丝带45cm . 那么打好整个包装所用丝带总长多少呢?.16.每面标有1至6点的三颗骰子叠放在一起,如图所示,其中可见几个面?有多少个面是看不见的(背面、底面、左面)?看不见的面的点数之和是多少?简单阐述你的分析方法?四、聚沙成塔64=65?(面积) 你会觉得这是一个很幼稚的问题!然而,小颖在动手做了一个拼图游戏后,开始“困惑”了,你能帮助小颖吗?亲自动手试一试?(小正方形的边长为1的网格纸)(说明:左右两图的拼图元件前后未发生任何变化)。
《生活中的立体图形》教案
《生活中的立体图形》教案《生活中的立体图形》教案1一、设计思路:人们生活的空间存在着大量的图形,图形是人们理解自然界和社会现象的绝妙工具,立体图形的学习将使学生能更好地适应生活的空间,同时也给他们带来无穷的直觉源泉。
发展学生的空间观念是学习立体图形的核心目标。
而“能由实物的形状想像出几何图形,由几何图形想像出实物的形状”是空间观念的重要方面。
同时,学生根据已有的生活背景和初步的数学活动经验,从观察生活中的物体开始,通过观察、操作、想像、讨论、交流、推理等大量数学活动,逐步形成自己对空间与图形的认识,促进观察、分析、归纳、概括等一般能力的发展。
二、课程目标:1、经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
2、在具体情境中认识圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。
3、通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系。
加深对常见几何体特征的认识。
4、通过实例,使学生了解抽象概括的思维方法。
5、通过实例,使学生领悟到数学________于实践,反过来又作用于实践的辩证原理。
激发学生的学习积极性。
培养学生积极的情感与态度。
三、教材分析:教材从生活中常见的立体图形入手,让学生在丰富的现实情境中,认识常见几何及点、线、面的一些性质,在主动探究中,体会点、线、面是构成图形的基本元素,从构成图形的基本元素的角度进一步认识常见几何体的某些特征。
四、重点难点:1、“非数学语言”到“数学语言”的转化。
2、体会点、线、面是几何图形的基本元素。
学生分组准备长方体、正方体、圆柱、三棱柱、三棱柱、四棱锥、螺帽、球体各多个。
教师准备相应实物体各1个,投影片。
五、学前准备:六、教学过程:(一)创设情境、引入新课引言:首先,能认识你们这些新朋友,我感到很荣幸。
很高兴今后能和同学们一起愉快合作,遨游数学王国、领略其风采,探索其奥秘。
同学们,让我们乘上时间的快车,架起理想的风帆,远航吧!让我们打开记忆的闸门,回顾一下以前数学课学习了什么内容吧!说明:用亲切的语言导入新课,缩短了师生之间的距离,使师生处于平等地位,让学生觉得教师和蔼可亲,从而形成老师是“知无不言,言无不尽”的好朋友的意识,为使学生主动参与课堂活动奠定了感情基础。
生活中的立体图形课后作业2
A.6B.8C.9D.10
二、填空题
8.一个棱柱有 个面,它的底面边长都是 ,侧棱长 ,这个棱柱的所有侧面的面积之和是__________.
9.如图所示的几何体的名称是____,它由____个面组成,它有____个顶点,经过每个顶点有____条边.
D、将平面图形绕轴旋转一周,得到的是一个圆台,则此项不符题意;
故选:B.
【点睛】
本题考查了平面图形旋转后的几何体,熟练掌握平面图形旋转的特点是解题关键.
4.C
【解析】选项A,用平口铲子铲去墙面上的大片污渍,说明“线动成面”;选项B,用一条拉直的细线切一块豆腐,说明“线动成面”;选项C,流星划过天空留下运动轨迹说明“点动成线”;选项D,用木板的边缘将沙坑里的沙推平,说明“线动成面”.故选C.
14.若一个直n棱柱共有18条棱,则它是________棱柱,有________个面,________个顶点.
15.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
三、解答题
16.画出下面图形的三视图:主视图,左视图,俯视图.
17.将一个正方体的表面全涂上颜色.
10.一根长方体木料长 米,当把它按下图方式截成 个小长方体木料时,表面积比原来增加了 平方厘米,则原来的体积是_______立方厘米.
11.一个棱柱有10个顶点,所有的侧棱长之和为 ,则每条侧棱的长为_____ .
12.在如图所示的长方体中,与AB垂直且相交的棱有______条.
13.直角三角形的两条边的长分别是 和 ,以直角边所在的直线为轴,将三角形旋转一周,所得几何体的俯视图的面积是__________.
北师大版数学七年级上册1.1《生活中的立体图形》(第2课时)教案
北师大版数学七年级上册1.1《生活中的立体图形》(第2课时)教案一. 教材分析《生活中的立体图形》是北师大版数学七年级上册第1.1节的内容,本节课主要让学生初步认识生活中常见的立体图形,了解立体图形的特征,培养学生观察生活、发现问题、解决问题的能力。
教材通过实例引入立体图形的概念,让学生在实际生活中感受立体图形的存在,培养学生的空间观念。
二. 学情分析七年级的学生已经具备了一定的空间想象能力,他们对平面图形有了一定的了解。
但是,对于立体图形,学生可能还比较陌生,需要通过生活中的实例来帮助他们理解和认识立体图形。
此外,学生可能对一些立体图形的特征和性质不够了解,需要通过观察、操作、思考、交流等环节来逐步掌握。
三. 教学目标1.让学生通过观察和操作,认识生活中常见的立体图形,了解立体图形的特征。
2.培养学生的空间观念,提高学生观察生活、发现问题、解决问题的能力。
3.培养学生合作学习、积极思考、动手操作的能力。
四. 教学重难点1.教学重点:让学生通过观察和操作,认识生活中常见的立体图形,了解立体图形的特征。
2.教学难点:让学生理解和掌握立体图形的相关性质和特征。
五. 教学方法1.采用直观演示法,让学生通过观察实物和模型,直观地了解立体图形的特征。
2.采用操作实践法,让学生动手操作,加深对立体图形特征的理解。
3.采用合作交流法,让学生分组讨论,共同解决问题,提高学生的合作能力和沟通能力。
4.采用问题引导法,教师提出问题,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.准备一些生活中常见的立体图形实物或模型,如球体、正方体、圆柱体等。
2.准备一些与立体图形相关的图片或图片卡片。
3.准备黑板、粉笔等教学用具。
七. 教学过程导入(5分钟)教师通过向学生展示一些生活中常见的立体图形实物或模型,如篮球、魔方、铅笔等,引导学生观察并提问:“你们认识这些图形吗?它们有什么特点?”让学生初步感受立体图形的存在,激发学生的学习兴趣。
11 生活中的立体图形(备作业)-2021-2022学年七年级数学上(北师大版)(解析版)
1.1生活中的立体图形一、单选题1.下列几何体中,是圆锥的为()A.B.C.D.【答案】C【解析】根据圆锥的特征进行判断即可.解:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,因此选项C中的几何体符合题意,故选:C.【点睛】本题考查认识立体图形,掌握几种常见几何体的形体特征是正确判断的前提.2.下列几何体中属于棱锥的是()A.①⑤①B.①C.①⑤⑥D.⑤⑥【答案】B【解析】根据棱锥的定义:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.分析即解.①底面是四边形,侧面是4个有公共顶点的三角形,所以是棱锥;②只有一个曲面,不属于多面体,所以不是;③有两个平面一个曲面,所以不是;④侧面不是有一个公共顶点的三角形,所以不是;⑤只有一个曲面和一个侧面,所以不是;⑥侧面不是有一个公共顶点的三角形,所以不是;故选:B.【点睛】本题主要考查棱锥的知识,属于基础题,注意掌握棱锥的概念.3.下列说法,不正确的是()A.圆锥和圆柱的底面都是圆.B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.【答案】D【解析】根据常见立体图形的定义和特征进行判断即可解答.解:A、圆锥和圆柱的底面都是圆,正确,不符合题意;B、根据棱锥的侧棱的定义和底面边数的定义可知,棱锥底面边数与侧棱数相等,正确,不符合题意;C、根据棱柱的上下两个底面是平行且全等的图形知,棱柱的上、下底面是形状、大小相同的多边形,正确,不符合题意;D、长方形是四棱柱,但四棱柱不一定是长方体,此选项错误,符合题意,故选:D.【点睛】本题考查认识立体图形,熟练掌握各立体图形的定义和特征是解答的关键.4.下面几种图形:①三角形;②梯形;③长方体;④圆;⑤三棱锥.其中属于立体图形的有()A.一个B.两个C.三个D.四个【答案】B【解析】根据立体图形的概念和定义对各选项进行分析即可.解:①三角形,属于平面图形;②梯形,属于平面图形;③长方体,属于立体图形;④圆,属于平面图形;⑤三棱锥,属于立体图形;故选:B.【点睛】本题考查立体图形的定义,要注意与平面图形的区分.5.下列立体图形中面数最多的是()A.四棱锥B.长方体C.五棱柱D.六面体【答案】C【解析】根据立体图形的形状即可作出判断.解:四棱锥有5个面,长方体有6个面,五棱柱有7个面,六面体有6个面,故选:C.【点睛】本题考查立体图形,掌握几何体形状,明确几何体的组成是解答的关键.6.如图所示的立体图形,是由__个面组成的,面与面相交形成___条线()A.3,6 B.4,5 C.4,6 D.5,7【答案】C【解析】对图进行仔细观察认真分析即解.解:有上下两个平面,侧面是一个平面,一个曲面,共有4个面;面与面相交的地方形成线.上面是一条曲线,一条直线,侧面是两条直线,下面是一条曲线一条直线,共有6条线.故选:C.【点睛】本题考查的知识点为:面有平面与曲面之分,线也有直线和曲线之分.应考虑完全.7.将如图所示的直角三角形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【答案】B【解析】根据题意作出图形,即可进行判断.将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.8.给出下列结论:①圆柱由三个面围成,这三个面都是平的;②圆锥由两个面围成,这两个面中,一个面是平的,一个面是曲的;③球仅由一个面围成,这个面是曲的;④长方体由六个面围成,这六个面都是平的其中正确的有().A.①②③B.①③④C.②③④D.①②④【答案】C【解析】根据几何体的构成及分类对各项进行判断即可.圆柱的侧面是曲的,①错误;圆锥由侧面和底面两个面围成,侧面是曲的,底面是平的,②正确;球只由一个面围成,这个面是曲的,③正确;长方体由六个面围成,这六个面都是平的,④正确.故正确的有②③④.故选C.【点睛】本题考查了几何体的问题,掌握几何体的构成及分类是解题的关键.9.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转【答案】B【解析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.将直角三角形ABC 绕斜边AB所在直线旋转一周得到的几何体是:故选:B.【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.10.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.有两个面平行,其余各面都是四边形的几何体叫棱柱C.将直角三角形绕它的一边所在的直线旋转一周,形成的几何体一定是圆锥D.棱台的侧棱所在的直线交于一点【答案】D【解析】【解析】根据棱柱、圆锥、棱台的结构特征解答.对于A,∵棱柱的每个侧面都是平行四边形,所以A错误;对于B,有两个面平行其余各面都是平行四边形的几何体叫棱柱错误,反例如图:对于C,将直角三角形绕一边所在的直线旋转一周形成的几何体是圆锥,以斜边为轴,不是圆锥,所以C错误;对于D,棱台是由棱锥用平行于底面的平面所截得的,故棱台的侧棱所在的直线交于一点,所以D正确.故选D.【点睛】本题考查了命题的真假判断与应用,考查了空间几何体的结构特征,是基础题.11.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲乙丙丁各平面图形顺序对应的立体图形的编号应为()A.③④①②B.①②③④C.③②④①D.④③②①【答案】A【解析】甲旋转后得到③,乙旋转后得到④,丙旋转后得到①,丁旋转后得到②.故与甲乙丙丁各平面图形顺序对应的立体图形的编号应为③④①②.故选A.12.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A.1个B.2个C.3个D.无数个【答案】D【解析】上面正方体体积取决于上面正方体的棱长,由于棱长有多种情况,则上面正方体体积的值也有无数种.故选D. 二、填空题13.生活中常见的几何体有正方体、长方体、三棱柱、圆锥、五棱柱、三棱锥、球,是柱体的有_______;是锥体的有______;是球的有______.【答案】正方体、长方体、三棱柱、五棱柱圆锥、三棱锥球【解析】根据柱体、锥体、球体的定义和特征解题即可.柱体有两个面互相平行且全等,余下的每个相邻两个面的交线互相平行,包括圆柱和棱柱,本题中正方体、长方体、三棱柱、五棱柱都是柱体;锥体是指包括圆锥、棱锥等在内的空间立体图形,由圆的或其他封闭平面基底,以及由此基底边界上各点连向一公共顶点的线段所形成的面所限定,本题中圆锥、棱锥都是锥体;球是球.故答案为:正方体、长方体、三棱柱、五棱柱;圆锥、三棱锥;球.【点睛】本题考查了立体几何的分类,正确理解柱体、锥体、球体的定义和特征识别是解题的关键.14.观察下列图形,在括号内填上相应名称.【答案】圆柱,圆锥,四棱锥,六棱柱,三棱柱,四棱柱,球,圆台【解析】本题观察题中每一个立体图形可直接得出结果.根据题意,直接观察图像可知结果依次为:圆柱,圆锥,四棱锥,六棱柱,三棱柱,四棱柱,球,圆台.故答案为:圆柱,圆锥,四棱锥,六棱柱,三棱柱,四棱柱,球,圆台.【点睛】本题查考立体图形的认识,属于基础题,通过直接观察图像得出结果即可.15.如图,这个几何体的名称是___;它由__个面组成;它有__个顶点;经过每个顶点有____条棱.【答案】五棱柱7 10 3【解析】观察几何体,有两个底面,5个侧面,经过每个顶点有三条边.这个几何体的名称是五棱柱;它有7个面组成;它有10个顶点;经过每个顶点有3条边.故答案为:五棱柱、7、10、3.【点睛】要仔细观察几何体,找出几何体的组成情况.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.【答案】a d e c b【解析】根据面动成体的特点解答.a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.几何图形中,像直线、角、三角形、圆等,它们上面的各点都在____平面内,这样的图形叫做____.【答案】同一平面图形【解析】根据平面图形的定义即可得出答案.几何图形中,像直线、角、三角形、圆等,它们上面的各点都在同一平面内,那么这样的几何图形叫做平面图形.故答案为:同一;平面图形.【点睛】此题考查平面图形,关键在于掌握平面图形的定义.18.下列几何体:①长方体;②五棱柱;③三棱柱;④正方体.其中有六个面的是________.(填序号)【答案】①④【解析】【解析】根据简单几何体的特点依次判断.①长方体有6个面;②五棱柱有7个面;③三棱柱有5个面;④正方体有6个面.其中有六个面的是①④,故填:①④.【点睛】此题主要考查几何体的面数,解题的关键是熟知简单几何体的特点.19.在棱柱中,相邻两个面的交线叫做________,相邻两个侧面的交线叫做________.棱柱的所有侧棱长都________,棱柱上、下底面的形状,侧面的形状________都是________.【答案】棱,侧棱,相等,相同,平行四边形.【解析】【解析】根据棱柱的定义即可求解.在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.棱柱的所有侧棱长都相等,棱柱上、下底面的形状,侧面的形状相同都是平行四边形.故填:棱;侧棱;相等;相同;平行四边形【点睛】此题主要考查棱柱的定义与性质,解题的关键是熟知棱柱的特征.20.圆柱由_________个面围成,其中_________个平面、_________个曲面.【答案】3 ,2, 1【解析】根据圆柱的特点即可求解.圆柱由3个面围成,其中2个平面、1个曲面.故填:3;2;1.【点睛】此题主要考查圆柱的特点,解题的关键是熟知圆柱体的性质特点.21.一个棱柱至少有——————个面,面数最少的棱柱有——————个顶点,有———————个棱.【答案】5 ; 6; 9.【解析】【解析】通过棱柱的结构特征,推出结果即可.解:棱柱的底面的边数为3时,是三棱柱,此时至少有5个面;面数最少的棱柱有6个顶点;有9条棱.故答案为5;6;9.【点睛】本题考查棱柱的结构特征,是基础题.22.一个棱柱有10个顶点,所有的侧棱长之和为60 cm ,则每条侧棱的长为_____cm .【答案】12【解析】【解析】根据顶点个数可知棱柱为5棱柱,含有5条侧棱,从而得出答案.∵棱柱有10个顶点,∴棱柱为5棱柱,共有5条侧棱,∵棱柱的侧棱长都相等,∴每条侧棱长为605=12.故答案为:12.【点睛】本题考查了棱柱的结构特征,属于基础题.23.一个长方形的长AB 为4cm ,宽BC 为3cm ,则将其绕AB 边旋转一周,得到一个圆柱体,则该圆柱体的体积是__3cm (保留)π.【答案】36π【解析】根据题意知道底面圆的半径是3cm ,高为4cm ,根据圆柱的体积=底面积×高即可求出结果.解:由题意得,绕AB 边旋转一周,得到的圆柱体的底面半径为3cm ,高为4cm , 因此体积为233436()cm ππ⨯⨯=,故答案为:36π.【点睛】本题考查了面动成体及圆柱体积的计算公式,掌握相应的知识是解题的关键.24.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是_____cm3.【答案】3200【解析】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3)故答案为3200.点睛:此题主要考查了几何体的表面积,抓住切割特点和表面积增加面的情况是解决本题的关键.三、解答题25.请找出图中相互对应的图形,并用线连接.【答案】见解析【解析】利用面动成体解答即可.解:本题考查平面图形旋转与几何体形成的一种方法,如图所示:【点睛】本题主要考察了点、线、面、体,解题的关键是培养学生的空间想象能力.26.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=13底面积×高)【答案】几何体的体积为:96πcm3或128πcm3或76.8πcm3.【解析】根据三角形旋转是圆锥,可得几何体;根据圆锥的体积公式,分类讨论可得答案.解:以8cm为轴,得:以8cm为轴体积为13×π×62×8=96π(cm3);以6cm为轴,得:以6cm为轴的体积为13×π×82×6=128π(cm3);以10cm为轴,得以10cm为轴的体积为13×π(245)2×10=76.8π(cm3).故几何体的体积为:96πcm3或128πcm3或76.8πcm3.【点睛】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.27.将下列几何体与它的名称连起来【答案】见解析【解析】根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.连线如图所示:【点睛】本题考查了认识立体图形,掌握立体图形的特征是解题关键.28.如图,直棱柱的底面边长都相等,底面边长是3.5cm,高是4cm,解答下列问题.(1)这是几棱柱,共有几个面?(2)这个棱柱的侧面积是多少cm²?【答案】(1)直六棱柱;8;(2)84cm2【解析】(1)根据棱柱的定义,即可得到答案;(2)由侧面积的计算方法进行计算,即可得到答案.解:(1)由题意可知,该棱柱是直六棱柱,共有8个面;⨯⨯=(cm2);(2)侧面积为:3.54684【点睛】本题考查了棱柱的分类和特征,解题的关键是正确识别棱柱,以及掌握棱柱的特征.29.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)【答案】(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【解析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.30.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:(2)猜想三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4036条,试求出它的面数.【答案】(1)见解析;(2)2f v e +-=;(3)2020【解析】(1)根据图形数出即可.(2)根据(1)中结果得出2f v e +-=.(3)代入2f v e +-=求出即可.解:(1)(2)猜想:2f v e +-=;(3)2018v =,4036e =,2f v e +-=201840362∴+-=,ff=,2020即它的面数是2020.【点睛】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.31.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.【答案】(1)填表见解析,V+F-E=2;(2)20;(3)14【解析】(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(2)由题意得:F-8+F-30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.。
(名师整理)最新北师大版数学七年级上册第1章第1节《生活中的立体图形》精品习题课件
【点拨】根据柱体、锥体的定义及组成作答. 【答案】B
7.下列说法正确的是( A ) A.三棱柱有九条棱 B.正方体不是四棱柱 C.五棱柱则下列说法正确的是( B ) A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.以上都不正确
解:相同点:底面为圆, 侧面为曲面; 不同点:题图①有两个底 面,题图②有一个底面.
(2)比较图①与图③的异同点;
解:相同点:都有两个底面,且 两个底面平行且相等; 不同点:题图①的底面为圆,侧 面为曲面;题图③的底面为五边 形,侧面为五个长方形.
(3)比较图②与图③的异同点.
解:相同点:无; 不同点:题图②有一个底面, 且底面为圆,侧面为曲面;题 图③有两个底面,且底面为五 边形,侧面为五个长方形.
点――动→线直曲线线――――动动→→平曲面面――动→体(立体图形)
33
光读书不思考也许能使平庸之辈知识 丰富,但它决不能使他们头脑清醒。
—— 约·诺里斯
*9.【中考•南京】不透明的袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特征.
甲同学:它有4个面是三角形.乙同学:它有8条棱. 该模型的形状对应的立体图形可能是( ) A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
【点拨】本题考查了关于棱锥与棱柱的面数、棱数的问题, 熟悉棱柱、棱锥的特征是解题的关键.
(2)这个五棱柱的所有侧面的面积之和是多少?
解:这个五棱柱的所有侧面的面积之和是4×7×5= 140(cm2).
(3)这个五棱柱一共有多少条棱?它们的长度之和是多少?
解:这个五棱柱一共有15条棱,它们的长度之和是 4×10+5×7=75(cm).
14.【2019•凉山州】观察下列立体图形,并把下表补充 完整.
4.1生活中的立体图形 (解析版)-2020-2021学年七年级数学上册课时同步练(华师大版)
第4章图形的初步认识4.1 生活中的立体图形一、选择题:1.下列几何体中截面不可能是长方形的是()A.B.C.D.【答案】C【解析】解:A、长方体的截面可以为长方形,不符合题意,本选项错误;B、圆柱的轴截面可以为长方形,不符合题意,本选项错误;C、圆的截面不可能是长方形,符合题意,故本选项正确;D、三棱柱的截面可以是长方形,不符合题意,本选项错误.故选:C.【点睛】本题考查了截一个几何体.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.2.下列几何体中,是棱锥的为()A.B.C.D.【解析】解:A选项是圆柱;B选项是圆锥;C选项是四棱柱;D选项是四棱锥.故选:D.【点睛】本题考查几何体的识别,解题的关键是要认识不同的几何图形.3.如图所示的平面图形绕轴旋转一周,可得到的立体图形是()A.圆锥B.圆柱C.三棱锥D.棱柱【答案】A【解析】解:直角三角形绕其一条直角边旋转一周所得图形是一个圆锥体.故选:A.【点睛】本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.4.如图是一个常见的道路警示反光锥实物图,与它类似的几何图形是()A.长方体B.正方体C.球D.圆锥【答案】D解:与常见的道路警示反光锥实物图类似的几何图形是圆锥,故选:D.【点睛】本题考查了认识立体图形,熟悉常见立体图形的特点是解决此题的关键.5.下列图形,不是柱体的是()A.B.C.D.【答案】D【解析】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.二、填空题:6.在一个六棱柱中,共____条棱,一个六棱锥共有____个面【答案】18 7【解析】解:六棱柱共有棱:6×3=18(条),一个六棱锥共有7个面;故答案为:18,7.【点睛】本题考查的是立体图形的认识,六棱锥共有6的3倍条棱,六棱锥共有7个面.7.将下列几何体分类(用序号填空):(1)按有无曲面分类:有曲面的是______,没有曲面的是______;(2)按柱体、锥体、球体分类:柱体的是______,锥体的是______,球体的是______.【答案】②③④①⑤⑥①③⑤④⑥②【解析】(1)按有无曲面分类:有曲面的是②③④,没有曲面的是①⑤⑥,故答案为:②③④;①⑤⑥;(2)按柱体,锥体,球体分类:柱体的是①③⑤,锥体的是④⑥,球体的是②.故答案为:①③⑤;④⑥;②.【点睛】本题主要考查了几何体的分类的有关知识.正确把握相关定义是解题关键.8.已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,…,由此可以推测n棱柱有_______个面,_______个顶点,棱有______条.【答案】n+2 2n 3n【解析】解:n棱柱有(n+2)个面,2n个顶点,3n条棱.故答案为:n+2,2n,3n.【点睛】本题考查了棱柱的性质,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱.9.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的共有_____个.【答案】3【解析】在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的有:圆锥、正方体、棱锥共3个.故答案为:3.【点睛】本题考查了认识立体图形,立体图形是图形的各部分不在同一个平面内.10.在如图所示的正方体中,如果经过虚线切去一个角,可以得到一多面体.这个多面体有_______个面,有_______条棱,有_______个顶点.【答案】7 15 10 【解析】根据题意可知切去一个角,比原来多了一个面,多了3条棱,多了2个顶点,所以现在的多面体有7个面,15条棱,10个顶点. 故答案为7,15,10 【点睛】本题主要考查几何体的面,棱和顶点的个数,掌握正方体的面,棱和顶点的个数是解题的关键.三、解答题:11.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)【答案】(1)圆柱;(2)它们的体积分别为3144cm π,396cm π 【解析】 解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π 【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键. 12.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少? 【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+; ()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.13.用数学的眼光观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形(如图),都存在着某种联系.用线将存在联系的图形连接起来.【答案】答案见解析【解析】一个三角形绕一边旋转一周,得到的几何体是圆锥,俯视图为(D),即→→;直角梯形绕直角边旋转一周,得到的几何体是圆台,俯视图为(C),即→→;长方形绕一边旋转一周,得到的几何体是圆柱,俯视图为(B),即→→;三角形向上平移,得到的几何体是三棱柱,俯视图为(A),即→→.【点睛】本题考查了平面图形和立体图形的联系,长方形绕一边旋转一周,得到的几何体是圆柱,一个三角形绕一边旋转一周,得到的几何体是圆锥.14.在日常生活中,我们看到的物体:如①易拉罐;②饮水机;③金字塔;④自来水管;⑤八角亭;⑥西红柿;⑦小喇叭;⑧气球;⑨课本等。
《生活中的立体图形》新题精炼 2022年北师大版数学七上
生活中的立体图形新题精炼根底稳固 1.如图1—1—17观察以下实物模型,其形状是圆柱体的是〔 〕2.以下图形中不是立体图形的是〔 〕3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱〔 〕A .6条B .12条C .18条D .24条4.以下立体图形中,有五个面的是〔 〕A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.将下面的直角梯形绕直线l 旋转一周,可以得到如图1—1—19立体图形的是〔 〕6. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是〔 〕A .点动成线B .线动成面C .面动成体D .以上都不对7.假设一个棱柱的底面是一个七边形,那么它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.A .B .C .D . 1—1—17A .B .C .D . 1—1—19 1—1—189.六棱柱有_____个顶点,有_______条侧棱.10.如图1—1—20至少找出以下几何体的4个共同点.11.〔1〕如图1—1—21下面这些根本图形和你很熟悉,试一试在括号里写出它们的名称.〔2〕将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是〔 〕能力提升12.多面体是由多个平面围成的几何体,如图1—1—23以下几何体中,属于多面体的有〔 〕A .2个B .3个C .4个D .5个1—1—20 〔 〕 〔 〕 〔 〕 〔 〕 〔 〕1—1—21 1—1—23 1—1—2213.假设一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,那么这个直棱柱的体积是______________cm3.14.〔1〕探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填写下表.〔3〕验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.〔4〕应用〔2〕的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案根底稳固1.D思路导引:圆柱的上下底面都是圆,所以正确的选项是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.那么这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有〔n+2〕个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等答复.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.〔1〕针对立体图形的特征,直接填写它们的名称即可.〔2〕可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:〔1〕从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.〔2〕观察图形,按柱、锥、球划分,那么有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.〔〕2.用一个平面去截一个圆柱,截出的面一定是圆.〔〕3.用一个平面去截圆锥,截出的面一定是三角形.〔〕4.用一个平面去截一个球,无论如何截,截面都是一个圆.〔〕二、填空题5.用一个平面去截一个球体所得的截面图形是__________.6.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.7.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.三、选择题8.用一个平面去截圆锥,得到的平面不可能是〔〕9.用一个平面去截一个圆柱,得到的图形不可能是〔〕10.用一个平面去截一个正方体,截面图形不可能是〔〕A.长方形; B.梯形; C.三角形; D.圆11.用一个平面去截一个几何体,如果截面的形状是圆,那么这个几何体不可能是〔〕A.圆柱; B.圆锥; C.正方体; D.球12.截去四边形的一个角,剩余图形不可能是〔〕A.三角形; B.四边形; C.五边形; D.圆四、解答题13.用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.15.指出以下几何体的截面形状.______________________ 16.编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、5.圆6.矩形7.三角形三、8.C9.D 10.D11.C12.D 四、13.可能14.略15.四、五边形圆形16.略。
七年级数学生活中的立体图形
棱锥与圆锥统称为 锥体
议一议:找出棱锥和圆锥的相同点和不同点? 相同点:一锥(尖顶)和一底。 不同点:棱锥均由平面构成, 圆锥底面是圆,侧面是曲面。
你是这样想的吗? 篮球可以想到 球体 球的特征:球面是曲面
小结
圆柱
柱体
简
单
棱柱
几
何 体
球体
的
分 类
棱锥
锥体
圆锥
巩固练习
1.下面图形中左面是一些具 体的物体,右面是一些立体图形, 试找出与右面立体图形对应的实 物.
复习回顾
生活中你会常见很多的实物,有下列实物能想象出你熟悉的几何体吗?
1 文具盒, 2蛋糕, 3笔筒 , 4漏斗, 5足球 。
你是这样想的吗?
文具盒能得到 长方体 蛋糕能得到的 三棱柱 像这样的立体图形就是 棱柱 棱柱特征:侧面是平面,且有明显的棱,底面是多边形。
你是这样想的吗? 可乐瓶,笔筒能得到 圆柱 圆柱特征:侧面是曲面,没有棱,上下底面是圆形。
巩固练习
2. 写出下列立体图形的名称 :
棱柱
圆柱
圆柱棱柱棱锥 Nhomakorabea圆锥
扩展:棱柱还可以分为:
三棱柱
四棱柱
棱锥还可以分为:
五棱柱
六棱柱
三棱锥
四棱锥
五棱锥
六棱锥
大家来动手
你想成为建筑师吗? 来试试看吧! 请你用牙签和橡皮泥制作 三棱柱、三棱锥、四棱柱、四棱锥。
三棱柱
三棱锥
四棱柱
四棱锥
多面体
所组成的面都是平面的立体图形称为多面体
含有曲面的立体图形称为非多面体
课后练习 课后练习
; 恒峰娱乐 ;
落.另几件突如其来的事.却像大山几样压在她的心头.郑重压又几次的使她陷入痛苦的混乱
1.1 生活中的立体图形练习题
第一章丰富的图形世界一.填空题1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.2.图形是由________,__________,____________构成的.3.物体的形状似于圆柱的有________________;类似于圆锥的有_____________________;类似于球的有__________________.4.围成几何体的侧面中,至少有一个是曲面的是______________.5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.6.圆柱,圆锥,球的共同点是_____________________________.7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.8.圆可以分割成_____个扇形,每个扇形都是由___________________.9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形.二.选择题10. 从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 711. 图1-1是由( )图形饶虚线旋转一周形成的A B C D 图1-113.图1-2绕虚线旋转一周形成的图形是( )图1-2A B C D14.图1-3这个美丽的图案是由我们所熟悉的( )图形组成A.三角形和扇形B圆和四边形 C.圆和三角形D圆和扇形15.下面全由圆形组成的图案是( )A B C D三.解答题16.请观察丰富多彩的生活世界,有哪些物体的形状与下列几何体类似?(1)六面体(2)圆柱(3)圆锥(4)棱锥17.请写出下列几何体的名称( ) ( ) ( )( ) ( ) ( )18.请说出生活中至少4个规则的物体,并说出和它们类似的立体图形?19.动手做一做.将一个长方体切去一部分,看一看剩余的部分是几面体呢?四.开放创新提高题20.如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?21.一个圆绕着它的直径的直线旋转一周就形成球体,那么现有一个长方形(如图1-5)你有几种方法使它类似于圆柱的几何体?请你画出这些立体圆形。
七年级数学生活中的立体图形1
用自己的语言描述棱柱与圆柱的 相同点与不同点。
相同点:圆柱和棱柱都是由两个形状相同的底面构成,都给 人一种直立的感觉。 不同点:圆柱的两个底面是圆形,而棱柱的底面是多边形。 圆柱的侧面只有一个是曲面,而棱柱的侧面是多个都是平面。
制作人:程志伟
说一说生活中哪些物体的形状 类似于棱柱、圆柱、圆锥与球。
制作人:程志伟
棱柱有直棱柱和斜棱柱。
本册书只 讨论直棱 柱简称棱
柱
直棱柱(棱柱) 斜棱柱
制作人:程志伟
按柱、锥、球划分 (1) (2) (4) (6) (7)是一类,是柱体 (5)是锥体 (3)是球体
按面的曲或平划分 (3)(4)(5)是一类,组成它们的面中至少有一 个是曲的 (1)(2)(6)(7)一类,组成它们的各面都是平 的
1生活中的立体图形
(1)图中哪些物体的形状与长方体、正方体类似?
(2)图中哪些物体的形状与圆柱、圆锥类似?描述 一下圆柱与圆锥的相同点与不同点。
(3)请找出图中与笔筒形状类似的物体。 (4)请找出图中与地球形状类似的物体。
制作人:程志伟
常见的几何体
圆柱 圆锥 正方体 长方体
棱柱
球
制作人:程志伟
用自己的语言描述棱柱与圆柱的 相同点与不同点。
制作人:程志伟
1生活中的立体图形
常见的几何体
圆柱 圆锥 正方体 长方体
棱柱
球Hale Waihona Puke 制作人:程志伟;微营销云控 / 爆粉 ;
情の外人忽悠得信以为真...”老板娘轻笑,“连我公爹这种心善实诚のの人都不敢打包票说她是个好人...”陆羽眉头动了一下,笑了笑,不说话.能人遭妒很正常,这老板娘和善健谈,其实内心深处也对那余文凤羡慕妒忌恨吧?否则不会这么说话.“你家住哪儿?村里
北师大版七年级上册1.1生活中的立体图形同步练习含答案
北师大新版七年级上册《1.1 生活中的立体图形》同步练习一.选择题(共12小题)1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等2.如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.4.下列关于长方体面的四个说法错误的是()A.长方体的每个面都是长方形B.长方体中每两个面都互相垂直C.长方体中相对的两个面的面积相等D.长方体中与一个面垂直的面有四个5.如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个6.如图,模块①由15个棱长为1的小正方体构成,模块②﹣⑥均由4个棱长为1的小正方体构成.现在从模块②﹣⑥中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,⑤,⑥ B.模块③,④,⑥ C.模块②,④,⑤ D.模块③,⑤,⑥7.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体8.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.9.面与面相交,形成的是()A.点B.线C.面D.体10.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.11.将下列图形绕着直线旋转一周正好得到如图所示的图形的是()A.B.C.D.12.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1﹣x2+x3=2 D.x1+x2﹣x3=2二.填空题(共10小题)13.若一个正方体所有棱的和是60cm,则它的体积是cm3.14.一个棱柱共有18个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是厘米.15.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.16.如图所示图形绕图示的虚线旋转一周,(1)能形成,(2)能形成,(3)能形成.17.棱柱侧面的形状可能是一个三角形(判断对错)18.五棱柱有个面,个顶点,条侧棱,n棱柱有个面,个顶点,条棱.19.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是.20.某产品是长方体,它的长、宽、高分别为10cm、8cm、6cm,将12个这种产品摆放成一个大的长方体,则此大长方体的表面积最少为cm2.21.10个棱长为1的正方体,如果摆放成如图所示的上下三层,那么该物体的表面积为;依图中摆放方法类推,继续添加相同的正方体,如果该物体摆放了上下100层,那么该物体的表面积为.22.将如图所示半圆形薄片绕轴旋转一周,得到的几何体是,这一现象说明.三.解答题(共5小题)23.底面半径为10cm,高为40cm的圆柱形水桶中装满了水.小明先将桶中的水倒满3个底面半径为3cm,高为5cm的圆柱形杯子,如果剩下的水倒在长、宽、高分别为50cm,20cm和12cm的长方体容器内,会满出来吗?若没有满出来,求出长方体容器内水的高度(π取3).24.(1)用斜二侧画法补画下面的图形,使之成为长方体的直观图(虚线表示被遮住的线段;只要在已有图形基础上画出长方体,不必写画法步骤).(2)在这一长方体中,从同一顶点出发的三条棱出发的三条棱的棱长之比是5:7:2,其中最长的棱和最短的棱长之差为10cm,求这个长方体的棱长和总和.25.棱长为a的正方体,摆放成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.26.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.27.探究:将一个正方体表面全部涂上颜色(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=,x2=,x1=,x0=;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么x3=,x2=,x l=,x0=;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,那么:x3=,x2=,x1=,x0=;参考答案一.选择题1.C.2.C.3.C.4.B.5.A.6.A.7.D.8.A.9.B.10.B.11.A.12.C.二.填空题13.125.14.8.15..16.圆柱;圆锥;球.17.×.18.7,10,5,(n+2),2n,3n.19.球20.1936.21.30300.22.球,面动成体.三.解答题23.解:3×102×40﹣3×32×5×3=12000﹣405=11595(cm3),长方体的容积为:50×20×12=12000cm3.∵12000>11595,∴不会满出来.11595÷(50×20)=11.595cm.∴长方体容器内水的高度11.595cm.24.解:(1)如图所示:(2)设这三条棱的棱长分别为5xcm、7xcm、2xcm,7x﹣2x=10,解得:x=2,则棱长的总和为4(7×2+5×2+2×2)=112cm.25.解:(1)6×(1+2+3)•a2=36a2.故该物体的表面积为36a2;(2)6×(1+2+3+…+20)•a2=1260a2.故该物体的表面积为1260a2.26.解:(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体;(2)绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;(3)绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.故答案为:圆柱;面动成体.27.解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1;(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8;(3)由以上可发现规律:三面涂色8,二面涂色12(n﹣2),一面涂色6(n﹣2)2,各面均不涂色(n﹣2)3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰富的图形世界
1.1、生活中的立体图形
一.填空题
1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.
2.图形是由________,__________,____________构成的.
3.物体的形状似于圆柱的有________________;类似于圆锥的有______________;类似于球的
有_________________.
4.围成几何体的侧面中,至少有一个是曲面的是______________.
5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.
6.圆柱,圆锥,球的共同点是_____________________________.
7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟
秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一
二、选择题
8 从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形
A. 10
B. 9
C. 8
D. 7
9 图1-1是由( )图形饶虚线旋转一周形成的
10.图1-2绕虚线旋转一周形成的图形是( )
11.图1-3这个美丽的图案是由我们所熟悉的( )图形组成
A.三角形和扇形B圆和四边形
C.圆和三角形D圆和扇形
12.下面全由圆形组成的图案是( )
三、解答题
13.请观察丰富多彩的生活世界,有哪些物体的形状与下列几何体类似?
(1)六面体(2)圆柱(3)圆锥(4)棱锥
14.请写出下列几何体的名称
( ) ( ) ( )
( ) ( )
四.开放创新提高题
15.如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?
16.一个圆绕着它的直径的直线旋转一周就形成球体,那么现有一个长方形(如图1-5)你有几种方法使它类似于圆柱的几何体?请你画出这些立体圆形。