1.2 数轴、相反数2

合集下载

1.2数轴、相反数和绝对值例题与讲解

1.2数轴、相反数和绝对值例题与讲解

1.2 数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】 指出数轴上A ,B ,C ,D ,E ,F 各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】 把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112. 分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度. 解:解技巧 确定数在数轴上的对应点 (1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定: 0的相反数是0.辨误区 相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零. 析规律 相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】 填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数; (5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13. 答案:(1)5 (2)-6 (3)-0.7 (4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数. 谈重点 绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】 下列说法正确的是( ).A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】 回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧 确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】 如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】 已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0. 多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】 填空:(1)-⎝⎛⎭⎫-127的相反数是__________; (2)如果-x =+(-80.5),那么x =__________.解析:(1)∵-⎝⎛⎭⎫-127=127,因此此题实际上是求127的相反数,∴-⎝⎛⎭⎫-127的相反数是-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5 【例6-2】 化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧 准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】 化简:(1)-⎪⎪⎪⎪-23; (2)+|-24|;(3)⎪⎪⎪⎪-⎝⎛⎭⎫+312; (4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-⎪⎪⎪⎪-23=-23; (2)+|-24|=24;(3)⎪⎪⎪⎪-⎝⎛⎭⎫+312=312; (4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧 求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】 已知a =-5,|a |=|b |,则b 的值等于( ).A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】 下面推理正确的是( ).A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC.若|m|=-n,则m=nD.若m=n,则|m|=|n|解析:A中若|m|=|n|,则m=±n;B中若|m|=n(n一定是非负数),则m=±n,例如|±2|=2,此时m=±2,n=2,显然m=±n;C中若|m|=-n,则m=n或m=-n,例如|±3|=-(-3)(n一定是非正数),此时m=±3,n=-3,所以m=±n.答案:D9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (

2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (


9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022

10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:39:43 AM

11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
2. 已知在数轴上,O为原点,A,B两点所表示的数 分别为a,b,利用下列A,B,O三点在数轴上的位置关 系,可以判断|a|<|b|的选项是( B )
A
B
C
D
3. 下列说法中正确的是( C ) A.任何一个有理数的绝对值都是正数 B.负数的绝对值是负数 C.若|a|+|b|=0,则|a|=0且|b|=0 D.若a≠b,则|a|≠|b| 4. 化简:|π-3.14|= π-3.14 , -|-25|= -25 .
【解析】当 a=0 时,A、B、C 说法均不正确,而|a| +1≥1,一定是正数,故 D 项正确.
6. 若|x-3|+|y-2|=0,则|x+y|的值为 5 . 7. a,b 在数轴上位置如图,化简|a|-|b|=-a-b .
1.若|a|=-a,则实数 a 在数轴上的对应点一定在
(B) A.原点左侧
②|-6|= 6 ;|-3.1|= 3.1 ;|-2.7|= 2.7 ; ③|0|= 0 . (2)根据(1)中的规律发现,不论正数、负数和0,它 们的绝对值一定是 非负数 ,即|a|≥0.
(3)根据(2)解决下列问题: ①当x= 0 时,|x|+5有最小值,此时的最小值 是 5; ②当x= 1 时,7-|x-1|有最大值,此时的最大值 是7.

沪科版数学七年级上册1-2 数轴、相反数和绝对值

沪科版数学七年级上册1-2 数轴、相反数和绝对值

感悟新知
2.画数轴的步骤
知1-讲
(1)画直线,取原点:在直线上任取一个点表示数 0,
这个点叫做原点 。
(2)标正方向:通常规定直线上从原点向右(或上)为正方
向,从原点向左(或下)为负方向;
感悟新知
知1-讲
(3)选取单位长度,标数: 选取适当的长度为单位长度, 直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3,…;从原点向左,用类似方法依次表示- 1, - 2, - 3,…。
感悟新知
特别警示 在画数轴时常出现以下三种错误:
1.“三要素”不全; 2. 单位长度不统一; 3. 标数时顺序不对 。
知1-练
感悟新知
知识点 2 数轴上的点与有理数的关系
知2-讲
对应关系 都可以用数轴上的点表示
有理数 不都表示有理数
数轴上的点
感悟新知
知2-讲
知识链接 有理数与数轴上的点的对应关系: (1)正有理数可以用数轴上原点右边(或上边)的点表示。 (2)负有理数可以用数轴上原点左边(或下边)的点表示。 (3) 0用原点表示 。
答案:C
感悟新知
知识点 4 绝对值
知4-讲
1. 定义 在数轴上,表示数 a 的点到原点的距离,叫做数 a 的绝对值,记作 | a |,读作“a 的绝对值” 。
感悟新知
2. 性质 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0 的绝对值是 0。
a( a>0), 即: |a|=ቐ 0( a=0),
感悟新知
画法提醒
知2-练
根据给出的数画数轴,关键要把握两点:
(1) 确定原点的位置,一般地,原点居中,若给出的
正数较多,原点靠左边,若给出的负数较多,原

湘教版数学七年级上册1.2《数轴、相反数与绝对值》说课稿2

湘教版数学七年级上册1.2《数轴、相反数与绝对值》说课稿2

湘教版数学七年级上册1.2《数轴、相反数与绝对值》说课稿2一. 教材分析湘教版数学七年级上册1.2《数轴、相反数与绝对值》这一节,主要让学生理解数轴的概念,掌握数轴的画法,理解相反数和绝对值的概念,并会进行相反数和绝对值的运算。

本节内容是初中数学的基础知识,对于学生以后的学习具有重要意义。

二. 学情分析七年级的学生已经初步掌握了实数的概念,对于实数的运算也有一定的了解。

但是,对于数轴、相反数和绝对值的概念,学生可能还很陌生。

因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握这些概念。

三. 说教学目标1.让学生理解数轴的概念,会画简单的数轴。

2.让学生理解相反数和绝对值的概念,并会进行相反数和绝对值的运算。

3.培养学生运用数轴解决实际问题的能力。

四. 说教学重难点1.数轴的概念和画法。

2.相反数和绝对值的概念及运算。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出数轴、相反数和绝对值的概念。

2.使用多媒体课件,帮助学生形象地理解数轴、相反数和绝对值的概念。

3.采用小组合作学习的方式,让学生在讨论中加深对知识的理解。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用数轴表示两个数的大小关系。

2.新课导入:介绍数轴的概念,讲解数轴的画法。

3.讲解相反数的概念,并通过例题让学生掌握相反数的运算。

4.讲解绝对值的概念,并通过例题让学生掌握绝对值的运算。

5.练习:让学生独立完成一些有关数轴、相反数和绝对值的练习题。

6.总结:对本节课的内容进行总结,强调数轴、相反数和绝对值的重要性。

7.作业布置:布置一些有关数轴、相反数和绝对值的练习题,让学生巩固所学知识。

七. 说板书设计板书设计如下:数轴、相反数与绝对值•定义:规定了原点、正方向、单位长度的直线。

•画法:从左到右依次表示负数、零、正数。

•定义:两个数只有符号不同,我们称其中一个数为另一个数的相反数。

•运算:加上一个数的相反数,结果为零。

1.2 数轴、相反数、绝对值

1.2 数轴、相反数、绝对值

第二讲 数轴、相反数、绝对值知识点一:数轴1、数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。

2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的一个点来表示。

正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

考点一:数轴与有理数的对应关系例1 己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )。

A .a b >B .0ab <C .0b a ->D .0a b +>例2 如图,数轴上A 、B 两点分别对应实数a 、b 则下列结论正确的是( )A .0a b +>B .b a >C .0a b ->D .0a b ->例3 已知a 、b 、c 在数轴上的位置如图。

则在1a-,a -,c b -,c a +中,最大的一个是( )A .a -B .c b -C .c a +D .1a-例4 三个有理数c b a 、、在数轴上的位置如图所示,则( ) A .111c a c b a b >>--- B .111b c c a b a>>--- C .111c a b a b c >>--- D .111a b a c b c>>---考点二:寻找、判断数轴上的点例5 如图,数轴上的A 、B 、C 三点所表示的数分别是c b a 、、,其中BC AB =,如果|a |>|b |>|c |,那么该数轴的原点O 的位置应该在( )b B A a1A 、点A 的左边B 、点A 与点B 之间C 、点B 与点C 之间D 、点B 与点C 之间或点C 的右边例6 如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=。

试问:数轴上的原点在哪一点上?例7在数轴上,坐标是整数的点称为“整点”。

1.2数轴、相反数和绝对值(第2课时 相反数)(课件)七年级数学上册(沪科版2024)

1.2数轴、相反数和绝对值(第2课时 相反数)(课件)七年级数学上册(沪科版2024)

.
.
20.下列各组数:①+(-3)与+3;②-(+3)与-3;③-(-3)与-(+3);④-(+
3)与+(-3);⑤+(+3)与+(-3).其中,互为相反数的有
号).
①③⑤
(填序
分层练习-拓展
21.数轴上点A 表示+6,B、C 两点所表示的数互为相反
数,且C 到A 的距离为2.试探索 B、C 两点各对应什么数.
,-(-9)=
3.下列叙述中不正确的是(
C
9
-7
的相反数;
.
)
(A)一个正数的相反数是负数,一个负数的相反数是正数
(B)在数轴上与原点距离相等但不重合的两个点,所表示的数一定互为相反数
(C)符号不同的两个数互为相反数
只有符号不相同的两个数
(D)两个数互为相反数,这两个数有可能相等
分层练习-基础
知识点一:相反数的概念
1
1
1
1



(
)
( ) =______
5
(2)
是______的相反数,

5
5
5
7.1
7.1 .
7.1 _____
(3) 7.1 是_______的相反数,
100

(4) 100 是_______的相反数,
100 _____
100 .
沪科版(2024)七年级数学上册
第一章有理数
1.2 数轴、相反数和绝对值
第二课时
相反数
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.借助数轴理解相反数的意义,了解一对相反数在数轴

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

1.2 数轴.2 数轴 教学设计

1.2 数轴.2  数轴 教学设计

1.2 数轴、相反数和绝对值第一课时数轴教学目标:1.了解数轴的概念,如何画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴都有唯一的点与之对应.2.通过现实生活中的例子,从直观认识到理性认识,从而建立数轴概念;通过学习,初步体会对应的思想、数形结合的思想.学情分析:针对部分学生对导学案的完成情况中出现的易错易混,不容易理解的知识制定本节课的教学重点和难点。

这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.正确理解有理数与数轴上点的对应关系.另外应该明确的是,所有的有理数都可用数轴上的点表示.通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.教学重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.教学难点:正确理解有理数和数轴上的点的对应关系.教学程序设计:一.创设情景导入新课问题1:让机器人在一条直路上作走步取物试验.根据指令:它由O处出发,向西走3m到达A处,拿取物品,然后,返回O处将物品放入蓝中,在向东走2m到达B处取物.1.在下面的直线上画出A、B两处的位置.2.把向东走记作“+”,向西走记作“-”,在上面的直线上标出与A、B相对应的数.问题2:观察温度计,在温度计上有刻度,刻度上有度数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.温度计可以看作表示正数、0、负数的直线吗?它和刚才那个的图有什么共同点,有什么不同点?教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即:规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.二.应用迁移巩固提高类型一:读数轴上的点所表示的数例1 指出下面数轴上A,B,C,D,E各点分别表示什么数.解析:点C 在原点表示O ,点A 在原点左边距离原点2个单位长度,表示-2.同理,点B表示-3.5.点D 在原点右边距离原点2个单位长度,表示2.类型二:将有理数用数轴上的点表示例2 画一个数轴,并在数轴上画出表示下列各数的点:+4,-21,21,-1.25,-4 最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.变式题1 下列图形是数轴的是( )变式题2 数轴上一动点A 表示的数为-2,现在A点向右移动2个单位长度到B ,在向右移动3个单位长度到C ,(1)在数轴上标出A ,B ,C 三点表示的数;(2)点C 向哪个方向移动多少个单位长度又回到A 点?变式题3 在数轴上与表示-1的点的距离为2个单位长度的点有几个?请你在数轴上表示出来,它们分别表示什么数?三. 总结反思 拓展升华指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.四.作业:课本第9页练习题1,练习题2补充:1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。

七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值1.2.2相反数课件 湘教版

七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值1.2.2相反数课件 湘教版
33
【想一想】 决定化简结果符号的因素是什么? 提示:多重符号的结果由“-”的个数决定,与“+”无关.
【备选例题】(1)化简下列各数:
-(-5),-(+5),-[-(+5)],-{-[-(+5)]}.
(2)猜想:当+5前面有2015个正号时,化简的结果为
;当
+5前面有2015个负号时,化简的结果为
【微点拨】相反数的特征 1.相反数是成对出现的,不能单独存在. 2.一对相反数除符号不同外其他部分相同,如-3与+2虽符号不 同,但不是相反数.
【方法一点通】 求相反数的“两个步骤” 1.确定:确定原数的符号,是“+”还是“-”. 2.变号:改变原数的符号,即“+”变为“-”,“-”变为“+”.
1.2.2 相反数
一、相反数的定义 1.如果两个数只有_符__号__不同,那么其中一个数叫做另一个数的 相反数,也称这两个数互为相反数,0的相反数是_0_. 2.表示互为相反数的两个数的点,在数轴上分别位于原点的 _两__侧__,并且与原点的距离_相__等__. 二、相反数的求法 在一个数的前面添上“_负__”号,就得到原数的相反数,a的相 反数是_-_a_.
知识点二 多重符号的化简
【示范题2】化简下列各数: (1)-(-6).(2)-(+0.8).(3)[ ( 1 )].
3
【思路点拨】先看数前的符号,如果是“+”号,结果就是原数, 如果是“-”号,结果是其相反数.
【自主解答】(1)-(-6)=6.(2)-(+0.8)=-0.8. (3) [(1)]1.
(2)当+5前面只有“+”时,化简的结果为正(即5),因此当+5前 面有2015个正号时,化简的结果为正(即5);当+5前面有奇数个 “-”号时,化简的结果为负(即-5),因此当+5前面有2015个负 号时,化简的结果为负(即-5);当+5前面有偶数个“-”号时,化 简的结果为正(即5),因此当+5前面有2014个负号时,化简的结 果为正(即5). 答案:5 -5 5

1.2 数轴、相反数与绝对值

1.2  数轴、相反数与绝对值

1.2 数轴、相反数和绝对值1.2.1 数轴要点感知1 在直线上取一点O ,这个点叫做______;通常把直线上从原点向右的方向规定为______,从原点向左的方向规定为________;选取适当的长度为________.像这样,规定了_____、______和________的直线叫做数轴. 预习练习1-1 下列各图中,所画数轴正确的是( )要点感知2 数轴上原点右边的点表示______数,左边的点表示______数,任何有理数都可以用_____上唯一的一个点来表示.预习练习2-1 如图,在数轴上点A 表示( )A.-2B.2C.±2D.02-2 在下面数轴上,A ,B ,C ,D ,E 各点分别表示什么数?知识点1 数轴的概念 1.下列说法正确的是( )A.规定了正方向和单位长度的射线叫做数轴B.规定了原点、单位长度的线段叫做数轴C.有正方向和单位长度的直线叫做数轴D.规定了原点、正方向和单位长度的直线叫做数轴 知识点2 在数轴上表示有理数2.在数轴上,表示-2.75的点最可能是( )A.E 点B.F 点C.G 点D.H 点3.指出数轴上A ,B ,C ,D 各点分别表示的有理数.4.在数轴上表示出下列各有理数:-0.7,-3,-213,0,112,2.知识点3 数轴上的点与有理数之间的关系 5.下列四个有理数中,在原点左边的是( )A.-2 014B.0C.15.8D.1 20006.数轴上原点及原点左边的点表示( )A.正数B.负数C.非正数D.非负数7.在数轴上距原点2 013个单位长度的点表示的数是( )A.2 013B.-2 013C.2 013或-2 013D.1 006.5或-1 006.58.下列说法中正确的是( )A.所有的有理数都可以用数轴上的点来表示B.数轴表示-2的点有两个C.数轴上的点表示的数不是正数就是负数D.数轴上原点两边的点可以表示同一个数9.在数轴上,-1和1之间的有理数有( )A.1个B.2个C.3个D.无数个10.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为_______.11.写出距离原点小于或等于4个单位的所有整数,并在数轴上表示出来.12.下列所画数轴正确的个数有( )A.0个B.1个C.2个D.3个13.(2012·新疆)如图,点M表示的数是( )A.2.5B.-1.5C.-2.5D.1.514.下列语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于8的点有两个15.如图,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点16.若数轴上的点A表示+3,点B表示-4.2,点C表示-1,则点A和点B中离点C较远的是_____.17.(2012·泰州)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.18.如图,点A表示的数是-4.(1)在数轴上表示出原点O;(2)指出点B表示的数;(3)在数轴上找一点C,使它与B点的距离为2个单位长度,那么C点表示什么数.19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)在数轴上标出A,B,C三点;(2)写出A,B,C三点表示的数;(3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?挑战自我20.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250米到小明家,后又向东走350米到小兵家,再向西行800米到小颖家,最后又回到学校.(1)以学校为原点,向东为正方向,用一个单位长度表示100米,你能在数轴上表示出小明、小兵、小颖三人家的位置吗?(2)小明家距离小颖家多远?(3)这次家访,老师共行了多少千米的路程?21.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是____________;②从-2到2有5个整数,分别是_______________________;③从-3到3有______个整数,分别是___________________;④从-200到200有_______个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有______个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.参考答案课前预习要点感知1原点正方向负方向单位长度原点正方向单位长度预习练习1-1 D要点感知2正负数轴预习练习2-1 A2-2 A,B,C,D,E各点分别表示-3,-1.5,0,0.5,3.当堂训练1.D2.D3.点A表示0,点B表示1.5,点C表示-2,点D表示3.4.5.A6.C7.C8.A9.D 10.-611.距原点小于或者等于4个单位的所有整数是:-4,-3,-2,-1,0,1,2,3,4.在数轴上表示为:课后作业12.B 13.C 14.B 15.C 16.点A 17.218.(1)原点在点A的右侧距A点4个单位长度.在数轴上表示略.(2)点B表示3.(3)C点表示1或5.19. (1)如图所示:(2)A点表示4,B点表示6,C点表示-4.(3)向左爬行4个单位长度.20.(1)如图所示.(2)小明家距离小颖家450米.(3)这次家访,老师共行了250+350+800+200=1 600(米).21.(1)①-1,0,1 ②-2,-1,0,1,2 ③7-3,-2,-1,0,1,2,3 ④401(2)5 21(3)1 000个或1 001个.1.2.2 相反数要点感知1如果两个数只有______不同,那么其中的一个数叫做另一个数的相反数,也称这两个数_________. 预习练习1-1下列各组数中,互为相反数的是( )A.-4和14B.4和-4C.-4和-14D.14和4要点感知2数a的相反数记做_____.一个正数的相反数是______,一个负数的相反数是______,0的相反数是____.表示互为相反数的两个数的点,在数轴上分别位于原点的______,并且与原点的距离______.预习练习2-1 (2013·济南)-6的相反数是( )A.-16B.16C.-6D.6要点感知3 把多重符号化成单一符号由“-”的个数来定,若“-”个数为偶数个时,化简结果为_____;若“-”个数为奇数个时,化简结果为_____.预习练习3-1 化简-(-3)的结果是______.知识点1 相反数的意义1.下列各组数中互为相反数的是( )A.2与-3B.-3与-13C.2 014与-2 013D.-0.25与142.(2013·恩施)-13的相反数是( )A.13B.-13C.3D.-33.如图所示,表示互为相反数的两个数的点是( )A.A和CB.A和DC.B和CD.B和D4.下列说法中:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( )A.1个B.2个C.3个D.4个5.下列判断正确的是( )A.符号不同的两个数互为相反数B.互为相反数的两个数一定是一正一负C.相反数等于本身的数只有零D.在数轴上和原点距离相等的两个点表示的数不互为相反数6.如图,数轴上表示数-2的相反数的点是______.7.写出下列各数的相反数,并在数轴上表示出来:2,-1,-3.5,12,-212.知识点2 多重符号的化简8.-(+2)的相反数是( )A.2B.12C.-12D.-29.化简下列各数:(1)-(+4);(2)-(-6);(3)-(+3.9);(4)-(-3 4 ).10.(2013·义乌)在2,-2,8,6这四个数中,互为相反数的是( )A.-2与2B.2与8C.-2与6D.6与811.如图,数轴单位长度为1,如果点A,B到原点的距离相等,那么点A,B表示数( )A.-4和4B.-3和3C.-2.5和2.5D.-2和212.已知x的相反数是-57,则x是( )A.-57B.±57C.57D.-7513.化简-{-[-…-(-2 013)]},在2 013前面有2 012个负号,则化简的结果为( )A.2 013B.-2 013C.2 012D.-2 01214.一个数在数轴上所对应的点向左移2 014个单位后,得到它的相反数对应的点,则这个数是( )A.2 014B.-2 014C.1 007D.-1 00715.相反数等于本身的数是_____.16.若a=3.5,则-a=______;若-x=-(-10),则x=_____;若m=-m,则m=______.17.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-6,-534,+38,-2.8,7,+5.18.若a和b互为相反数,表示数a的点在表示数b的点的左侧,且两点的距离是8.4,求a和b这两个数.19.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A,B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D,B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点离原点的距离最近?挑战自我20.数轴上点A表示的数为-5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求B,C两点对应的数分别是什么?21.(1)小李在做题时,画了一条数轴,在数轴上原有一点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?(2)如图是具有互为相反数的三角形数阵,当最下面一行的两个数为多少时,这两个数以及它们上面的数的总个数为2 013个?参考答案课前预习要点感知1符号互为相反数预习练习1-1 B要点感知2-a 负数正数0 两侧相等预习练习2-1 D要点感知3 正 负 预习练习3-1 3 当堂训练1.D2.A3.C4.B5.C6.点P7.各数的相反数分别是-2,1,3.5,-21,221.在数轴上表示略. 8.A9.(1)-4. (2)6. (3) -3.9. (4)43. 课后作业10.A 11.C 12.C 13.A 14.C 15.0 16.-3.5 -100 17.各数的相反数分别为:6,543,-83,2.8,-7,-5.在数轴上表示略. 18.a=-4.2,b=4.2.19.(1)因为点A ,B 表示的数是互为相反数,原点就应该是线段AB 的中点,即在C 点右边一格,C 点表示数-1; (2)如果点D ,B 表示的数是互为相反数,那么原点在线段BD 的中点,即C 点左边半格,点C 表示的数是正数; 在图中表示的5个点中,点C 离原点的距离最近.20.因为点A 表示的数为-5,点B 到点A 的距离为4,所以点B 表示的数为-9或-1.又因为B ,C 两点所表示的数互为相反数,所以当点B 表示-9时,点C 表示9;当点B 表示-1时,点C 表示的数为1. 21.(1)向右平移6个单位长度. (2)-1 007,1 007.1.2.3 绝对值要点感知1 正数的绝对值是____;负数的绝对值是_______;0的绝对值是______.互为相反数的两个数的绝对值_____.预习练习1-1 (2013·临沂)-2的绝对值是( ) A.2 B.-2 C.12 D.-12要点感知2 一个数的绝对值等于数轴上表示这个数的点与原点的_____.一般地,数a 的绝对值记做|a|.当a 是正数时,|a|=____;当a=0时,|a|=_____;当a 是负数时,|a|=____,即|a|是一个_______. 预习练习2-1 数轴上一个点到原点的距离为2.3,则这个点表示的数的绝对值是_______. 2-2 求下列各数的绝对值:-32,6,-3,0,54.知识点1 绝对值的意义1.在数轴上表示-2的点到原点的距离等于( ) A.2 B.-2 C.±2 D.42.如图,点A ,B ,C ,D 所表示的数中,绝对值相等的两个点是( )A.点A 和点CB.点B 和点CC.点A 和点DD.点B 和点D 3.(2013·娄底)|-2 013|的值是( )A.12013 B.-12013C.2 013D.-2 013知识点2 绝对值的计算4.(2013·盘锦)-|-2|的值为( ) A.-2 B.2 C.12 D.-125.下列各式中,错误的是( )A.|-11|=11B.-|11|=-|-11|C.|-11|=|11|D.-|-11|=116.计算:|-3.7|=_____,-(-3.7)=______,-|-3.7|=______,-|+3.7|=______.7.计算:(1)|-21|+|-6|; (2)|-2 014|-|+2 013|; (3)|+223|×|-9|; (4)|-34|÷|-178|.知识点3 绝对值的性质 8.若|a|=8,则a 的值是( ) A.-8 B.8 C.±8 D.±189.在有理数中,绝对值等于它本身的数有( ) A.一个 B.两个 C.三个 D.无数个 10.下面关于绝对值的说法正确的是( )A.一个数的绝对值一定是正数B.一个数的相反数的绝对值一定是正数C.一个数的绝对值的相反数一定是负数D.一个数的绝对值一定是非负数11.(1)①正数:|+5|=____,|12|=_____;②负数:|-7|=______,|-15|=______;③零:|0|=_____; (2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是______,即|a|____0. 12.若|a|+|b|=0,则a=____,b=_____.13.(2013·宁波)-5的绝对值为( ) A.-5 B.5 C.-15 D.1514.(2012·东营)13的相反数是( ) A.13 B.-13C.3D.-3 15.(2012·丽水)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A.-4B.-2C.0D.416.(2013·菏泽)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC ,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在( )A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边17.如果|x|=712,那么x=____,|-x|=_____. 如果|-2.5|=|-a|,那么a=____.18.按规定,食品包装袋上都应标明袋内装食品有多少克,下表是几种饼干的检验结果,“+”和“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_______.19.化简:(1)-|-3|;(2)-|-(-7.5)|.20.已知x=-30,y=-4,求|x|-3|y|.21.在数轴上表示下列各数:(1)|-113|;(2)|0|;(3)绝对值是1.2的负数;(4)绝对值是412的有理数.挑战自我22.已知|a-2|+|b-3|+|c-4|=0,求式子a+b+c的值.23.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数的位置;(3)根据数轴化简:①|a|=______,②|b|=_____,③|c|=______,④|-a|=_____,⑤|-b|=_____,⑥|-c|=_____;(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案课前预习要点感知1 它本身 它的相反数 0 相等 预习练习1-1 A要点感知2 距离a 0 -a 非负数预习练习2-1 2.3 2-2它们的绝对值分别为:23,6,3,0,45. 当堂训练1.A2.C3.C4.A5.D6.3.7 3.7 -3.7 -3.77.(1)原式=21+6=27.(2)原式=2 014-2 013=1. (3)原式=223×9=24. (4)原式=34÷178=25.8.C 9.D 10.D 11.(1)5 12 7 15 0(2)非负数 ≥ 12.0 0 课后作业13.B 14.B 15.B 16.C 17.±721 721±2.5 18.酥脆 19.(1)原式=-3.(2)原式=-7.5.20.|x|-3|y|=30-3×4=18. 21.(1)|-131|=131; (2)|0|=0;(3)绝对值是1.2的负数是-1.2; (4)绝对值是421的有理数是±421.在数轴表示为:22.由题意,得a=2,b=3,c=4,所以a+b+c=2+3+4=9.23.(1)a 为负,b 为正,c 为正. (2)图略.(3)①-a ②b ③c ④-a ⑤b ⑥c (4)a=-5.5,b=2.5,c=5.。

1.2数轴、相反数与绝对值1.2.3 绝对值七年级上册数学湘教版

1.2数轴、相反数与绝对值1.2.3 绝对值七年级上册数学湘教版

新知探究 知识点 绝对值
数学上规定: 正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0. 常用“|a|”表示一个数a的绝对值.
新知探究 知识点 绝对值
例1 求下列各数的绝对值:
0.36,12,- 3 , -7.5 , 0.
5
解 | 0.36 | = 0.36, 正数的绝对值是它本身.
新知探究 知识点 绝对值
例3任何一个有理数的绝对值一定(D于或等于0 D.大于或等于0
例4若|a|+|b-1|=0,则a=__0___, b=___1___.
绝对值的 非负性
新知探究 知识点 绝对值
做一做
画一条数轴,用数轴上的点表示 4, -4,2,-2,并求这些点与原点的距离.
解:由绝对值的非负性,得 x - 3 = 0,y - 2 = 0. 所以 x = 3,y = 2. 所以 x + y = 3 + 2 = 5.
若几个数的绝对值之和为0,则这个和式中的 每个数都为0.
随堂练习
5.已知 a,b,c 为有理数,且它们在数轴上的对应点的
位置如图所示:
-c -b
-a
(1)试判断 a,b,c 的正负性.a是负数,b,c 是正数. (2)在数轴上表示 a,b,c 的相反数. (3)根据数轴化简:
| 12 | = 12,
|
-
3 5
|
=
3, 5
| -7.5 | = 7.5,
| 0 | = 0.
负数的绝对值是它的相反数. 0 的绝对值是0.
新知探究 知识点 绝对值 议一议
如果 a 表示一个数,则 | a | 等于多少? 一般地,如果a表示一个数,则:
(1) 当a 是正数时,|a|=a;

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计3

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计3

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计3一. 教材分析《数轴、相反数和绝对值》是沪科版数学七年级上册第一章第二节的内容。

本节课主要介绍数轴的概念、相反数和绝对值的定义及其性质。

通过本节课的学习,学生能够理解数轴的作用,掌握相反数和绝对值的概念,并能够运用它们解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,例如有理数的概念和运算。

但是,对于数轴、相反数和绝对值这些概念,学生可能较为陌生。

因此,在教学过程中,需要注重引导学生从实际情境中感受数轴、相反数和绝对值的重要性,并通过大量的例子让学生加深理解。

三. 教学目标1.理解数轴的概念,能够画出简单的数轴。

2.掌握相反数和绝对值的定义,能够运用它们进行简单的计算和问题解决。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.数轴的概念及其应用。

2.相反数和绝对值的定义及其性质。

五. 教学方法1.情境教学法:通过实际情境引入数轴、相反数和绝对值的概念,让学生从情境中感受它们的重要性。

2.例子教学法:通过大量的例子让学生加深对数轴、相反数和绝对值的理解。

3.小组讨论法:让学生分组讨论,培养学生的合作能力和口头表达能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括数轴、相反数和绝对值的定义及性质。

2.实例材料:准备一些实际问题,用于引入和巩固数轴、相反数和绝对值的概念。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入数轴的概念,例如描述一辆汽车从原点出发,向正方向行驶5公里,然后再向负方向行驶3公里的过程。

引导学生思考如何用数学工具来表示这个过程。

2.呈现(10分钟)介绍数轴的定义及其表示方法,解释数轴上的点和数之间的关系。

通过PPT展示数轴的图像,让学生直观地理解数轴的概念。

3.操练(10分钟)让学生分组讨论,每组找一个实例,运用数轴来解决问题。

例如,找一组数,使得它们的和为零,并画出相应的数轴。

1·2数轴、绝对值和相反数

1·2数轴、绝对值和相反数

【知识与技能】1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.3.使学生理解相反数的意义,给出一个数能求出它的相反数.4.借助数轴初步理解绝对值的概念,熟悉绝对值符号,理解绝对值的几何意义和作用;给出一个数,能求它的绝对值.【过程与方法】从一个学生熟悉的生活实例中抽象出“数轴”的概念,并通过各种师生活动加深学生对“数轴”和“用数轴上的点表示有理数”的理解;从一个学生熟悉的生活实例中抽象出“相反数”、“绝对值”的概念,通过各种师生活动加深学生对“相反数”和“绝对值”的理解;让学生在经历知识的获得过程中,体会数形结合的数学思想,为利用绝对值比较有理数的大小及以后的相关计算打下良好的基础.【情感态度】通过画数轴,增强学生学习的耐心和细心,认识到数轴在生活中的应用.感受在特定的条件下数与形是可以相互转化的,体会生活中的数学,增强学生学习数学的欲望.1.下列有关数轴的说法正确的是( )A .数轴是一条直线B .数轴是一条线段C .数轴是一条射线D .直线是数轴2.已知A 为数轴上表示-1的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( )A .-3B .3C .1D .1或-33.下列几组数中互为相反数的一组为( )A .-(-5)和+(+5)B .-(+6)与+(-6)C .+(-7)与-(+7)D .-(-8)与-(+8)4.-3.8是的相反数 , 的相反数是0.5.5.-5的绝对值是在 上表示-5的点到 的距离,-5的绝对值是 .6.绝对值是3的正数是 ,绝对值是3.2的负数是 .绝对值是0的有理数是 ,绝对值是343的有理数是 . 7.绝对值是2的数有 个,分别是 和 ;绝对值相等的两个数在数轴上的对应点之间的距离为4,则这两个数分别为 .8.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A ,H ,D ,E ,O 各点分别表示什么数?9.求下列各数的绝对值:-221,+154,-4.75,0.8. 10.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250m 到小明家,后又向东走350m 到小兵家,再向西行800m 到小颖家,最后又回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.(2)小明家距离小颖家多远?。

数学沪科版七年级《1.2 数轴、相反数和绝对值》2 教学设计

数学沪科版七年级《1.2 数轴、相反数和绝对值》2 教学设计

数学沪科版七年级《1.2 数轴、相反数和绝对值》2 教学设计与-(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数.如4与-4是互为相反数。

(3)0的相反数是0.也只有0的相反数是它的本身.(4)相反数是表示两个数的相互关系,不能单独存在.2.相反数的表示在一个数的前面添上“-”号就成为原数的相反数。

若表示一个有理数,则的相反数表示为-.在一个数的前面添上“+”号仍与原数相同.例如,+7=7,特别地,+0=0,-0=0.3.相反数的特性若、互为相反数,则;反之若,则、互为相反数.二.应用迁移巩固提高例3. 分别写出下列各数的相反数:解:3的相反数是-3;-7的相反数是7;-2.1的相反数是2.1;的相反数是;的相反数是;0的相反数是0;20的相反数是-20.从例3可以看出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数.例(补充). 指出下列各对数中,哪几对是相等的数?哪几对互为相反数?⑴+(-3)与-3 ⑵+(+8)与8⑶-(+3)与3 ⑷-(-7)与-7解: +(-3)=-3 +(+8)=8 , -(+3)=-3 , -(-7)=7⑶-(+3)与3互为相反数⑷-(-7)与-7互为相反数由上面的这个例题可以看出:在一个数前面添上“-”号,用这个新数表示原来那个数的相反数;在一个数的前面添上“+”号,表示这个数本身.4.多重符号化简(1)相反数的意义是简化多重符号的依据。

如-(-1)是-1的相反数,而-1的相反数为+1,所以-(-1)=+1=1.(2)多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负;如果是偶然数个,则结果为正。

可简写为“奇负偶正”.由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写.例(补充). 简化下列各数的符号:(1)-(+7);(2)+(-5);(3)-(-3.1);(4)-[+(-2)];(5)-[-(-6)]解:三. 课堂小结我们这节课学习了相反数,归纳如下:1.________________的两个数,我们说其中一个是另一个的相反数.2.+表示求的_____________,-表示的_____________.四.作业布置1.分别写出下列各数的相反数:2.在数轴上标出2,-4.5,0各数与它们的相反数.3.化简下列各数:(1)-(-16); (2)-(+20); (3)+(+50);教学反思(略)。

1.2数轴、相反数和绝对值

1.2数轴、相反数和绝对值

A -5 -4 相反数公式: -3 -2 -1 0 1 2
a 1 b
B 3 4 5
如果a和b互为相反数,那么 a b 0或a b或
规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就 表示这个数的相反数. 一般地,数a的相反数是-a,其中a可以是正数和负数和0.
山东星火国际传媒集团
例5.在数轴上有三个点A、B、C如图所示,请回答: (1)把点A向右移动7个单位后,A、B、C三个点表示的数那个最小,是多少? (2)把B点向左移动5个单位后,这时A点所表示的数比B所表示的数大多少? (3)如果让A表示的数最大,则A点应该怎样移动,至少移动几个单位?
A
(1)A点向右平移7个单位后,A点表示的数为2,B表示的数为1,C表示的数为3, 所以B表示的数最小;
(3)互为相反数的两个数一定不等;(4)任何一个正数的相反数都是负数.
其中正确的命题的个数有( A.1 B.2 B )个。 C.3 D.4
2.下列说法正确的是( D ) A.任何一个数的相反数都与这个数本身不同. B.除零以外的数都有它的相反数,零没有相反数. C.数轴上原点两旁的两个点所表示的数互为相反数. D.任何一个数都有相反数.
山东星火国际传媒集团
“-”个数决定结果正负: (1)当“-”个数为偶数个,值为 (2)当“-”个数为奇数个,值为 例7.求下列各数的相反数。
3, 0,
-(+1)=-1
;正 。负
-(-1)=+1 -(-(-1))=-1
-(-(-(-1)))=+1
......
1 , 2
a,
a b
1) 正数的相反数是负数 ( 相反数的性质 ( 2) 负数的相反数是正数 ( 3) 零的相反数是零

1.2数轴与相反数(基础) 知识讲解

1.2数轴与相反数(基础) 知识讲解

数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km 、m 、dm 、cm 等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理教,还可以表示其他数,比如π.设a 是一个正数,则数轴上表示数a 的点在原点右侧,距离原点a 个单位长度,表示数-a 的点在原点左侧,与原点的距离也是a 个单位长度.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.如x y y x y x -=---)(的相反数为.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0. )0b a b a b a -==+⇔(或互为相反数与 要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是 ( )A .(1)(2)(3)B .(2)(3)(4)C .只有(2)D .(1)(2)(3)(4)【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2011烟台)下列各组数互为相反数的是( )A .18-和0.8+ B .13和0.33- C .6-和(6)-- D . 3.14-和π【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【变式1】填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数.(6)a 和 互为相反数 .(7)______的相反数比它本身大, ______的相反数等于它本身.【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多3.已知,m n 互为相反数,则2223m n m n +++-= . 【总结升华】若,m n 互为相反数,则0m n +=或m n =-.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭ (2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.举一反三:【变式1】(2011浙江省)如图,在数轴上点A 表示的数可能是( )A. 1.5B.-1.5C.-2.6D. 2.6【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数.【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称.举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【巩固练习】数轴与相反数(基础)1.如图所示的数轴中,画得正确的是( )2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点3.如图所示,在数轴上点A 表示( )A .-2B .2C .±2D .04.如图,有理数a ,b 在数轴上对应的点如下,则有( ).(A)a >0>b (B)a >b >0 (C)a <0<b (D)a <b <05. 一个数比它的相反数小,这个数是( )A.正数B.负数C.非正数D.非负数6. 如果0a b +=,那么,a b 两个数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数7.________________的两个数,叫做互为相反数;零的相反数是________.8.0.4与________互为相反数,________与-(-7)互为相反数,a 的相反数是________. 9.(2011四川乐山)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为10.数轴上离原点5个单位长度的点有______个,它们表示的数是 ,它们之间的关系是 .11.化简下列各数: (1)23⎛⎫--= ⎪⎝⎭________ ;(2)45⎛⎫-+= ⎪⎝⎭________ ;(3){[(3)]}-+-+=________. 12.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为__________.13.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?14.在数轴上点A 表示7,点B 、C 表示互为相反数的两个数,且C 与A 间的距离为2,求点B 、C 对应的数.15.化简下列各数,再用“<”连接. (1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭16.已知3m-2与-7互为相反数,求m 的值. 第9题。

湘教版1.2 数轴、相反数与绝对值

湘教版1.2 数轴、相反数与绝对值

(3) 数轴上距原点 个单位长度的点有 两 个, ) 数轴上距原点2个单位长度的点有 2和-2 和 它们分别表示数 .
2.画一条数轴,标出表示下列各数的点: 画一条数轴,标出表示下列各数的点: 画一条数轴 -2, -0.8, 0.8, 2. , , ,
-2
-1-0.8
0
0.8 1
2
1.2.2 相反数
结论
如果两个数只有符号不同, 如果两个数只有符号不同,那么其中的 一个数叫作另一个数的相反数,或者说它们互 一个数叫作另一个数的相反数,或者说它们互 相反数 为相反数. 为相反数
结论反数的两个点,在数轴上位于原点的 两侧,并且与原点距离相等. 两侧,并且与原点距离相等.
-5,5,-2,2, 1 , . , , , ,2 1 2
-5
-4
-3
-2
-1 - 1 0 1 1
2
2
2
3
4
5
练习
1.填空: 填空: 填空 (1) 数轴上在原点右边距原点 个单位长度 ) 数轴上在原点右边距原点3.7个单位长度 3.7 的点表示数 ;
5 (2) 数轴上在原点左边距原点 8 个单位长度 ) -5 的点表示数 ; 8
在直线上取一点O 在直线上取一点 画一条直线 选取适当的长度为单位长度 单位长度. 选取适当的长度为单位长度 把这条直线上从原点向右的方向规定为正方向 正方向. 把这条直线上从原点向右的方向规定为正方向
D
-2.6 -2
C
-1
O
0
原点 A
1
B
2 2.6
如图1如图 -4
结论
画一条直线,在直线上取一点 ,把它叫作原点 原点. 画一条直线,在直线上取一点O,把它叫作原点. 我们把这条直线上从原点向右的方向规定为正方向. 我们把这条直线上从原点向右的方向规定为正方向. 正方向 选取适当的长度为单位长度. 选取适当的长度为单位长度. 单位长度 规定了原点、正方向和单位长度的直线叫作数轴 数轴. 规定了原点、正方向和单位长度的直线叫作数轴.

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计2

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计2

沪科版数学七年级上册1.2《数轴、相反数和绝对值》教学设计2一. 教材分析《数轴、相反数和绝对值》是沪科版数学七年级上册第一章第二节的内容。

本节课主要介绍数轴的概念、相反数和绝对值的定义及它们之间的关系。

通过本节课的学习,学生能够理解数轴的意义,掌握相反数和绝对值的性质,并能运用它们解决实际问题。

二. 学情分析七年级的学生已经学习了有理数的概念,对数的大小比较有一定的了解。

但学生对数轴、相反数和绝对值的概念可能较为陌生,需要通过具体实例和实际操作来加深理解。

此外,学生可能对数轴的绘制和运用存在一定的困难,需要教师进行详细的讲解和指导。

三. 教学目标1.了解数轴的概念,能正确绘制数轴,并在数轴上表示各种有理数。

2.掌握相反数的定义,能找出任意一个有理数的相反数。

3.理解绝对值的含义,能求出任意一个有理数的绝对值。

4.掌握相反数和绝对值之间的关系,并能运用它们解决实际问题。

四. 教学重难点1.数轴的概念及绘制方法。

2.相反数和绝对值的定义及求法。

3.相反数和绝对值之间的关系。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过设置问题引导学生思考,运用实例讲解数轴、相反数和绝对值的概念,学生进行小组讨论和合作学习,提高学生的参与度和理解能力。

六. 教学准备1.准备数轴的图片和实例,用于讲解和展示。

2.准备相反数和绝对值的练习题,用于巩固和练习。

3.准备教学PPT,包括数轴、相反数和绝对值的定义及例题。

七. 教学过程1.导入(5分钟)利用数轴图片,引导学生思考数轴的作用和意义。

提出问题:“数轴是什么?它有什么作用?”让学生发表自己的看法,教师进行总结。

2.呈现(10分钟)讲解数轴的概念,介绍数轴的绘制方法。

通过实例展示数轴上的点与有理数之间的关系。

同时,讲解相反数和绝对值的定义,让学生在数轴上找出相反数和绝对值。

3.操练(10分钟)让学生在数轴上找出给定有理数的相反数和绝对值,并进行练习。

教师巡回指导,解答学生的问题。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2 数轴(一)学习目标1.理解数轴的意义,理解数轴上的点与有理数的对应关系;2.会画出数轴,能用数轴上的点表示有理数;3.体会从数与形两方面考虑问题的方法,能够用数轴解决现实生活中的实际问题。

(二)学习重点1.数轴上的点与有理数的对应关系;2.用数轴上的点表示有理数,并用数轴解决现实生活中的实际问题。

课前预习1.下列给出的四条数轴错误的是()A.①③B.②③④C.①②③D.①②③④2.如图所示,根据有理数a、b、c在数轴上的位置,下列关系正确的是()A.acb>>>0 B.0>>>cba C.0>>>bca D.cab>>>03.有理数a,b在数轴上的位置如图所示,下面结论正确的是()A.0>+ba B.0=ab C.0<-ab D.ba>4. 如果数轴上的点A对应有理数为-2,那么与A点相距4个单位长度的点所对应的有理数为______________;5. 有理数a,b在数轴上的位置如下图所示,则a+b____________0.(填“>”、“<”或“=”)典型例题例1、在同一个数轴上表示下列有理数:1.5,-2.5,13,0,12-.例2、在数轴上有四个点A、B、C、D,如图所示:(1)写出这四个点所表示的数;(2)将点B向左移动3个单位,再向右移动5个单位到达的点表示的是什么数?课后作业一、选择题1.数轴上到原点的距离为5的点所表示的数是()A.5 B.|-5| C.|±5| D.+5或-5 2.下列说法中,错误的是( )A.所有的有理数都可以用数轴上的点表示B.数轴上的原点表示0C.在数轴上表示-3的点与表示-1的点的距离是-2D.数轴上表示134的点,在原点左边134个单位3.下列绘制的数轴正确的是( )4.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B 所表示的实数是( )A.1 B.-6 C.2或-6 D.不同于以上答案二、填空题5.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负整数为________.6.点A在数轴上表示的数是+1,从点A出发,沿数轴向左平移3个单位长度到达点B,则点B所表示的数是________.7.在数轴上,与表示-1的点距离为2的点所表示的数为________.8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.三、解答题9.把数4,-3,1.5,122表示在数轴上,并将它们按从小到大的顺序排列.10.在数轴上有三个点A,B,C如图所示,请回答:(1)将B点向左移动3个单位长度后,三个点表示的数谁最小?(2)与A点相距3个单位长度的点所表示的数是什么?(3)将C点左移6个单位长度后,这时B点表示的数比C点表示的数大多少?11.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置.一、选择题(共13题)1.下列所示的数轴中,画得正确的是()A.B.C.D.2.如图,在数轴上点A表示的数可能是()A.1.5 B.-1.5 C.-2.4 D.2.4A.1个B.2个C.3个D.4个4.数轴上原点和原点左边的点表示的数是()A.负数B.正数C.非负数D.非正数5.在数轴上表示-2的点离开原点的距离等于()A.2 B.-2 C.±2 D.46.在数轴上和原点距离为4个单位长度的点对应的有理数是()A.4 B.-4 C.4或-4 D.无数个7.在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是()A.+3 B.+1 C.-9 D.-28.点A为数轴上的表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.-6 C.2或-6 D.不同于以上答案9.有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A、a<bB、a>bC、a=bD、无法确定10、数轴上表示整数的点称为整点。

某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A. 2002或2003B. 2003或2004C. 2004或2005D. 2005或200611、一个数在数轴上所对应的点向左移8个单位后,得到它的相反数的点,则这个数是( )A 4B -4 C8 D -8二、填空题(共6小题)13.如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是.14.在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度.15.在数轴上,点A、B分别表示-5和2,则点A与点B的距离是个单位长度.16.数轴上与原点距离是5的点有个,表示的数是.17.在数轴上与表示数-1的点的距离为3个单位长度的点所表示的数是.三、解答题(共5小题)18.小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?19.一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?20.已知,在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.21.如图.A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.+米,如果一个人从A地出发向东走12米,再走-12 米,又走22.若向东走8米,记作8了+13米,你能判断此人这时在何处吗?1.2.3 相反数(一)学习目标1.了解相反数的意义,理解相反数的代数意义与几何意义的一致性; 2.会求一个数的相反数,掌握多重符号的化简方法。

(二)学习重点1.相反数的意义;2.对立统一的规律。

课前预习1.13-的相反数是_________;2.如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1、2、3和-3,折成正方体后,相对面上的两数互为相反数,则A处应填__________; .3.下列说法中,正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数和负数C.符号不同的两个数互为相反数D.两个数相加和一定大于任何一个加数4.已知有理数a,b在数轴上表示如下图,现比较a,b,-a,-b的大小,正确的是( )A. a b a b-<-<< B. a b b a<-<<-C. b a a b-<<-< D. a b b a<<-<-5.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A. 点A B.点B C.点C D. 点D典型例题例1、写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,12-,2()3--,+(-4.5),0,-(+3)例2、已知a 、b 互为相反数,c 、d 互为倒数.且2m =,求a 3532013m b cd -+-的值.课后作业 一、选择题1.一个数的相反数不是负数,则这个数一定是( )A.负数B.正数C.正数或零D.负数或零 2.-21的相反数是( )A.2B.-2C.21D.12-3.下列各数中是负数的是( )A.-(-4)B.-0C.[](3)+--D.[](1)--- 4.下列说法正确的是( ) A. 符号不同的数互为相反数 B. 所有的有理数都有相反数 C. 正数与负数互为相反数D. 在数轴上原点两边的两个数互为相反数 二、填空题5.-5的相反数是________,-(-5)的相反数是________;6.若3.2+=a ,则a -=________,若31-=a , 则a -=________;若1=-a ,则a =________,若21-=-a ,则a =________,若a a =-,则a =_________; 7.1-a 的相反数是________;8.已知a 、b 互为相反数,c 、d 互为倒数,x =2且5=+y x ,则y x cd b a -+++的值为_________.三、解答题9.如图所示,一个单位长度表示2,观察图形,回答问题:(1)若B 与D 所表示的数互为相反数,则点D 所表示的数字为_________; (2)若A 与D 所表示的数互为相反数,则点D 所表示的数字为_________; (3)若B 与F 所表示的数互为相反数,则点D 所表示的数字的相反数为_________.10.小李在做题时,画了一条数轴,在数轴上原有一点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?11.已知表示数a的点在数轴上位置如图所示.(1)在数轴上表示出数a的相反数的位置;(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的点与数a的相反数表示的点相距5个单位长度,求b表示的数是多少?四、拓展提高已知0a,则fdbbccc,,a,b,这五个数中,哪些数相等, =+,0=,0,0=+d+f=d+哪些数互为相反数?。

相关文档
最新文档