船舶专业外文翻译--船舶设计优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶专业外文翻译一船舶设计优化
Ship Design Optimization
This contribution is devoted to exploiting the analogy between a modern manufacturing plant and a heterogeneous parallel computer to construct a HPCN decision support tool for ship designers. The application is a HPCN one because of the scale of shipbuilding ・ a large container vessel is constructed by assembling about 1.5 million atomic components in a production hierarchy. The role of the decision support tool is to rapidly evaluate the manufacturing consequences of design changes. The implementation as a distributed multi-agent application running on top of PVM is described
1 Analogies between Manufacturing and HPCN
There are a number of analogies between the manufacture of complex products such as ships, aircraft and cars and the execution of a parallel program. The manufacture of a ship is carried out according to a production plan which ensures that all the components come together at the right time at the right place.
A parallel computer application should ensure that the appropriate data is available on the appropriate processor in a timely fashion.
It is not surprising, therefore, that manufacturing is plagued by indeterminacy exactly as are parallel programs executing on multi-processor hardware. This has caused a number of researchers in production engineering to seek inspiration in other areas where managing complexity and unpredictability is important. A number of new paradigms^ such as Holonic Manufacturing and Fractal Factories have emerged [1,2] which contain Ideas rather reminiscent of those to be found in
the field of Multi- Agent Systems [3,4].
Manufacturing tasks are analogous to operations carried out on data, within the context of planning, scheduling and control. Also, complex products are assembled at physically distributed workshops or production facilities^ so the components must be transported between them. This is analogous to communication of data between processors in a parallel computer, which thus also makes clear the analogy between workshops and processors.
The remainder of this paper reports an attempt to exploit this analogy to build a parallel application for optimizing ship design with regard to manufacturing issues.
2 Shipbuilding at Odense Steel Shipyard
Odense Steel Shipyard is situated in the town of Munkebo on the island of Funen. It is recognized as being one of the most modern and highly automated in the world. It
specializes in building VLCC's (supertankers) and very large container ships. The yard was the first in the world to build a double hulled supertanker and is currently building an order of 15 of the largest container ships ever built for the Maersk line. These container ships are about 340 metres long and can carry about 7000 containers at a top speed of 28 knots with a crew of 12.
Odense Steel Shipyard is more like a ship factory than a traditional shipyard. The ship design is broken down into manufacturing modules which are assembled and processed in a number of workshops devoted to, for example, cutting, welding and surface treatment. At any one time, up to 3 identical ships are being built and a new ship is launched about every 100 days.
The yard survives in the very competitive world of shipbuilding by extensive application of information technology and robots, so there are currently about 40 robots at the yard engaged in various production activities. The yard has a coininitment to research as well, so that there are about 10 industrial Ph・D・students working there, who are enrolled at various engineering schools in Denmark.
3 Tomorrow's Manufacturing Systems
The penetration of Information Technology into our lives will also have its effect in manufacturing Industry. For example, the Internet is expected to become