普通高中数学学业水平考试模拟试题
山西省2024年普通高中学业水平考试模拟试题 数学(一)
山西省2024年普通高中学业水平考试模拟试题数学(一)
作者:赵煜政王萍
来源:《山西教育·招考》2024年第04期
本试题分第玉卷和第域卷两部分,第玉卷为选择题,第域卷为非选择题。
满分100分,考试时间60分钟。
第玉卷选择题(共60分)
一、单项选择题:本题包含8小题,每小题6分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求。
二、多項选择题:本题包含2题,每小题6分,共12分。
在每小题给出的四个选项中,至少有两个选项符合题目要求。
全部选对得6分,选对但不全得3分,有选错的得0分。
(1)证明:平面PAD彝平面ABCD;
(2)若E为PC的中点,求直线EB与平面PAD所成角的余弦值援。
广东省2024年普通高中合格性学业水平考试数学模拟数学试题一
一、单选题1. 在棱长为2的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值为( )A .2B.C.D.2. 若集合,则集合可能为( )A.B.C.D.3.设是定义域为的奇函数,且,当时,,.将函数的正零点从小到大排序,则的第4个正零点为( )A.B.C.D.4.已知变量关于的回归方程为,若对两边取自然对数,可以发现与线性相关.现有一组数据如下表所示:12345则当时,预测的值为( )A.B.C.D.5. 函数在区间(,)内的图象是( )A.B.C.D.6. 若,且a 为整数,则“b 能被5整除”是“a 能被5整除”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,则( )A.B.C.D.8.已知函数满足函数恰有5个零点,则实数的取值范围为( )A.B.C.D.9. 已知P为所在平面内一点,且满足,,则A.B.C.D.10. 已知数列的首项,且,,则满足条件的最大整数( )A .2022B .2023C .2024D .202511.在区间与内各随机取1个整数,设两数之和为,则成立的概率为( )广东省2024年普通高中合格性学业水平考试数学模拟数学试题一二、多选题A.B.C.D.12.如图,在正四棱柱中,是线段上的动点,有下列结论:①;②,使;③三棱锥体积为定值;④三棱锥在平面上的正投影的面积为常数.其中正确的是( )A .①②③B .①③C .②③④D .①④13. 已知,分别为随机事件A ,B 的对立事件,,,则( )A.B.C .若A ,B独立,则D .若A ,B互斥,则14.已知非常数函数及其导函数的定义域均为R ,若为奇函数,为偶函数,则( ).A.B.C.D.15. 我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.年年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示.根据下面图表,下列说法正确的是()A .对于该市居民年人均可支配收入比上年增长率的中位数,城镇比农村的大B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .年该市农村居民年人均可支配收入比年有所下降D .年该市农村居民年人均可支配收入比年有所上升16. 若直线与两曲线、分别交于、两点,且曲线在点处的切线为,曲线在点处的切线为,则下列结论正确的有( )A .存在,使B .当时,取得最小值三、填空题四、填空题五、解答题C.没有最小值D.17. 蜚英塔俗称宝塔,地处江西省南昌市,建于明朝天启元年(1621年),为中国传统的楼阁式建筑.蜚英塔坐北朝南,砖石结构,平面呈六边形,是江西省省级重点保护文物,已被列为革命传统教育基地.某学生为测量蜚英塔的高度,如图,选取了与蜚英塔底部D 在同一水平面上的A ,B两点,测得米,,,,则蜚英塔的高度是_______米.18. 在复平面内,复数所对应的点的坐标为,则_____________.19.已知、分别为椭圆的左、右焦点,为椭圆上的动点,点关于直线的对称点为,点关于直线的对称点为,则当最大时,的面积为__________.20. 如图,在棱长为2的正方体中,点是侧面内的一个动点.若点满足,则的最大值为__________,最小值为__________.21.椭圆的左、右焦点分别为,,过焦点的直线交椭圆于,两点,则的周长为______;若,两点的坐标分别为和,且,则的内切圆半径为______.22. 计算求值:(1);(2)已知,均为锐角,,,求的值.23. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.六、解答题七、解答题八、解答题九、解答题24. 1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组,,…,,并整理得到如图频率分布直方图:(1)求其中阅读量小于60本的人数;(2)已知阅读量在,,内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在内的学生中随机选取3人进行调查座谈,用表示所选学生阅读量在内的人数,求的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).25. 已知.(1)求不等式的解集;(2)令的最小值为,若正数满足,证明:.26. 如图,在四棱锥P A BCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE .27. 在一次猜灯速的活动中,共有20道灯谜,甲同学知晓其中16道灯谜的谜底,乙同学知晓其中12道灯谜的谜底,两名同学之间独立竞猜,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.28.已知等比数列的前n 项和为,,.(1)求;(2)若数列的前n项和为,,且,试写出满足上述条件的数列的一个通项公式,并说明理由.。
普通高中学业水平模拟考试数学试题
普通高中学业水平模拟考试数学试题一、选择题1. 若函数 f(x) = 2x - 3,则 f(-2) 的值为多少?A. -7B. -1C. 1D. 72. 已知两条直线的斜率分别为 k1 = 2 和 k2 = -3,两直线相交于点 P,点 P 到 x 轴的距离为 4。
则点 P 的坐标是:A. (2, 4)B. (-2, -4)C. (4, 2)D. (-4, -2)3. 若 2(x + 3) - 4x = 3(x - 5),则解为:A. x = 13B. x = 5C. x = -5D. x = -13二、计算题1. 计算:(3^4)×(3^2)2. 计算:log10(100) + log2(8)3. 解方程:2x + 5 = 7x - 3三、解答题1. 已知 A、B 两点的坐标分别为 A(1, 2) 和 B(5, 8),求线段 AB 的中点坐标。
2. 已知函数 f(x) = 2x^2 - 3x + 1,求函数 f(x) 的最小值。
3. 一个球从 1 米的高度自由落下,每次弹起高度是上一次高度的一半。
求球在第n次落地时,共经过了多少米的路径。
四、解析题1. 求三角形 ABC 的面积,已知 AC = 8 cm,BC = 6 cm,∠ACB = 60°。
2. 在一个等差数列中,已知 a1 = 3,d = 4,求第 n 项的值 an。
3. 解方程:2^(x - 1) + 3 = 25总结:本次数学模拟考试试题中,涵盖了选择题、计算题、解答题和解析题,分别对学生的知识点掌握、计算能力和解题能力进行了全面考察。
希望同学们能认真完成试题,找出自己的不足并加以改进,提高数学水平。
祝大家取得好成绩!。
安徽省2024届普通高中学业水平合格考试数学模拟试题
安徽省2024届普通高中学业水平合格考试数学模拟试题一、单选题1.设集合{}3,5,6,8A =,{}4,5,8B =,则A B =I ( ) A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,82.在复平面内,(3i)i +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.某学校高一、高二、高三分别有600人、500人、700人,现采用分层随机抽样的方法从该校三个年级中抽取18人参加全市主题研学活动,则应从高三抽取( ) A .5人B .6人C .7人D .8人4.“a b >”是“ac bc >”的什么条件( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件5.已知(),4a x =r ,()2,1b =-r ,且a b ⊥r r ,则x 等于( ) A .4B .-4C .2D .-26.已知角α的始边在x 轴的非负半轴上,终边经过点()3,4-,则cos α=( ) A .45B .35C .45-D .35-7.下列关于空间几何体结构特征的描述错误的是( ) A .棱柱的侧棱互相平行B .以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥C .正三棱锥的各个面都是正三角形D .棱台各侧棱所在直线会交于一点8.某地一年之内12个月的降水量分别为:71,66,64,58,56,56,56,53,53,51,48,46,则该地区的月降水量75%分位数( ) A .61B .53C .58D .649.已知函数πsin ,1()6ln ,1x x f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()(e)f f =( )A .1B .12CD10.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为( )A .17B .111C .536D .11211.在ABC V 中,13BD BC =u u u r u u u r ,设,AB a AC b ==u u u r u u u r r r ,则AD =u u u r( )A .2133a b +r rB .2133a b -+r rC .4133a b -r rD .4133a b +r r12.设0.20.10.214,,log 42a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .<<c a bD .a c b <<13.在ABC V 中,下列结论正确的是( )A .若AB ≥,则cos cos A B ≥ B .若A B ≥,则tan tan A B ≥C .cos()cos +=A B CD .若sin A ≥sin B ,则A B ≥14.已知某圆锥的母线长为4,高为 )A .10πB .12πC .14πD .16π15.若函数()()2212f x x a x =+-+在区间(],4-∞-上是减函数,则实数a 的取值范围是A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞16.已知幂函数()f x 为偶函数,且在(0,)+∞上单调递减,则()f x 的解析式可以是( )A .12()f x x = B .23()f x x = C .2()f x x -=D .3()f x x -=17.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是( )A .“至少有1个红球”与“都是黑球”B .“恰好有1个红球”与“恰好有1个黑球”C .“至少有1个黑球”与“至少有1个红球”D .“都是红球”与“都是黑球”18.已知函数()f x 是定义域为R 的偶函数,且在(],0-∞上单调递减,则不等式()()12f x f x +>的解集为( )A .1,03⎛⎫- ⎪⎝⎭B .1,3∞⎛⎫+ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,13⎛⎫- ⎪⎝⎭二、填空题19.已知i 是虚数单位,复数12iiz -=,则||z =. 20.已知()()321f x x a x =+-为奇函数,则实数a 的值为.21.已知非零向量a r ,b r 满足||2||a b =r r ,且()a b b -⊥rr r ,则a r 与b r 的夹角为.22.在对树人中学高一年级学生身高(单位:cm )调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的方差为.三、解答题23.已知函数()f x 是二次函数,且满足(0)2f =,(1)()2f x f x x +=+. (1)求函数()f x 的解析式; (2)当x >0时,求函数()f x xy x+=的最小值. 24.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF =FC ,求证:P A ∥平面BDF ; (2)若BF ⊥PC ,求证:平面BDF ⊥平面PBC . 25.已知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.f x的最小正周期及单调增区间;(1)求()(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若()f A △ABC的外接圆半径为2,求△ABC面积的最大值.。
高中数学学业水平考试模拟试题
高中数学学业水平考试模拟试题高中学业水平考试数学模拟题一一、选择题:1.已知集合A={1,2,3,4,5},B={2,5,7,9},则AB等于()A。
{1,2,3,4,5}B。
{2,5,7,9}C。
{2,5}D。
{1,2,3,4,5,7,9}2.若函数f(x)=x+3,则f(6)等于()A。
3B。
6C。
9D。
123.直线A。
(-4,2)B。
(4,-2)C。
(-2,4)D。
(2,-4)4.两个球的体积之比为8:27,那么这两个球的表面积之比为()A。
2:3B。
4:9C。
8:27D。
22:335.已知函数f(x)=sinx*cosx,则f(x)是()A。
奇函数B。
偶函数C。
非奇非偶函数D。
既是奇函数又是偶函数6.向量a=(1,-2),b=(2,1),则()A。
a//bB。
a⊥bC。
a与b的夹角为60°D。
a与b的夹角为30°7.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A。
15B。
30C。
31D。
648.阅读下面的流程图,若输入的a,b,c分别是5,2,6,则输出的a,b,c分别是()A。
6,5,2B。
5,2,6C。
2,5,6D。
6,2,59.已知函数f(x)=x-2x+b在区间(2,4)内有唯一零点,则b的取值范围是()A。
RB。
(-∞,0)C。
(-8,+∞)D。
(-8,0)10.在△ABC中,已知∠A=120°,b=1,c=2,则a等于()A。
3B。
5+√3C。
7D。
5-√3二、填空题:11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查。
已知从其他教师中共抽取了10人,则该校共有教师人数为50人。
12.(3)³的值是27.13.已知m>0,n>0,且m+n=4,则mn的最大值是4.14.若幂函数y=f(x)的图像经过点(9,1),则f(25)的值是1/25.15.已知f(x)是定义在[-2,0)∪(0,2]上的奇函数,log4(2) = 1/2,则f(log4(2))的值为0.当$x>0$时,函数$f(x)$的图像如下图所示,因此$f(x)$的值域为$(-\infty,-1]\cup[1,\infty)$。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01
一、单选题1. 在平面直角坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以为始边,OP 为终边,若,则P所在的圆弧是A.B.C.D.2. 已知,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知点P 是抛物线上的动点,过点P 向y 轴作垂线,垂足记为N ,动点M满足最小值为3,则点M 的轨迹长度为( )A.B.C.D.4. 西安是世界四大古都之一,历史上先后有十多个王朝在西安建都.图为唐长安(西安古称)城示意图,城中南北向共有9条街道,东西向有12条街道,被称为“九衢十二条”,整齐的街道把唐长安城划分成了108坊,各坊有坊墙包围.下列说法错误的是()A .从延平门进城到安化门出城,最近的不同路线共有15条.B .甲乙二人从安化门、明德门、启夏门这三个城门中随机选一城门进城,若二人选择互不影响,则二人从同一城门进城的概率为.C .用四种不同的颜色给长乐、永福、大宁、兴宁四坊染色(街道忽略),要求有公共边的两个区域不能用同一种颜色,共有60种不同的染色方法.D.若将街道看成直线,则图中矩形区域中共有不同矩形150个.5. 声音通过空气的振动所产生的压强叫做声压强,简称声压,声压的单位为帕斯卡(),把声压的有效值取对数来表示声音的强弱,这种表江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题示声音强弱的数值叫声压级,声压级以符号表示,单位为分贝(),在空气中,声压级的计算公式为(声压级),其中为待测声压的有效值,为参考声压,在空气中,一般参考声压取,据此估计,声压为的声压级为()A.B.C.D.6. 若,则( )A.B.C.D.7. 二项式的展开式中含项的系数为( )A .35B .70C .140D .2808. 复数满足,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知为等差数列,,则使数列的前n项和成立的最大正整数n 是( )A .2021B .4044C .4043D .404210.设直线,为直线上动点,则的最小值为( )A.B.C.D.11. 音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是( )A.B.C.D.12. 已知矩形ABCD 的顶点都在球心为O 的球面上,,,且四棱锥的体积为,则球O 的表面积为( )A.B.C.D.13. 已知向量,,则( )A.B.C.D.14. 近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)的销量已跃居全球首位,同时我国也加大了新能源汽车公共充电桩的建设,以解决新能源汽车的充电困境.下面是我国2021年9月至2022年8月这一年来公共充电桩累计数量统计图,则针对这12个月的数据,下列说法正确的是( )三、填空题四、填空题五、解答题A .这12个月以来,我国公共充电桩累计数量一直保持增长态势B .这12个月我国公共充电桩累计数量的中位数低于123万台C .这12个月我国公共充电桩的月平均累计数量超过115万台D .2022年6月我国公共充电桩累计数量的同比增长率最大15. 已知函数,则( )A.的图象可由的图象向右平移个单位长度得到B.在上单调递增C .在内有2个零点D .在上的最大值为16. 已知为虚数单位,复数,下列说法正确的是( )A.B .复数在复平面内对应的点位于第四象限C.D .为纯虚数17.的展开式中的系数为________用数字填写答案18. 若抛物线上的点到焦点的距离是点A 到y 轴距离的2倍,则___________.19. 在中,若、、成等比数列,则角的最大值为________20. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且,已知的面积等于10,,则___________,a 的值为___________.21. 已知函数,当_____时,的最小值为_____22.已知,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.23. 随着温度降低,各种流行病毒快速传播.为了增强员工预防某病毒的意识,某单位决定先对员工进行病毒检测,为了提高检测效率,决定六、解答题七、解答题八、解答题九、解答题将员工分为若干组,对每一组员工的血液样本进行混检(混检就是将若干个人被采集的血液样本放到一个采集管中(采集之前会对这些人做好信息登记)).检测结果为阴性时,混检样本均视为阴性,代表这些人都未感染:如果出现阳性,相关部门会立即对该混检管的所有受试者暂时单独隔离,并重新采集该混检管的所有受试者的血液样本进行一一复检,直至确定其中的阳性.已知某单位共有N 人,决定n 人为一组进行混检,(1)若,每人被病毒感染的概率均为,记检测的总管数为X ,求X 的分布列:(2)若.每人被病毒感染的概率均为0.1,记检测的总管数为Z ,求Z 的期望.24. 如图,在四棱锥中,是边长为2的正三角形,,,设平面平面.(1)作出(不要求写作法);(2)线段上是否存在一点,使平面?请说明理由;(3)若,求平面与平面的夹角的余弦值.25. 设,函数.(1)求a的值,使得为奇函数;(2)求证:时,函数在R 上单调递减.26.已知数列的前n项和为,且,,数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.27. 2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊比赛,约定赛制如下:业余队中的两名队员轮流与甲进行比赛,若甲连续赢两场则专业队获胜;若甲连续输两场则业余队获胜;若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,甲赢的概率为,甲与丙比赛,甲赢的概率为,其中.(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金6万元,负队获奖金3万元;若平局,两队各获奖金3.6万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X 万元,求X 的数学期望的取值范围.28. 已知中,a ,b ,c 分别为角A ,B ,C的对边,且(1)求角C ;(2)若,求的最大值.。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(1)
一、单选题二、多选题1. 命题“”的否定是A.B.C.D.2. 在中,角所对的边分别为,若,且的面积为,则角( )A.B.C.或D.或3. 将函数的图象向右平移个单位长度后得到函数的图象,且的图象的一条对称轴是直线,则的最小值为( )A.B .2C .3D.4. “中国天眼”是我国具有自主知识产权,世界最大单口径,最灵敏的球面射电望远镜(如图).其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,球冠面积,其中R 为球的半径,h 为球冠的高)设球冠底的半径为r ,周长为C ,球冠的面积为S ,则当时,()A.B.C.D.5. 已知A ,B 是椭圆E:的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为,则E 的离心率为A.B.C.D.6. 紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石飘壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台.如图给出了一个石瓢壶的相关数据(单位:),那么该壶的容积约接近于()A.B.C.D.7. 某公司有营销部门、宣传部门以及人事部门,其中营销部门有50人,平均工资为5千元,方差为4,宣传部门有40人,平均工资为3千元,方差为8,人事部门有10人,平均工资为3千元,方差为6,则该公司所有员工工资的方差为( )A .6.4B .6.6C .6.7D .6.88.已知直四棱柱中,底面为正方形,若直四棱柱的所有顶点都在半径为2的球面上,则当该直四棱柱的侧面积最大时,异面直线与所成角的余弦值为( )A.B.C.D.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(1)三、填空题四、解答题9. 已知向量,,则下列结论正确的是( )A .若,则B .若,则C .若,则D .若,则与的夹角为锐角10.已知椭圆的左、右焦点分别是、,其中,直线与椭圆交于、两点.则下列说法中正确的有( )A .当时,的周长为B .当时,若的中点为,为原点,则C .若,则椭圆的离心率的取值范围是D .若的最大值为,则椭圆的离心率11. 给出下面四个结论,其中正确的结论是( )A .若线段,则向量B.若向量,则线段C .若向量与共线,则线段D .若向量与反向共线,则12. 如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,则()A.B.C.D.13.的展开式中,的系数是__________.14.设是由一平面内的个向量组成的集合.若,且的模不小于中除外的所有向量和的模.则称是的极大向量.有下列命题:①若中每个向量的方向都相同,则中必存在一个极大向量;②给定平面内两个不共线向量,在该平面内总存在唯一的平面向量,使得中的每个元素都是极大向量;③若中的每个元素都是极大向量,且中无公共元素,则中的每一个元素也都是极大向量.其中真命题的序号是_______________.15. 曲线在点处的切线方程为__________.16.已知数列的前项和为,,.(1)请在①②中选择一个作答,并把序号填在答题卡对应位置的横线上,①求数列的通项公式;②求;(2)令,求数列的前项和,并证明.17. 已知等比数列满足条件,,.(1)求数列的通项公式;(2)数列满足,,求的前n项和.18. 已知函数.(1)当时,求的单调区间;(2)讨论零点的个数.19. 已知函数.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)若存在满足,求实数的取值范围.20. 如图,已知椭圆的离心率为,F为椭圆C的右焦点,,.(1)求椭圆C的方程;(2)设O为原点,P为椭圆上一点,AP的中点为M,直线OM与直线交于点D,过O且平行于AP的直线与直线交于点E.求证:.21. 已知函数.(1)当时,试写出函数的单调区间;(2)当时,求函数在上的最大值.。
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。
《高中数学》学业水平模拟习题(附答案)
《高中数学》学业水平模拟习题(附答案)【编号】ZSWD2023B0113 一、填空题1、函数 sin f x x 的值域为 【答案】0,12、圆2245x x y 的半径是 【答案】33、已知集合 =1,2,3,A B a ,且 2A B I ,则a 【答案】24、不等式1210x 的整数解有 个 【答案】35、若球面的面积为36 ,则球的半径为 【答案】36、若直线0x my 与直线410x y 垂直,则m 【答案】47、在△ABC 中,角,,A B C 所对的边长分别为,,a b c ,且满足222b ac ac ,则B 【答案】38、在61x x的二项展开式中,所有项的系数之和值为【答案】649、从一副混合后的扑克牌(52张,不含大小鬼)中随机抽取2张,则“抽出1张红桃、1张黑桃”的概率为____________(结果用最简分数表示) 【答案】1310210、设 f x 是定义在R 上的函数,且满足 3f x f x ,2310,41m f f m,则实数m 的取值范围是 【答案】31,211、已知偶函数 f x 在 0,2内单调递减,若 1,2a f b f , 则,a b 之间的大小关系为______________【答案】b a12、定义某种新运算:S a b 的运算原理如右流程图, 则02132420122014 L 【答案】20132014二、选择题 13、若函数 1y fx 的图像经过点 2,0 ,则函数 5y f x 的图像经过点 ( )A、 0,2 ;B、 5,2 ;C、 0,3;D、 0,5 【答案】C则样本数据落在(10,40]上的频率为 ( )A、0.13;B、0.39;C、0.52;D、0.64 【答案】C15、设四边形ABCD 中,有12DC AB u u u v u u u v 且AD BC u u u uv u u u u v ,则这个四边形是 ( )A、平行四边形;B、矩形;C、等腰梯形;D、菱形【答案】C 16、把矩阵015108变为1001x y后,与x y 对应的值是 ( ) A、3 ; B、13; C、2; D、3 【答案】D17、直线1y 与直线230x y 的夹角为 ( ) A、1arctan22; B、1arctan 2; C、1arctan 22 ; D、1arctan 2【答案】B18、三棱锥的四个面中,任两个面的位置关系是 ( ) A、相交; B、平行; C、异面; D、不确定【答案】A19、方程0x所表示的大致图像是( )xyxyxyxyDBCA 0【答案】D 20、“2”是“函数 sin y x 为偶函数的” ( )A、充分不必要条件;B、必要不充分条件;C、充要条件;D、既不充分也不必要条件 【答案】A21、下列四个函数中,在区间 0,1上是减函数的是 ( )A、1y x ;B、1y x ;C、12xy; D、13y x【答案】B22、设等差数列 n a 的公差2d ,首项是0,前n 项和为n S ,则2lim n n na S ( )A、1;B、2;C、3;D、4【答案】D23、若i 2是关于x 的实系数方程02n mx x 的一根,则抛物线2y mnx 焦点坐标( )A、 5,0;B、 5,0 ;C、 0,5 ;D、 0,5 【答案】B24、实数,x y 满足221x y ,则 11xy xy 的 ( B ) A、最小值是12,最大值是1; B、最小值是34,最大值是1;C、最小值是34,无最大值; D、最大值是1,无最小值 【答案】B解: 2222242213(1)(1)111124xy xy x y x x x x x ,设 20,1t x则 213(1)(1),0,124xy xy t t ,其最小值为34,最大值为1三、解答题25若函数22cos sin sin cos 3f x x x x x x,此函数的图像可以由sin 2y x 的图像经过怎样的变换得到 解:22cos sin sin cos 2sin 233f x x x x x x f x x先将函数sin 2y x 的图像向左平移6个单位,得函数sin 2sin 263y x x的图像 再将函数sin 23y x的图像的纵坐标伸长为原来的2倍(横坐标不变),得到函数2sin 23y x的图像即得到函数22cos sin sin cos 3f x x x x x x的图像 26如图,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点,已知,22BAC AB,2AC PA ,求异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)解:取PB 中点E ,联结DE ,则DE BC P ,ADE (或其补角)是异面直线BC 与AD 所成的角 (2)分1,2,222BAC AB AC DE BC Q又PA ⊥底面,2ABC PA ,故2PAB PACAB DP222PB PCAE AD……5分222223cos2224ADE所以异面直线BC与AD所成的角为3arccos427 若数列{}na为等比数列,121239,27,na a a a a S为数列{}na的前n项和,求limnnS的值解:12121123229962733a a a a aa a a a a所以6lim12316nnS(求对首项16a 给2分;求对公比12q 给2分;求对lim12nnS给3分.其它解法参照给分)28 已知椭圆C以122,0,2,0F F为焦点且经过点53,22P(1)求椭圆C的方程;(2)若斜率为1的直线l和椭圆C相交于,A B两点,且以AB为直径的圆恰好过椭圆C的中心,求直线l的方程解(1)椭圆C的方程为161022yx(2)设直线l的方程为txy,由30510816102222ttxxyxtxy当0即44t时,直线l与椭圆C有两个不同的交点,A B设1122,,,A x yB x y,则212125530,48t tx x x x故22121212123308ty y x t x t x x x x t t因为以AB为直径的圆过椭圆C的中心O,所以0OA OBu u u v u u u v12120x x y y ,即22530330088t t,解得 4,42t所以直线l 的方程为0230y x29 已知函数 2210,1g x ax ax b a b 在区间 2,3上有最大值4,最小值1,设函数g x f x x(1)求,a b 的值及函数 y f x 的解析式;(2)若不等式220x x f k 在 1,1x 时有解,求实数k 的取值范围 解(1) 222111g x ax ax b g x a x b a ①0a 时, g x 在 2112,3340g a g bZ , 此时, 211,2g x x f x x x②当0a 时, g x 在 1242,33,131a g b g]舍 综上: 11,0,2,0a b f x x x x(2) 2220,1,1,1,12x xxxf f k x k x令12,22x t,则所求问题等价于 1,,22f t k t t有解 而221211111,,22f t t t t t t的最大值是1 此时12t,即 11,1x ,于是 ,1k。
2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(2)
一、单选题二、多选题1.已知集合,,则A.B.C.D.2. 空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A .60°B .120°C .30°D .60°或120°3. 折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”、它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图甲),图乙是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,所在圆的半径分别是3和6,且,则关于该圆台下列说法错误的是()A.高为B.体积为C.表面积为D.内切球的半径为4. 设集合,,则( )A.B.C.D.5. 已知集合,则( )A.B.C.D.6. 已知集合.则下列结论正确的是( )A.B.C.D.7.定义:设函数在上的导函数为,若在上也存在导函数,则称函数在上存在二阶导函数,简记为.若在区间上,则称函数在区间上为“凹函数”.已知在区间上为“凹函数”,则实数的取值范围为( )A.B.C.D.8. 某学校共有男学生1000名,女学生800名.为了解男、女学生在对篮球运动的喜好方面是否存在显著差异,从全体学生中抽取180名进行问卷调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法9. 已知点P 在棱长为2的正方体的表面上运动,点Q 是的中点,点P 满足,下列结论正确的是( )A .点P的轨迹的周长为B .点P的轨迹的周长为C.三棱锥的体积的最大值为D.三棱锥的体积的最大值为10.设函数定义域为,为奇函数,为偶函数,当时,,则下列结论正确的是( )2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(2)2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(2)三、填空题四、解答题A.B .在上是减函数C .为奇函数D .方程仅有6个实数解11. 全市高三年级第二次统考结束后,李老师为了了解本班学生的本次数学考试情况,将全班50名学生的数学成绩绘制成频率分布直方图.已知该班级学生的数学成绩全部介于65分到145分之间(满分150分),将数学成绩按如下方式分成八组:第一组,第二组,…,第八组.按上述分组方法得到的频率分布直方图的一部分如图,则下列结论正确的是()A .第七组的频率为0.008B .该班级数学成绩的中位数的估计值为101分C .该班级数学成绩的平均分的估计值大于95分D .该班级数学成绩的标准差的估计值大于612. 若,则下列不等式对一切满足条件恒成立的是( )A.B.C.D.13. 直线与圆相交于M ,N两点,若,则___________.14. 用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数有___________个.(用数字作答)15. 在棱长为2的正方体中,那么点到平面的距离为___________.16. △的内角A ,B ,C 所对的边分别为a ,b ,c .已知.(1)若,求;(2)当A 取得最大值时,求△的周长.17.已知函数.(1)求在区间上的值域;(2)若,且,求的值.18. 已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且asin 2B =bsinA .(1)求B 的大小;(2)若cosC=,求的值.19. 如图,在多面体中,四边形为正方形,平面.(1)求证:(2)在线段上是否存在点,使得直线与所成角的余弦值为?若存在,求出点到平面的距离,若不存在,请说明理由.20. 已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.(1)若,,均在集合中,求证:函数;(2)若函数()在集合中,求实数的取值范围;(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.21. 如图,四棱锥的底面是边长为2的菱形,底面.(1)求证:平面PBD;(2)若,直线与平面所成的角为45°,求四棱锥的体积.。
天津市普通高中数学学业水平考试模拟试卷
(A) 1
(B)2
(C)4
(D)8
x2 y2 (10)设双曲线 2 2 1(a 0, b 0) 的虚轴长为 2,焦距为 2 3 ,则双曲线的渐近线方程为 a b 1 2 ( )A. y 2 x B . y 2 x C . y D. y x x 2 2
3
1 y ( )x 2 C.
D. y x
1 2
S5 S2
解析:通过 8a2 a5 0 ,设公比为 q ,将该式转化为 8a2 a2 q 0 ,解得 q =-2,带入所求式 可知答案选 A,本题主要考察了本题主要考察了等比数列的通项公式与前 n 项和公式 (5)函数 f(x)= A.
天津市普通高中数学学业水平考试模拟试卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集 U 1, 2,3, 4,5 ,集合 M 1, 4 , N 1,3,5 ,则 N A. 1,3 答案 C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】
U
U
M
B. 1,5
C.
3,5
D.
4,5
M 2,3,5
,
N 1,3,5
,则
N U M 1,3,5 2,3,5
) D. (1,1]
=
3,5
(2)函数 y
ln( x 1)
x 2 3x 4 A. (4, 1) B. (4, 1)
1 2
2 ,则 a = 3
。
。
则三数大小为____________________. (用<)
2023年重庆市普通高中学业水平合格性考试模拟(一)数学试题
一、单选题二、多选题1. 已知,,那么是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 已知函数为奇函数,当时,,且,则( )A.B.C.D.3. 设函数,则使得成立的的取值范围为( )A.B.C.D.4.已知函数,,,的最小值为,且,则下列说法正确的是( )A .的最小正周期为B.的对称中心为,C .的单调增区间为,D .当时,的值域为5. 已知抛物线的焦点为F ,过F 的直线交抛物线于A 、B两点,设直线的倾斜角为,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.的展开式中的系数是,则实数的值为( )A.B.C.D.7. 已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.8. 已知,则等于( )A.B.C.D.9. 如图,棱长为2的正方体中,点分别是棱的中点,则()A .直线为异面直线2023年重庆市普通高中学业水平合格性考试模拟(一)数学试题2023年重庆市普通高中学业水平合格性考试模拟(一)数学试题三、填空题四、解答题B.平面C.过点的平面截正方体的截面面积为D.点是侧面内一点(含边界),平面,则的取值范围是10. 在中,角,,所对的边分别为,,,且,将分别绕边,,所在的直线旋转一周,形成的几何体的体积分别记为,,,侧面积分别记为,,,则( )A.B.C.D.11. 设函数,则( )A .是偶函数B .在上单调递减C.的最大值为2D.的图象关于直线对称12. 已知,设,其中则( )A.B.C .若,则D.13. 函数是定义在上的奇函数,且满足.当时,,则__________.14.在数列中,,,若对于任意的,恒成立,则实数的最小值为______.15.的展开式中二项式系数和为32,则展开式中项的系数为___________.16.已知,分别为椭圆的左、右顶点,为其右焦点,.且点在椭圆上.(1)求椭圆的标准方程.(2)若过的直线与椭圆交于,两点,且与以为直径的圆交于,两点,试问是否存在常数,使为常数?若存在,求的值;若不存在,说明理由.17. 已知分别为三个内角的对边,.(1)求角A ; (2)若,的面积为,求的周长.18. 已知的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,若.(1)求角A 的值;(2)若,求面积S 的最大值.19. 如图,在四棱锥中,(1)证明.(2)若平面平面,经过的平面将四棱锥分成的左、右两部分的体积之比为,求平面截四棱锥的截面面积20. 已知函数,.(1)求函数的单调区间;(2)若,是函数的两个极值点,且,求证:.21. 已知函数的部分图象如图所示.(1)求函数的解析式;(2)将函数图象上所有的点向右平移个单位长度,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象.当时,方程恰有三个不相等的实数根,,求实数a的取值范围以及的值.。
2024年6月福建省普通高中学业水平合格性考试数学仿真模拟试卷03(考试版)
1 (x)
的奇偶性,并加以证明.
25.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的 最大受益者,更是文明城市的主要创造者.某市为提高市民对文明城市创建的认识,举办了 “创建文明城市”知识竞赛,从所有答卷中随机抽取 100 份作为样本,将样本的成绩(满分
100 分,成绩均为不低于 40 分的整数)分成六段:40,50 ,50, 60 ,L ,90,100 得到如
D.
5 8
4.已知幂函数
f
x
的图象过点
4,
1 2
,则(
)
A. f x 1 x
8
B.
f
x
1
x2
C. f x x 7
2
D. f x 1 x2
32
5.与 2024 角终边相同的角是( )
A. 24
B.113
C.136
6.若 a b a b , a 1, 2,b m,3 ,则实数 m ( )
C.先将横坐标缩短到原来的
1 2
,纵坐标不变,再向右平移
π 3
个单位长度
D.先将横坐标伸长到原来的
2
倍,纵坐标不变,再向右平移
π 3
个单位长度
19.若“ x 1”是“ x a ”的充分不必要条件,则实数 a 的值可以为( )
A. 1
B. 0
C.1
D. 2
第Ⅱ卷(非选择题 43 分)
三、填空题(本大题共 4 个小题,每小题 4 分,共 16 分.请将答案填在题中横线上.)
示命中,5, 6, 7,8,9, 0表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟
产生了如下 12 组随机数:137 960 197 925 271 815 952 683 829 436
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)
一、单选题二、多选题1. 已知复数z满足,则( )A.B.C.D.2. 三棱锥中,底面,若,则该三棱锥外接球的表面积为( )A.B.C.D.3. 双曲线C :的左,右焦点分别为,,是C 上一点,满足,且,则C 的离心率为( )A.B .2C.D.4. 已知函数在区间内单调递减,则实数ω的取值范围是( )A.B.C.D.5.已知长方体的高,则当最大时,二面角的余弦值为( )A.B.C.D.6. 设,,则下列不等式中,恒成立的是( )A.B.C.D.7. 若集合,,且,则的值为( )A.B.C.或D.或或8. 已知分别为双曲线E :的左、右焦点,过的直线与的左、右两支分别交于两点.若是等边三角形,则双曲线E 的离心率为( )A.B .3C.D.9. 在棱长为2的正四面体中,点分别为棱的中点,则( )A .平面B .过点的截面的面积为C .异面直线与所成角的大小为D.与平面所成角的大小为10.如图,直线,点A 是之间的一个定点,点A到的距离分别为1和2.点是直线上一个动点,过点A作,交直线于点,则()A.B .面积的最小值是C.D .存在最小值11. 已知函数,则( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)三、填空题四、解答题A.是周期函数B .函数在定义域上是单调递增函数C .函数是偶函数D .函数的图象关于点对称12. 关于x的不等式在上恒成立,则( )A.B.C.D.13.在的展开式中,x 的系数为_________.14.已知函数,则______.15. 已知三棱锥内接于体积为的半球,为半球底面圆的直径,平面平面,且,则平面截半球所得截面面积的最小值为______.16. 已知双曲线的离心率为2,F 为双曲线C 的右焦点,M 为双曲线C 上的任一点,且点M 到双曲线C 的两条渐近线距离的乘积为,(1)求双曲线C 的方程;(2)设过点F 且与坐标轴不垂直的直线l 与双曲线C 相交于点P ,Q ,线段PQ 的垂直平分线与x 轴交于点B ,求的值.17. 解关于x的不等式:.18.在等腰直角三角形中,斜边,现将绕直角边所在直线旋转一周形成一个圆锥.(1)求这个圆锥的表面积;(2)若在这个圆锥中有一个圆柱,且圆柱的一个底面在圆锥的底面上,当圆柱侧面积最大时,求圆柱的体积.19. 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x 12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y 关于x 的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品的非原料成本;(3)根据企业长期研究表明,非原料成本y 服从正态分布,用样本平均数作为的估计值,用样本标准差s 作为的估计值,若非原料成本y 在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.115 1.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.20. 已知函数与.(1)若与有相同的零点,求的值;(2)若对恒成立,求的最小值.21. 已知为实数,数列满足:①;②.若存在一个非零常数,对任意,都成立,则称数列为周期数列.(1)当时,求的值;(2)求证:存在正整数,使得;(3)设是数列的前项和,是否存在实数满足:①数列为周期数列;②存在正奇数,使得.若存在,求出所有的可能值;若不存在,说明理由.。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)
一、单选题二、多选题1.若不等式对任意恒成立,则实数的取值范围为A.B.C.D.2. 若,是两条不同的直线,是一个平面,则下列说法正确的是A .若,,则B .若,,则C .若,,则D .若,,则3.若函数的图象上的任意一点P 的坐标为,且满足条件,则称函数具有性质S ,那么下列函数中具有性质S 的是( )A.B.C.D.4.已知,则( )A.B.C.D.5. 已知为虚数单位,的共轭复数为,则实数( )A .4B .2C .1D .06. 某公司对4月份员工的奖金情况统计如下:奖金(单位:元)80005000400020001000800700600500员工(单位:人)12461282052根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为A .0B .1C .2D .37. 已知直线,直线,给出下列命题:①∥;②∥m ;③∥;④∥其中正确命题的序号是A .①②③B .②③④C .①③D .②④8. 中国农历的二十四节气是中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗.在国际气象界,二十四节气被誉为“中国的第五大发明”.2016年11月30日,二十四节气被正式列入联合国教科文组织人类非物质文化遗产代表作名录.某小学三年级共有学生500名,随机抽查100名学生并提问二十四节气歌,只能说出两句的有45人,能说出三句及以上的有32人,据此估计该校三年级的500名学生中,对二十四节气歌只能说出一句或一句也说不出的有( )A .69人B .84人C .108人D .115人9. 已知函数,则下列结论正确的是( )A .恒成立B.只有一个零点C .在处得到极大值D .是上的增函数江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)三、填空题10. 为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据单位:制成如图所示的茎叶图.下列结论正确的为()A .甲地该月14时的平均气温低于乙地该月14时的平均气温B .甲地该月14时的平均气温高于乙地该月14时的平均气温C .甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差D .甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差11. 已知奇函数在上可导,其导函数为,且恒成立,则下列选项正确的是( ).A.为非奇非偶函数B.C.D.12.某校研究性学习小组根据某市居民人均消费支出的统计数据,制作年人均消费支出条形图(单位:元)和年人均消费支出饼图(如图).已知年居民人均消费总支出比年居民人均消费总支出提高,则下列结论正确的是()A .年的人均衣食支出金额比年的人均衣食支出金额高B .年除医疗以外的人均消费支出金额等于年的人均消费总支出金额C .年的人均文教支出比例比年的人均文教支出比例有提高D .年人均各项消费支出中,“其他”消费支出的年增长率最低13. 如图,游客从景点下山至有两种路径:一种是从沿直线步行到,另一种是先从乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从下山,甲沿匀速步行,速度为50米/分钟.在甲出发2分钟后,乙从乘缆车到,在处停留1分钟后,再从匀速步行到.已知缆车从到要8分钟,长为米,若,.为使两位游客在处互相等待的时间不超过3分钟,则乙步行的速度(米/分钟)的取值范围是_____.14. 如图,已知有公共焦点、的椭圆和双曲线相交于A 、B 、C 、D四个点,且满足,直线AB 与x 轴交于点P ,直线CP 与双曲线交于点Q ,记直线AC 、AQ 的斜率分别为、,若,则椭圆的离心率为___________.四、解答题15. 函数的周期为,则__________.16.已知双曲线,过点的直线与双曲线相交于两点.(1)点能否是线段的中点?请说明理由;(2)若点都在双曲线的右支上,直线与轴交于点,设,求的取值范围.17.如图,在多面体中,四边形为菱形,,,且平面平面.(1)求证:;(2)若,,求多面体的体积.18.已知是递增的等比数列,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,,求数列的前项和.19.如图,在正方体中, E 为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20. 设n 为正整数,集合A =,,,,,.对于集合A中的任意元素和,记.(Ⅰ)当n=3时,若,,求和的值;(Ⅱ)当时,对于中的任意两个不同的元素,,证明:.(Ⅲ)给定不小于2的正整数n,设B是A的子集,且满足:对于B中的任意两个不同元素,,.写出一个集合B,使其元素个数最多,并说明由.21. 在中,角的对边分别为,且,,.(1)求的值;(2)求的值.。
2023年普通高中学业水平考试数学模拟试卷带答案解析
2023年普通高中学业水平考试数学模拟试卷带答案解析前言本试卷为2023年普通高中学业水平考试数学模拟试卷,共分为选择题和解答题两部分。
本试卷中,选择题占50分,解答题占50分。
考试时间为120分钟。
选择题1. 下列哪个不等式的解集是$x\in(0,\frac{\pi}{2})$?A. $\sin{x}<0$B. $\sin{x}<\frac{1}{2}$C. $\cos{x}>\frac{\sqrt{3}}{2}$D. $\tan{x}<1$答案:B解析:由于 $\sin{\frac{\pi}{6}}=\frac{1}{2}$,且 $\sin{x}$ 在$x\in(0,\frac{\pi}{2})$ 内单调递增,因此选项 B 正确。
2. 某公司购进一批产品,销售利润率为 $p%$。
如果售价上涨$n%$,利润率降低 $m%$,则售价应上涨(精确到元):答案:$\frac{100+p}{100-p}*\frac{100-m}{100+n}*C$解析:设进价为 $C$,售价为 $x$,则 $x=(1+p\%)C$。
涨价后,售价为 $(1+n\%)x=(1+p\%)(1+n\%)C$,利润率为$$\frac{(1+p\%)(1-m\%)}{(1+n\%)(1-p\%)}-1$$根据比例关系,有 $(1+n\%)x=\frac{100+p}{100-p}*(1+m\%)(1-p\%)C$。
因此涨价后的售价为 $\frac{100+p}{100-p}*\frac{100-m}{100+n}*C$解答题1. 已知 $\log_{5}{a}=\log_5{3}+\log_{10}{b}$,$\log_2{a}-\log_2{b}=2$,求 $a+b$ 的值。
解析:将 $\log_5{3}+\log_{10}{b}$ 合并,得$\log_5{a}=\log_5{3b}$,即 $a=3b$。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03
一、单选题二、多选题1. 若两个等差数列,的前项和分别为和,且,则( )A.B.C.D.2.已知函数是奇函数,且,则A .9B.C.D .73.已知集合,,则( )A.B.C.D.4.已知都是锐角,,则( )A.B.C.D.5. 已知双曲线的左、右顶点分别为、,双曲线在第一象限的图象上有一点,,,,则( )A.B.C.D.6.的二项展开式中,奇数项的系数和为( )A.B.C.D.7. 已知命题:对任意,总有;:“”是“,”的充分不必要条件,则下列命题为真命题的是A.B.C.D.8. 在下面给出的函数中,哪一个函数既是区间上的增函数又是以为周期的偶函数( )A.B.C.D.9.有一组样本数据,其中是最小值,是最大值,则( )A.的平均数等于的平均数B .的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差10. 我们把()叫做“费马数”(费马是十七世纪法国数学家).设,,表示数列的前项和,则使不等式成立的正整数的值可以是( )A .7B .8C .9D .1011. 已知O 为坐标原点,F为抛物线的焦点,C 的准线与x 轴的交点为,过F 的直线l 与C 交于A ,B 两点,与C 的准线交于点E ,直线l 的倾斜角,且点A 在第一象限,下列选项正确的有( )A .为定值B .为定值C .若F 为AE的中点,则D .若B 为AE的中点,则12.已知函数的图象如图所示,令,则下列说法正确的是( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03三、填空题四、解答题A.B.函数图象的对称轴方程为C.若函数的两个不同零点分别为,则的最小值为D .函数的图象上存在点P ,使得在P点处的切线斜率为13. 已知函数,若的最小值为,且,则实数的取值范围是________.14. 已知函数(,,是常数,,).若在区间上具有单调性,且.则的最小正周期为__.15. 请写出一个幂函数满足以下条件:①定义域为;②为增函数;③对任意的,,都有,则__________.16. 已知P 为椭圆()上一点,,分别是椭圆的左、右焦点,,且椭圆离心率为.(1)求椭圆的标准方程;(2)过的直线l 交椭圆于A ,B 两点,点C 与点B 关于x轴对称,求面积的最大值17. 如图,在四棱锥中,平面平面ABCD ,,,,,.(1)证明:;(2)若直线与平面PAD所成角的正切值等于,求平面PAD 与平面PBC 所成锐二面角的余弦值.18. 已知两点分别在轴和轴上运动,且,若动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)过点作直线的垂线,交曲线于点(异于点),求面积的最大值.19.已知等差数列的前n 项和为,,,,成等差数列,,,成等比数列.(1)求及;(2)若,求数列的前n 项和.20. 在中,边所对的角分别为,,.(1)求角的大小;(2)若,求的面积.21. 如图,在三棱柱中,,.(1)证明:;(2)若,求二面角的余弦值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年辽宁省普通高中学生学业水平考试模拟试卷
数 学 试 卷
(本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分100分,考试时间90分钟)
注意事项:
1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2. 答案一律写在答题卡上,写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.
3. 回答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其他答案标号. 参考公式:
柱体体积公式Sh V =,锥体体积公式Sh V 3
1
=(其中S 为底面面积,h 为高)
: 球的体积公式3
3
4R V π=
(其中R 为球的半径). 第Ⅰ卷
一、选择题:本大题共12小题,每小题3分,共36分,再每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}3,2,1{=P ,集合}4,3,2{=S ,则集合P S
A. }3,2,1{
B. }4,3,2{
C. }3,2{
D. {1,2,34}, 2.函数1
f (x)
x 2
+的定义域是 A. {x |x 2}- B. {x |x 2}- C. {x |x 2}- D. {x |x
2}
3. 已知角β的终边经过点P(1,2),则sin β=
A. 2
B. 1
2
C. 255
D.
4.不等式(x 2)(x 3)0的解集是
A. {x |2x 3}
B. {x |3x 2}
C. {x |x
2x 3}或 D. {x |x
3x 2}或
5.某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采
用分层抽样的方法抽取一个容量为n 的样本进行安全检测,若果蔬类抽取4种,则n 为 A. 3 B. 2 C. 5 D. 9
6.某几何体的三视图如图所示,则该几何体的体积为( )
16A.
3π B.48π 64C.3π
D.64π 7.从区间(0,1)内任取一个数,则这个数小于5
6
的概率是 ( )
A. 15
B. 16
C. 56
D.2536
8.如图所示的程序框图的算法思路是一种古老而有效的算法——辗转相除法,执行该程序框图,若输入的m,n 的值分别为42,30,则输出的m
A .0
B .2
C .3
D .6
4cm 4cm
4cm 4cm
4cm 正视图
侧视图
俯视图
9.设变量x y ,满足约束条件⎪⎩
⎪
⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为( )
A.-5
B.-4
C.-2
D.3
10.为了得到函数)3
2sin(π
+=x y 的图像,只需将函数x y 2sin =的图像( )
A.向右平移
3π个单位 B.向右平移6π
个单位 C.向左平移3π个单位 D.向左平移6
π
个单位
11. 在ABCD 中,AB a =,AD b =,则AC BA +等于( ). A.a B.b C.0 D.a b +
12.函数f (x)是R 上的偶函数,且在[0,+∞)上是增函数,则下列各式成立的是( )
()()()()()()()()()()()()A. 201 B. 210C. 102 D. 1 20f f f f f f f f f f f f ->>->>>>->->
第Ⅱ卷
二、填空题:本大题共4小题,每小题3分,共12分,要求直接写出结果,不必写出计算过程或推证过程 13.=π
-π8
cos 8sin
22
____________. 14.甲、乙两人进行射击10次,它们的平均成绩均为7环,10次射击成绩的方差分别是: S 2
甲=3,S 2
乙=1.2. 成绩较为稳定的是______.(填“甲”或“乙”)•
15.已知向量(1
)a y =,和向量(25),b =,且//a b ,y =______. 16.函数0.5()log f x x =在区间1[2]5
,上取值范围为____________.
三、解答题:本大题共5小题,共52分,解答应写出文字说明、证明过程或演算步骤
17. (本小题满分10分)
在∆ABC 中,60,45,3A B a ===,求C 及b 的值.
18.(本小题满分10分)
如图,长方体ABCD —A 1B 1C 1D 1中,试在DD 1确定一点P ,使得直线BD 1∥平面PAC ,并证明你的结论.
2018年普通高中数学学业水平考试模拟试题
19.(本小题满分10分)
已知200辆汽车通过某一段公路时的时速的频率 分布直方图如右图所示: (1)求a 的值;
(2)估计汽车通过这段公路时时速不小于60km 的 概率.
20.(本小题满分10分)
已知数列}{n a 为等差数列,32=a ,5a 9.
(1) 求数列}{n a 的通项公式; (2)求数列1{3}n n a -⋅的前n 项和n S .
21.(本小题满分12分) 已知圆O 以坐标原点为圆心且过点1(,
22
,M,N 为平面上关于原点对称的两点,已知N 的坐标为3
(0)3
,
,过N 作直线交圆于A,B 两点. (1)求圆O 的方程;
(2)求ABM Δ面积的取值范围.
辽宁省普通高中学生学业水平考试模拟试卷
数学参考答案
一.1-5 DACAD 6-10 ACDBD 11-12 BB 二.13.
22 14.乙 15.5
2
16.[1-,2log 5] 三.17.解: 在ABC Δ中,C 180A B 75………………………5分
由正弦定理得a sin B
b
6
sin A
.…………………………10分
C 11
km )
18. 解:取1DD 中点P ,则点P 为所求.
证明:连接AC,BD ,设AC,BD 交于点O .则O 为BD 中点,连接PO ,又P 为1DD 中点,所以1PO BD .因为PO
PAC 面,BD PAC 面,所以1BD 面PAC .…………10分
19. 解:(1)+++a 由(0.010.020.03)10=1得a=0.04…………………5分 (2)(0.020.04)10
0.6,所以汽车通过这段公路时时速不小于60km 的概率为0.6.
…………10分 20.(1)设数列}{n a 的公差为d ,依题意得方程组11a d
3a 4d 9
解得1a 1,d 2.
所以}{n a 的通项公式为n a 2n 1. ………………5分
(2) 012n 1n S 133353(2n 1)3 ① 123
n
1
n n
3S 133353(2n 3)3(2n 1)3 ②
①
-
②
得
n 11
2
3
n 1n
n n
3(13)
2S 12(3
3
3
3)(2n 1)3
12(2n 1)313
所以n n
S (n 1)31. …………10分
21.(1)因为圆心坐标为(0,0)且圆过1(,
)22
,所以圆的半径
2213
r ()()1
22
,所
以圆的方程为2
2x
y 1.……………4分
(2)因为M,N 关于坐标原点对称所以M(03
,
当AB 垂直x 轴时,M,A,B 三点构不成三角形所以AB 斜率一定存在 设33
AB :
y
kx y kx
3
3
即,所以M 到AB
的距离23d
k 1 22
22213k 23O AB AB 2121
2
3(k 1)
3(k 1)
k 1
d ==-d 到的距离所以
22ABM 222222
1
23k 223k 2231
S AB d 2
3(k 1)3(k 1)3(k 1)(k 1)Δ所以……8分
2
22139t
(0t 1)(t
)k 1
24
令,g(t)=3t-t 2
2
2
310t 10g(t)
20
2k
1(k
1)
因为所以所以
ABM 222231
22
22
,0S 3k 1(k 1)33
-+Δ所以所以.…………12分。