高一数学必修2期末试题老师版3

合集下载

高一数学必修二期末测试题及答案(K12教育文档)

高一数学必修二期末测试题及答案(K12教育文档)

(完整word版)高一数学必修二期末测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高一数学必修二期末测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高一数学必修二期末测试题及答案(word版可编辑修改)的全部内容。

(A)(B )(C)(D)图1高一数学必修二一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D )4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B)35(C ) 32 (D )322 4.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β图2B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B (4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A )531(B )532 (C) 533(D )534二、填空题(6小题,每小题4分,共24分)6.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .7.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .8.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D 。

高一数学必修二期末测试题及答案

高一数学必修二期末测试题及答案

(A)(B )(C)(D)图1高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________姓名:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( )(A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32 (B )35(C) 32(D)322图24.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(B ) (C)(D)5.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4 (B )5 (C )1 (D )6.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βαI ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( )(A )4± (B )2± (C ) ± (D )8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( )(A)531 (B) 532 (C) 533(D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN ⊥二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ;12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分(Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=,……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径5R ==,……………9分PCA故所求圆的方程为22(5)(6)25x y -+-=. ………10分16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形,∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NMBD CA16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝ ⎛⎭⎪⎫-45,125,N⎝ ⎛⎭⎪⎫125,45,∴MN 的中点C 的坐标为⎝ ⎛⎭⎪⎫45,85.又|MN |=⎝ ⎛⎭⎪⎫125+452+⎝ ⎛⎭⎪⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN ⊥PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆ …………………4分(2) MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是ο60=∠A ,边长为a 的菱形,且M 为AD 中点,所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aa DH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高一数学必修二期末测试题及答案解析.doc

高一数学必修二期末测试题及答案解析.doc

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________姓名:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4 (B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531 (B) 532 (C) 533(D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______.10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.PCA数学必修二期末测试题及答案一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6), ……………7分∴半径22(52)(62)5R =-+-=,……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为(x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0, 消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0,化简得5y 2-16y +m +8=0.。

高一数学必修二期末测试题及答案

高一数学必修二期末测试题及答案

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________姓名:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )图2(A )4 (B )5 (C )321- (D )26 6.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βαI ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.PCA数学必修二期末测试题及答案一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分 由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径5R =,……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为(x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.CA(2)⎩⎨⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0,化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝ ⎛⎭⎪⎫-45,125,N ⎝ ⎛⎭⎪⎫125,45,∴MN 的中点C 的坐标为⎝ ⎛⎭⎪⎫45,85.又|MN |=⎝ ⎛⎭⎪⎫125+452+⎝ ⎛⎭⎪⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2) MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是ο60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a a aDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高一数学必修2 期末测试三

高一数学必修2 期末测试三

期末测试三一、选择题(本题共12小题,每题5分,共60分).1.下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 2.下列命题中正确的是( )A 、若两条直线的倾斜角相等,则它们的斜率也一定相等B 、若两条直线的斜率相等,则它们的倾斜角也一定相等C 、若两条直线的倾斜角不等,则它们中倾斜角大的,其斜率也大D 、若两条直线的斜率不等,则它们中斜率大的,其倾斜角也大3.若平面α∥平面β,直线α⊂a ,直线β⊂b ,那么直线a ,b 的位置关系是( ) A 、垂直 B 、平行 C.、异面 D 、不相交4.a ,b ,c 表示直线,M 表示平面,给出下列四个命题: ①若a ∥M ,b ∥M ,则a ∥b ; ②若b ⊂M ,a ∥b ,则a ∥M ; ③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b ;其中正确命题的个数有( ) A 、0个B 、1个C 、2个D 、3个5. 直线34120x y --=上的点到原点的距离的最小值是( ) A.125B.512C. 3D. 46.A 、B 、C 表示不同的点,a ,l 表示不同的直线,α,β表示不同的平面,下列错误..的是( )A 、l A ∈,α∈A ,lB ∈,α∈B α⊂⇒l B 、AB =⋂βα,βα⊥,α⊂l ,AB l ⊥AB l ⊥⇒C 、α⊂l ,l A ∈α∉⇒AD 、βα//,βα⊥⇒⊥l l7.若错误!嵌入对象无效。

={异面直线所成角};错误!嵌入对象无效。

={斜线与平面所成角};错误!嵌入对象无效。

={直线与平面所成角},则有( )A 、错误!嵌入对象无效。

B 、错误!嵌入对象无效。

C 、错误!嵌入对象无效。

D 、错误!嵌入对象无效。

8.已知点A 3(-,)3,B 3(,)1-,则直线AB 的倾斜角为( ) A 、150 B 、120 C.、60 D 、309.在空间四边形ABCD 各边DA CD BC 、、、AB 上分别取H G F 、、、E 四点,如果与GH EF 、能相交于点P ,那么( )A 、点必P 在直线AC 上B 、点P 必在直线BD 上C 、点P 在直线AC 、BD 上都有可能 D 、点P 不在直线AC 、BD 上 10.自点A (1-,4)作圆22(2)(3)1x y -+-=的切线,则切线长为( )B.3D.511. 圆22(1)(1)1x y -+-=关于x 轴对称的圆方程是 A 222210x y x y ++++=. B. 222210x y x y +--+= C. 222210x y x y ++-+=D. 222210x y x y +-++=12. ⊥AB 平面α于B ,BC 为AC 在α内的射影,α⊂CD ,若60=∠ACD ,BCD ∠= 45,则AC 和平面α所成的角为( )A 、90 B 、60 C 、45 D 、30二、填空题(本题共6小题,每题5分,共30分)13.已知过点1(-,)2m ,m -(,)3+m 的直线l 的斜率为3,则实数m 的值为________。

高一数学必修二期末测试题及答案解析

高一数学必修二期末测试题及答案解析

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高中数学必修二期末考试试卷(三)(含答案解析)

高中数学必修二期末考试试卷(三)(含答案解析)

高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。

高一数学《必修二》期末综合复习题(三)(答案)

高一数学《必修二》期末综合复习题(三)(答案)

高一数学《必修二》期末综合复习题(三)1.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( )A .-4B .-45C .4D .45答案 D2.在一组样本数据的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其他4个小长方形的面积和的25,且样本容量为280,则中间一组的频数为( ) A .56 B .80 C .112 D .120 答案 B3.(多选)直线m ,n 均不在平面α,β内,下列命题正确的有( )A .若m ∥n ,n ∥α,则m ∥α;B .若m ∥β,α∥β,则m ∥α;C .若m ⊥n ,n ⊥α,则m ∥α;D .若m ⊥β,α⊥β,则m ∥α. 答案 ABCD4.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 C5.已知三棱锥D -ABC 中,AB =BC =1,AD =2,BD =5,AC =2,BC ⊥AD ,则该三棱锥的外接球的表面积为( )A .6πB .6πC .5πD .8π 答案 B6.△ABC 中,a =4,b =5,c =6,则sin 2Asin C=____.答案 17.如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 788.已知:向量OA →=(3,-4),OB →=(6,-3),OC →= (5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.答案 (-34,12)∪(12,+∞)9.设锐角△ABC 的三内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为______. 答案 (2,3)10.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°,M 是线段PC 上动点,若AC ⊥BM ,则PMMC=______.答案 1311.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos2B ,2cos 2B2-1),且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值.解: (1)∵m ∥n ,∴2sin B (2cos 2B2-1)=-3cos2B ,∴sin2B =-3cos2B ,即tan2B =- 3.又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3.(2)∵B =π3,b =2,由余弦定理cos B =a 2+c 2-b 22ac ,得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4, 当且仅当a =c =2时等号成立. 故S △ABC =12ac sin B =34ac ≤3,当且仅当a =c =2时等号成立,即S △ABC 的最大值为 3.12.如图,AB 为圆O 的直径,点E ,F 在圆O 上,且AB ∥EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且AD =EF =AF =1,AB =2. (1)求证:平面AFC ⊥平面CBF ;(2)在线段CF 上是否存在一点M ,使得OM ∥平面DAF ?并说明理由.解:(1)证明:∵平面ABCD ⊥平面ABEF , CB ⊥AB ,平面ABCD ∩平面ABEF =AB , ∴CB ⊥平面ABEF , ∵AF ⊂平面ABEF , ∴AF ⊥CB ,又∵AB 为圆O 的直径,∴AF ⊥BF , ∵CB ∩BF =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)取CF 中点记作M ,设DF 的中点为N ,连接AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO ,∴MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF , ∴OM ∥平面DAF .即存在一点M 为CF 的中点,使得OM ∥平面DAF .13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos 2B =sin 2C .①又由A =π4,即B +C =34π,得-cos 2B =-cos2⎝⎛⎭⎫34π-C =-cos ⎝⎛⎭⎫32π-2C =sin 2C =2sin C cos C ,② 由①②解得tan C =2.(2)由tan C =2,C ∈(0,π)得sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C ,所以sin B =31010, 由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.14.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC ,FE ∥CD ,交PD 于点E . (1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值.(1)证明 ∵PD ⊥平面ABCD , AD ⊂平面ABCD ,∴PD ⊥AD . 又CD ⊥AD ,PD ∩CD =D , ∴AD ⊥平面PCD .∴AD ⊥PC . 又AF ⊥PC ,AD ∩AF =A ,∴PC ⊥平面ADF ,即CF ⊥平面ADF . (2)设AB =1,∵CF ⊥平面ADF ,∴CF ⊥DF . ∴在△CFD 中,DF =32, ∵CD ⊥AD ,CD ⊥PD ,AD ∩PD =D , ∴CD ⊥平面ADE .又∵EF ∥CD , ∴EF ⊥平面ADE .∴EF ⊥AE ,∴在△DEF 中,DE =34,EF =34, 在△ADE 中,AE =194,在△ADF 中,AF =72.由V A -DEF =13·S △ADE ·EF =13·S △ADF ·h E -ADF ,解得h E -ADF =38,设△AEF 的边AF 上的高为h ,由S △AEF =12·EF ·AE =12·AF ·h ,解得h =34×13314,设二面角D -AF -E 的平面角为θ.则sin θ=h E -ADF h =38×43×14133=13319,∴cos θ=25719.。

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:S r '2 r2 r'l rl (r'、r分别为圆台的上、下底面半径,I为母线长)柱体、椎体、台体的体积公式:V柱体二Sh(S为底面积,h为柱体高)1V椎体= §Sh(S为底面积,h为椎体高)1 ________V台体二S' ,S'S S h (S',S分别为上、下底面面积,h为台体高)3、选择题A 1个C、3个2.如图所示,正方体的棱长为标系中的坐标是1,点A是其一棱的中点,贝U点B、1,1」2A在空间直角坐C、D、3.如图所示,长方体ABCD A1B1C1D1 中, BAB1 30。

,贝U GD与BB所成的角是A 60B、90B、2个D、4个C 、30D 、45C 、2x y 3 0 3D 、 2x y 5 04.下列直线中,与直线x y 1 0的相交的是 A 2x 2y 6 B 、 x C 、 y x 3 D 、5.在空间四边形 ABCD 的各边 AB BC 、CD 、 DA 上的依次取点E 、F 、G 、H ,若EH 、FG 所在直线相交于点P ,则 A 、点 P 必在直线AC 上 B 、点 P 必在直线BD 上 C 、点 P 必在平面DBC 外 D 、点 P 必在平面ABC 内 6.已知直线a ,给出以下四个命题: ①若平面 II 平面 ,则直线a//平面 ②若直线a//平面,则平面 //平面 ③若直线a 不平行于平面,则平面 不平行于平面其中正确的命题是 A 、② B 、③ C 、①②D 、①③ 7.已知直线a a y 1 0与直线2x ay 1 0垂直, 则实数a 的值等于B 、C 、D > 0,28.如图所示,已知AB 平面BCD , BC CD ,则图中互相垂直的平面有 A 3对 B 、2对 1对 D 、0对9.已知P 2, 1是圆x y 225的弦AB 的中点,则弦 AB所在的直线的方程是 B 、x y 1B10.已知直线ax by c O(a,b,c都是正数)与圆x2 y2 1相切,则以a,b,c为三边长的三角形A、是锐角三角形B、是直角三角形C、是钝角三角形D、不存在二、填空题11.直线y 2x与直线x y 3的交点坐标是_________________ 。

高一数学必修2期末试题及答案doc

高一数学必修2期末试题及答案doc

高一数学必修2期末试题及答案doc一、选择题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 若a > 0,b > 0,则a + b的最小值是:A. 0B. 1C. 2D. 无法确定答案:D4. 函数y = 2^x的图象在点(1, 2)处的切线斜率为:A. 0B. 1C. 2D. 4答案:D5. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,则a_5的值为:A. 7B. 9C. 11D. 13答案:C6. 已知函数y = x^3 - 3x + 1,则y' =:A. 3x^2 - 3B. x^2 - 3C. 3x^2 + 3D. x^2 + 3答案:A7. 已知圆C的方程为(x - 2)^2 + (y - 3)^2 = 9,则圆心C的坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A8. 若直线y = 2x + 3与抛物线y = x^2 - 4x + 5相交,则交点的个数为:A. 1B. 2C. 3D. 0答案:B9. 已知向量a = (2, 3),b = (-1, 2),则a·b的值为:A. 1B. 2C. 3D. 4答案:C10. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x):A. 3x^2 - 12x + 11B. x^2 - 4x + 11C. 3x^2 - 12x + 5D. 3x^2 - 6x + 11答案:A二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的首项a_1 = 2,公比q = 3,则a_3的值为______。

答案:182. 已知函数y = x^2 - 6x + 8,求函数的对称轴方程为______。

高一数学必修二期末测试题及答案

高一数学必修二期末测试题及答案

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________姓名:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4 (B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βαI,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______.10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.PCA数学必修二期末测试题及答案一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6), ……………7分∴半径22(52)(62)5R =-+-=,……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0, 消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.NM BPD CA设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2) MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是ο60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高一数学下学期期末试题与答案(必修二)

高一数学下学期期末试题与答案(必修二)

高一数学下学期期末试题(必修二)一、单选题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数1z ,2z 对应的点分别是()()2,1,1,3--,则21z z 的模是()A .5B 5C .2D 22.如图,一个水平放置的平行四边形ABCD 的斜二测画法的直观图为矩形A B C D '''',若4A B ''=,3B C ''=,则在原平行四边形ABCD 中,AD =()A .3B .32C .62D .93.从甲队60人、乙队40人中,按照分层抽样的方法从两队共抽取10人,进行一轮答题.相关统计情况如下:甲队答对题目的平均数为1,方差为1;乙队答对题目的平均数为1.5,方差为0.4,则这10人答对题目的方差为()A .0.8B .0.675C .0.74D .0.824.已知在ABC 中,2a b =,1sin 3B =,则sin sin22C B A--=()A 103B .103C .23D .23-5.如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 不平行与平面MNQ 的是()A.B.C .D.6.已知ABC 是边长为4的等边三角形,AB 为圆M 的直径,若点P 为圆M 上一动点,则1PA PC ⋅+的取值范围为()A .[]0,16B .[4,8]-C .[2,16]-D .[3,13]-7.为了普及党史知识,某校举行了党史知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲、乙两人同时答对的概率为12,恰有一人答对的概率为512.则甲、乙两人共答对至少3道题的概率是()A .512B .49C .23D .348.如图一,矩形ABCD 中,2,BC AB AM BD =⊥交对角线BD 于点O ,交BC 于点M ,现将ABD △沿BD 翻折至A BD ' 的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是()A .BD CN ⊥B .A O '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD二、多选题(本题共3小题,每小题6分,共18分。

北师大版高一数学必修2期末试题及答案

北师大版高一数学必修2期末试题及答案

斗鸡中学 刘 芳2009-2010学年度高中第一学期期末教学模块测试高一数学(必修2)试题参考公式:1)2S c c h ''+正棱台或圆台侧=(; S ch 正棱柱或圆柱侧=;12S ch '正棱锥或圆锥侧=;24S R π球面=; 13V S S S S h g 下下台体上上=(++);V sh 柱体=; V sh 锥体1=3; 343V R π球=第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.图为某物体的实物图,则其俯视图为( )2.若直线l 只经过第一、二、四象限,则直线l 的斜率k ( )A. 大于零B.小于零 D. 大于零或小于零 D. 以上结论都有可能 3.在空间直角坐标系中Q(1,4,2)到坐标原点的距离为A.21B. 21C.3D. 74、图(1)是由哪个平面图形旋转得到的()A B C D5.四面体A BCD-中,棱AB AC AD,,两两互相垂直,则顶点A在底面BCD上的投影H为BCD△的()A.垂心B.重心C.外心D.内心6.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.28πcmB.212πcmC.22πcmD.220πcm7.一束光线从点A(-1,1)出发经x轴反射,到达圆C: (x-2)2+(y-2)2=1上一点的最短路程是A. 4B. 5C. 32-1D.28.如下图,都不是正四面体的表面展开图的是()A.①⑥B.④⑤C.③④D.④⑥9.已知点(,2)(0)a a>到直线:30l x y-+=的距离为1,则a等于()A.2B.22-C.21-D.12+10.在平面直角坐标系中,直线(32)3x y-+=和直线(23)2x y+-=的位置关系是()A.相交但不垂直B.垂直C.平行D.重合11.圆:22460x y x y+-+=和圆:2260x y x+-=交于A B,两点,则AB的垂直平分线的方程是()A.30x y++=B.250x y--=C.390x y --= D.4370x y -+=12.过点(01)-,)的直线l 与半圆22:430(0)C x y x y +-+=≥有且只有一个交点,则直线l 的斜率k 的取值范围为( ) A.0k =或43k = B.113k <≤ C.43k =或113k <≤D.43k =或113k ≤≤二、填空题:本大题共6小题,每小题5分,共30分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
B 1
C 1A 1
高中数学必修2模块测试试卷3
一、选择题:
1. 倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )
A .01=+-y x
B .01=--y x
C .01=-+y x
D .01=++y x 2. 原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( )
A .02=+y x
B .042=-+y x
C .052=+-y x
D .032=++y x
3. 如果直线l 是平面α的斜线,那么在平面α内( )
A .不存在与l 平行的直线
B .不存在与l 垂直的直线
C .与l 垂直的直线只有一条
D .与l 平行的直线有无穷多条 4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )
A .只有一个
B .至多有两个
C .不一定有
D .有无数个
5. 直线093=-+y ax 与直线03=+-b y x 关于原点对称,则b a ,的值是 ( ) A .a =1,b = 9 B .a =-1,b = 9 C .a =1,b =-9 D .a =-1,b =-9
6. 已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 ( )
A .2
211k x x +⋅- B .k x x ⋅-21
C .
2
2
11k
x x +- D .
k x x 2
1-
7. 直线l 通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l 的方程
是 ( )
A .063=-+y x
B .03=-y x
C .0103=-+y x
D .083=+-y x
8. 如果一个正三棱锥的底面边长为6,则棱长为15,那么这个三棱锥的体积是( )
A.92 B.9 C.
27
2
D.
932
9. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积
是 ( )
A .
31003
cm π B .3
2083
cm π C .
3
5003
cm π D .
3
41633
cm π
10. 在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的
一点,S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( )
A .1
B .
32
C .2
D .3
11. 已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率
的取值k 范围是 ( ) A .34
k ≥
或4k ≤- B .34
k ≥
或14
k ≤-
C .4
34≤≤-k D .
44
3≤≤k
12. 过点(1,2),且与原点距离最大的直线方程是( )
A .052=-+y x
B .042=-+y x
C .073=-+y x
D .032=+-y x
二、填空题:
13. 过点)3,2(P 且在两坐标轴上截距相等的直线的方程是____________. 14. 过点(-6,4),且与直线032=++y x 垂直的直线方程是___________. 15. 在正方体ABCD —A 1B 1C 1D 1中,BC 1与平面BB 1D 1D 所成
的角是 .
16. 已知两点)2,1(-A ,)1,2(-B ,直线02=+-m y x 与线段AB 相交,则m 的取值范围是 . 17. 如图,△ABC 为正三角形,且直线BC 的倾斜角是45°,
则直线AB ,,AC 的倾斜角分别为:A B α=__________,
AC α=____________.
18. 正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是 . 三、解答题:
19. 已知平行四边形的两条边所在的直线方程分别是x +y +1=0和3x -y +4=0, 它的
对角线的交点是M (3, 0), 求这个四边形的其它两边所在的直线方程.
20.正三棱台的上、下底边长为3和6.
(Ⅰ)若侧面与底面所成的角是60°,求此三棱台的体积;
(Ⅱ)若侧棱与底面所成的角是60°,求此三棱台的侧面积;
21.在△ABC中,BC边上的高所在的直线的方程为0
-y
x,∠A的平分线所在直
2=
1
+
线的方程为0
=
y,若点B的坐标为(1,2),求点A和点C的坐标..
22. 如图,在正方体ABCD —A 1B 1C 1D 1中,已知M 为棱AB 的中点. (Ⅰ)AC 1//平面B 1MC ;
(Ⅱ)求证:平面D 1B 1C ⊥平面B 1MC .
23. 如图,射线OA 、OB 分别与x 轴成 45角和 30角,过点)0,1(P 作直线AB 分别与
OA 、OB 交于A 、B .
(Ⅰ)当AB 的中点为P 时,求直线AB 的方程;
(Ⅱ)当AB 的中点在直线x y 2
1
上时,求直线AB 的方程.
高一数学必修2复习训练题3参考答案
题号
1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A C D A A B C C
A
A
13.05=-+y x ,023=-y x 14.0162=+-y x 15.30° 16.]5,4[- 17.105°;165° 18.13
19.07=-+y x 和0223=--y x . 20.(Ⅰ)32
h =
,22
13633()3
48V h a ab b =

⋅++=

(Ⅱ)3h =,39'2
h =,127392739(33)'2
2
2
4
S a b h =
+=⋅=.
21.由 ⎩⎨
⎧=+-=0
120y x y 得⎩⎨
⎧==0
1y x ,即A 的坐标为 )0,1(-,
∴ 1
102+-=AB k , 又∵ x 轴为∠BAC 的平分线,∴ 1-=-=AB AC k k ,
又∵ 直线 012=+-y x 为 BC 边上的高, ∴ 2-=BC k . 设 C 的坐标为),(b a ,则
11
-=+a b ,
21
2
-=--a b ,
解得 5=a ,6=b ,即 C 的坐标为)6,5(.
22.(Ⅰ)MO//AC 1;
(Ⅱ)MO ∥AC 1,AC 1⊥平面D 1B 1C ,MO ⊥平面D 1B 1C ,平面D 1B 1C ⊥平面B 1MC . 23.解:(Ⅰ)由题意得,OA 的方程为x y =,OB 的方程为x y 3
3-
=,设),(a a A ,
),3(b b B -。

∵ AB 的中点为)0,1(P , ∴ ⎩⎨
⎧=+=-0
2
3b a b a 得 13-=a ,
∴ 132
313--=--=
AB k 即AB 方程为 013)13(=--++y x
(Ⅱ)AB 中点坐标为)2
,23(b
a b a +-
在直线x y 21=上,

2
3212b
a b
a -⋅=
+,即b a )32(+-= ①
∵ PB PA k k =, ∴ 1
31--=
-b b
a a ② 由①、②得3=
a ,则 2
3
3+=
AB k ,
所以所求AB 的方程为0332)33(=-
--+y x。

相关文档
最新文档