陕西省西安市2017年中考数学五模试卷含答案解析
2017年陕西省中考数学模拟试卷及解析
2017年陕西省中考数学模拟试卷选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)—1X 3=( )01. 02. 03. 04. 05. 06. 07. 08.09.10. A . B.— 6 C . D . 68 如图,下面几何体由四个大小相同的小立方块组成,则它的左视图是(A . F 列计算正确的是( B. C . A . a 2+a 2=a 4B . a 8*a 2=a 4C . 如图,AB// CD, CD 丄 EF,若/ 1=124°,则/2=( ) -A . 56°B . 66°C . 24°D . 34°若正比例函数为y=3x, A.— 2 B . 2 C . 则此正比例函数过(m , 6),则m 的值为( -礙 D •阳如图,在△ ABC 中,/ 平分/ ABC 和/ACB 贝U/ BPC=(A . 102°B . 112°C . 115° D. 118°已知一函数y=kx+3和y=-kx+2.则两个一次函数图象的交点在(D.DA(—a ) 2 - a 2=0 D . a 2?a 3=a 6BAC=56, / ABC=74,A. 第一、二象限B.第二、三象限C.三、四象限D.如图,在矩形ABCD中,点O为对角线AC BD的交点,点E为BC上一点,连接EO并延长交AD于点F,则图中全等三角形共有()A. 3对B. 4对C. 5对D. 6对如图,AB为。
O的直径,弦DC垂直AB于点E,/ DCB=30, EB=3贝U弦AC的长度为()A. 3「;B. -:;C.「;D .与y轴的正半轴交于一点且对称轴为x=1,则下列说法正确的是()A. 二次函数的图象与x轴的交点位于y轴的两侧B. 二次函数的图象与x轴的交点位于y轴的右侧C. 其中二次函数中的c > 1D. 二次函数的图象与x 轴的一个交于位于x=2的右侧、填空题(共5小题,每小题3分,计12 分)11 .不等式-丄x+2> 0的最大正整数解是 312. _____________________________ 正十二边形每个内角的度数为 _______________________________ .13. ________________________________ 运用科学计算器计算:2_ ;cos72= _______________________ .(结果精确到0.1)若AC: CB=1: 3,则反比例函数的表达式为 _.15. 如图,在平行四边形 ABCD 中,AB=4, BC=5, / ABC=60,平行四边形ABCD 的对角线AC BD 交于点O ,过点O 作OE 丄AD ,贝U OE _ . 三、解答题(共11小题,计78分.解答应写出过程)16. (5 分)计算:细庇+ (2 - n ) 0- | 1 -|17. (5 分)解分式方程: ^^+,.]二1.18. (5分)如图,已知△ ABC,请用尺规作△ ABC 的中位线EF,使EF// BC.19. (5分)2016年12月至1月期间由于空气污染严重,天空中被浓浓的雾霾笼罩着,大多数中小学校为了学生的健康,都不得不停课.针对这一情况有关部门对停课在家的学生 家长进行了抽样调查.现将学生家长对这一事件态度的调查结果分为四个等级:“AE常不同意” “B 匕校同意” “不太同意” “D 非常同意”并将统计结果绘制成如下两幅不 完整的统计图.请根据以上信息,解答下列问题: 14.如图,△ AOB 与反比例函数 -,二交于C D ,A AOB 的面积为6,B所扯取学生舉收对停课事件的理屢的调尧统计图(1) 补全上面的条形统计图和扇形统计图;(2) _____________________________ 所抽样调查学生家长的人数为 人;(3) 若所调查学生家长的人数为1600人,非常不同意停课的人数为多少人?(7 分)如图,在△ AOB 中,OA=OB / AOB=50, #△ AOB绕O 点顺时针旋转30°得到△ COD, OC 交AB 于点F , CD 分别交AB OB 于点E 、H.求证:EF=EH(7分)某学校学生为了对小雁塔有基本认识,在老师的 带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D 到地面上一点E 的距离为115.2米,小雁塔顶端为点B 且BD 丄DE, 在点E 处竖直放一个木棒,其顶端为 C, CE=1.72米,在DE 的延长线上找一点A ,使A 、C 、B 三点在同一直线上,测得 AE=4.8米.求小雁塔的高度.22. (7分)移动营业厅推出两种移动电话计费方式:方案一,月租费用 15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1) 以x 表示每个月的通话时间(单位:分钟),y 表示每个月的电话费用(单位:元) 分别表示出两种电话计费方式的函数表达式;(2) 问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?23. (7分)某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、 乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班 主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛) .游戏规则如下: 在两个不透明盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白 球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两 个球都是白球,乙胜,否则视为平局.若为平局,继续上述游戏,直至分出胜负为止. 根据上述规则回答下列问题:(1) 从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?(2) 该游戏公平吗?请用列表或树状图等方法说明理由.20. 21.成的三角形的周长最短,找出此点并说明理由.(2)如图2,在/ AOB 内部有一点P,是否在OA 、OB 上分别存在点E 、F ,使得E F 、P 三点组成的三角形的周长最短,找出 E 、F 两点,并说明理由.(3) 如图3,在/ AOB 内部有两点M 、N ,是否在OA 、OB 上分别存在点E 、F ,使得E 、F 、M 、N ,四点组成的四边形的周长最短,找出 E 、F 两点,并说明理由.24. (8分)如图,BC 为。
2017年陕西省中考数学试卷含答案解析(Word版)
2017 年陕西省中考数学试卷、选择题(本大题共 10小题,每小题 3分,共 30 分)1.计算:( 12)21 =()513A .B .C .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣ 1= 3 ,故选 C .44考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(D .答案】 B . 解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选 考点:简单组合体的三视图.答案】 A . 【解析】考点:一次函数图象上点的坐标特征.3.若一个正比例函数的图象经过 A (3,﹣ 6), B (m ,﹣4)两点,m 的值为( )A .2B .8C .﹣ 2D .﹣ 8A .B .C .B .4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠ 1=25°,则∠ 2的大小为A.55°B.75°C.65°D.85°答案】C.解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣25 °=65°.∵a∥b,∴∠ 2=∠3=65°.故考点:平行线的性质.5.化简:xyx,xy 结果正确的是(A.12xB . 2xy2yC.xyxyD.x2y2答案】B.解析】试题分析:原式22x xy xy y22xyx22xy .故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C.若∠ ACB=∠AC′B=90°,AC=BC=3,则B′C 的长为(A.3 3 B.6 C.3 2 D.21【答案】A .【解析】试题分析:∵∠ ACB=∠AC′B′=90°,AC=BC=3,∴AB= AB2 BC2=3 2 ,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠ C′AB′=∠CAB=45°,AB ∴∠CAB′=90°,∴ B′C= CA2 B'A2=3 3,故选A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4 与直线l2:y=kx+b(k≠0)在第一象限交于点l2与x轴的交点为A(﹣2,0),则k 的取值范围是()A.﹣2<k<2 B.﹣2< k< 0 C.0<k< 4<2答案】D.解析】∠CAB=45°,′=AB=3 2 ,M.若直线D.0<k考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形 ABCD 中, AB=2,BC=3.若点 E 是边 CD 的中点,连接 AE ,过点 B 作答案】 B . 【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ ABC 是⊙O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一 点,在△ ABP 中, PB=AB ,则 PA 的长为()A . 3 10 23 10 5C .10D .35 5【答案】 D . 【解析】试题分析:连接 OA 、OB 、 OP ,∵∠ C=30°,∴∠ APB =∠ C=30°,∵ PB=AB ,∴∠ PAB=∠APB=30°∴∠ ABP=120°,∵ PB=AB ,∴ OB ⊥AP ,AD=PD ,∴∠ OBP=∠OBA=60°,∵ OB=OA ,∴△AOB 是等边三角形,∴ AB=OA=5,则 Rt △PBD 中,PD =cos30°?PB= ×5=AP=2PD=5 3 ,故选 D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线 y x 2 2mx 4 ( m > 0)的顶点 M 关于坐标原点 O 的对称点为 M ′,若 点 M ′在这条抛物线上,则点 M 的坐标为( ) ﹣20) 【答案】 C . 【解析】试题分析: y x 2 2mx 4=(x m )2 m 2 4 ,∴点 M ( m ,﹣ m 2﹣ 4),∴点 M ′(﹣ m ,m 2+4),∴ m 2+2m 2﹣ 4=m 2+4.解得 m=±2.∵m >0,∴ m=2,∴ M ( 2,﹣ 8).故选 C . 考点:二次函数的性质.A .5B . 53 2C . 5 2A .(1,﹣ 5)B .( 3,﹣13)C .(2,﹣8)D .(4,、填空题(本大题共 4 小题,每小题3分,共12 分)11.在实数﹣5,﹣3 ,0,π ,6 中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC中,BD和CE是△ABC 的两条角平分线.若∠ A=52°,则∠ 1+∠2的度数为.B.317 tan38° 15′≈.(结果精确到0.01)【答案】A.64°;B.2. 03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.3m 2m 5 513.已知A,B 两点分别在反比例函数y (m≠ 0)和y (m≠ )的图象上,x x 2 若点A 与点B 关于x 轴对称,则m 的值为.【答案】1.解析】b 3mb试题分析:设 A (a ,b ),则 B (a ,﹣ b ),依题意得:a,所以 3m 2m 52m 5 a ba=0,即 5m ﹣ 5=0,解得 m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、 y 轴对称的点的坐标.14.如图,在四边形 ABCD 中, AB=AD ,∠ BAD =∠ BCD =90°,连接 AC .若 AC=6,则四 边形 ABCD 的面积为 .【解析】∴四边形 ABCD 的面积 =正方形 AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而 AC=6∴2λ 2=36, λ 2=18,故答案为: 18. 考点:全等三角形的判定与性质.、解答题(本大题共 11小题,共 78 分)15.计算: ( 2) 6 | 3 2 | (1) 1.答案】 3 3 . 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式 = 12 2 3 2 = 2 3 3 = 3 3 . 考点:二次根式的混合运算;负整数指数幂.x3 216.解方程:1答案】 18.x3【答案】 x=﹣ 6. x3【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得, ( x+3)2﹣2(x ﹣3)=(x ﹣3)(x+3),去括号得, x 2+6x+9﹣2x+6=x 2 ﹣9,移项,系数化为 1,得 x=﹣6,经检验, x=﹣6 是原方程的解.考点:解分式方程.17.如图,在钝角△ ABC 中,过钝角顶点 B 作 BD ⊥BC 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P ,使得点 P 到 AC 的距离等于 BP 的长.(保留作图痕迹,不写作法)【解析】18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益, 某中学为了了解七年级学生 的早锻炼情况, 校政教处在七年级随机抽取了部分学生, 并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7:00~7:40 之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:2)由于共有200 个数据,其中位数是第100、101个数据的平均数,则其中位数位于区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20 分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD 中,E、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF、CE 交于点G.求证:AG =CG .【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF =CDE =90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳” 之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1. 7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1 米).(参考数据:sin23°≈0. 3907,cos23°≈0. 9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0. 9135,tan24°≈0. 4452.)【答案】34 米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,在Rt△MBD 中,MD=x?tan23°,在Rt△MCE 中,ME=x?tan24°,∵ME﹣MD=DE=BC,∴x?tan24°﹣x?tan23°=1. 7﹣1,∴ x= 0.7,解得x≈34(米).tan 24 tan23 答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34 米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10 万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000 建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;4(2)由题意得,7500x+6800≥100000,∴x≥4 ,∵x 为整数,∴李师傅种植的8个大棚15 中,香瓜至少种植5 个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.13【答案】(1)1;(2)3.2 16【解析】A,A)、(A,B)、(A,C)、(A,C)、A,A)、(A,B)、(A,C)、(A,C)、B,A)、(B,B)、(B,C)、(B,C)、C,A)、(C,B)、(C ,C )、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.16考点:列表法与树状图法;概率公式.23.如图,已知⊙ O的半径为5,PA是⊙ O的一条切线,切点为A,连接PO 并延长,交⊙ O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC 的长;答案】(1)5 3;(2)证明见解析.解析】在Rt△ODA 中,AD=OA?sin60°=5 3,∴AC=2AD=5 3 ;2(2)∵ AC⊥ PB,∠ P=30°,∴∠ PAC=60°,∵∠ AOP =60°,∴∠ BOA=120°,∴∠ BCA=60°,∴∠ PAC =∠BCA ,∴ BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B 两点,其中点A 在点B 的左侧.(1)求抛物线C1,C2 的函数表达式;(2)求A、B 两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入C2 的函数表达式可求得P、Q 的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴ P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴ t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC 是等边三角形,AB=12,若点O是△ ABC 的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD 中,AB=12,AD=18,如果点P是AD 边上一点,且AP=3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△ AMB 的面积为96m2;过弦AB的中点D作DE⊥AB 交AB 于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0. 01 米)【答案】(1)4 3;(2)PQ=12 2 ;(3)喷灌龙头的射程至少为19.71 米.【解析】AD试题分析:(1)构建Rt △ AOD 中,利用cos∠ OAD=cos30°=,可得OA 的长;OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD 中,由勾股定理解得:r=13根据三角形面积计算高MN 的长,证明△ ADC∽△ANM ,列比例式求DC 的长,确定点O在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.11试题解析:(1)如图1,过O 作OD⊥AC于D,则AD= AC= ×12=6,∵ O是内心,△2211ABC 是等边三角形,∴∠ OAD= ∠ BAC= × 60°=30°,在Rt△AOD 中,cos∠22OAD =cos30°=AD,∴ OA =6÷ 3 = 4 3 ,故答案为:4 3 ;OA 2(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,11∴ 1 AB?MN=96,1×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ ADC∽△ 22 DC AD DC 12 16ANM,∴ ,∴ ,∴DC= ,∴ OD < CD,∴点O在△ AMB 内部,∴连MN AN 8 18 3接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF > MG ,过O 作OH ⊥ MN ,垂足为H,则OH =DN =6,MH =3,∴ OM = MH2 OH2= 32 62=3 5,∴MF =OM+r= 35 +13≈19. 71(米).答:喷灌龙头的射程至少为19.71 米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
2017年陕西省中考数学试卷含答案解析
)
A.1 【答案】B. 【解析】 试题分析:原式=
C.
x y x y
D. x y
2
2
x 2 xy xy y 2 x2 y 2 = .故选 B. x2 y2 x2 y 2
考点:分式的加减法. 6.如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点 A′与点 A 重合,点 C′落 在边 AB 上,连接 B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则 B′C 的长为( )
B.
5 3 2
C. 5 2
D. 5 3
试题分析:连接 OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30° ∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB 是等边三角 形,∴AB=OA=5,则 Rt△PBD 中,PD=cos30°•PB=
2 2 2
2
) B.(3,﹣13) C.(2,﹣8) D.(4,﹣20)
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
11.在实数﹣5,﹣ 3 ,0,π, 6 中,最大的一个数是 【答案】π. 【解析】 .
考点:实数大小比较. 12.请从以下两个小题中任选一个作答,若多选,则按第一题计分. A.如图,在△ABC 中,BD 和 CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2 的度数为 B. 3 17 tan38°15′≈ .(结果精确到 0.01) .
【答案】证明见解析. 【解析】 试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.
陕西省西安市2017年中考数学模拟试卷(带答案)
陕西省西安市2017年中考数学模拟试卷(解析版)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.的相反数是()A.﹣B.C.﹣D.1.414【分析】根据相反数的意义,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列几何体中,左视图与主视图相同的是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,从正面看得到的图形是主视图,可得答案.【解答】解:的主视图与左视图都是下边是梯形上边是矩形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,从正面看得到的图形是主视图.3.下列计算正确的是()A.(﹣3a2b)3=﹣3a5b3B.ab2•(﹣4a3b)=﹣2a4b3C.4m3n2÷m3n2=0 D.a5﹣a2=a3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣3a2b)3=﹣27a6b3,故选项A错误,∵,故选项B正确,∵4m3n2÷m3n2=4,故选项C错误,∵a5﹣a2不能合并,故选项D错误,故选B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠3=100°,则∠2的度数为()A.70°B.65°C.60°D.55°【分析】先根据平行线的性质,得到∠4=∠1=45°,再根据∠3=∠2+∠4,即可得到∠2的度数.【解答】解:∵a∥b,∠1=45°,∴∠4=∠1=45°,∵∠3=∠2+∠4,∴100°=∠2+45°,∴∠2=55°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.5.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3 D.m=﹣3【分析】先根据正比例函数的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵y=(1﹣m)x是正比例函数,且y随x的增大而减小,∴,∴m=,故选B.【点评】本题考查的是正比例函数的定义和性质,即形如y=kx(k≠0)的函数叫正比例函数.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.7.如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份【分析】折线最陡的一段线,就是增长量差值最大的月份.【解答】解:甲工厂和乙工厂生产增长量差值最大的月份是2月份,故选B.【点评】本题考查了折线统计图,根据图中的折线的变化和数据进行求解.8.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4B.﹣4 C.3﹣4 D.6﹣3【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【解答】解:如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选A.【点评】本题考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,熟练掌握直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值,属于基础题.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y >0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n ﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.﹣13+﹣12sin30°=﹣5.【分析】根据乘方的意义,开平方、特殊角三角函数值,可得答案.【解答】解:原式=﹣1+2﹣12×=﹣1+2﹣6=﹣5,故答案为:﹣5.【点评】本题考查了实数的运算,利用乘方的意义,开平方、特殊角三角函数值,注意﹣13的底数是1.12.(1)正三角形的边长为4,则它的面积为2(2)31+2sin18°≈31.62(保留两位小数)【分析】(1)求出等边三角形一边上的高,即可确定出三角形面积;【解答】解:如图,过A作AD⊥BC,∵AB=AB=BC=4,∴BD=CD=BC=2,在Rt△ABD中,根据勾股定理得:AD==2,则S△ABC=BC•AD=2;(2)31+2sin18°≈31+2×0.3090=31.62.故答案为:2,31.62.【点评】此题考查了等边三角形的性质,计算器﹣三角函数,熟练掌握等边三角形的性质是解本题的关键.13.如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1,y1),N(x2,y2)两点,则x1y2﹣3x2y1的值为﹣.【分析】由反比例函数图象的特征,得到两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点M(x1,y1),N(x2,y2)关于原点对称,即﹣x1=x2,﹣y1=y2,把M(x1,y1)代入双曲线y=﹣,得x1y1=﹣2,则x1y2﹣3x2y1=﹣x1y1+3x1y1=﹣6=﹣.故答案为:﹣.【点评】本题考查了正比例函数与反比例函数交点坐标的性质,解决问题的关键是利用两交点坐标关于原点对称.14.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为.【分析】设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理可求得BC 的长,由MN=PD+CP可得到MN≥CD,故此当MN=CD时,MN有最小值,此时点C、P、D在一条直线上,最后利用面积法可求得CD的长,从而得到MN的最小值.【解答】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;∵AB=13,AC=12,∴BC==5.∵PC+PD=MN,∴PC+PD≥CD,MN≥CD.∴当MN=CD时,MN有最小值.∵PD⊥AB,∴CD⊥AB.∵AB•CD=BC•AC,∴CD===.∴CD的最小值.∴MN的最小值为.故答案为:.【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BC•AC÷AB是解题关键.三、解答题.(共11小题,满分78分,解答题后写出过程)15.(5分)1﹣1﹣2sin30°+|3.14﹣π|+(﹣1)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣1+π﹣3.14+1=π﹣2.14.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(5分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x2+x=x2﹣1,即2x2﹣x﹣4=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.17.(5分)如图,已知锐角三角形ABC,求作⊙C,使⊙C与AB所在的直线相切于点D(保留作图痕迹,不写作法).【分析】根据切线的性质,过C先作AB的垂线,垂足为D,以C为圆心,由CD作半径的圆即和AB相切.【解答】解:作法:①过C作CE⊥AB于D,②以C为圆心,以CD为半径画圆,则⊙C就是所求作的圆.【点评】本题考查了切线的性质和复杂作图问题,明确过直线外一点作已知直线的垂线,并熟练掌握圆的切线的性质.18.(5分)某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息完成下列问题:(1)调查的学生人数为120人.(2)补全条形统计图和扇形统计图.(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.【分析】(1)利用A人数除以所占百分比即可得到调查学生数;(2)首先计算出喜欢踢足球的人数,然后计算出喜欢踢足球的人所占百分比,再计算出喜欢其他的人所占百分比,然后补图即可;(3)利用总人数乘以样本中喜欢打乒乓球的人数所占百分比即可.【解答】解:(1)30÷25%=120,故答案为:120;(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600×=150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:海拔高度(单位:米)0 100 200 300 400 …平均气温(单位:℃)22 21.5 21 20.5 20 …(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5×=22﹣0.005x;(2)当y=18时,即22﹣0.005x=18,解得x=800;当y=20时,即22﹣0.005x=20,解得x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0元代金券,最多可获60元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为=.【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC 最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,根据勾股定理得,CF==300,∴AF=AC﹣CF=1200﹣300=900,连接AE交BD于P,即:PC+PE最小=AE,在Rt△AEF中,根据勾股定理得,AE==100,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC'是直角三角形,解(3)的关键是构造出直角三角形AEF.。
(完整)2017年陕西省中考数学试卷(含答案解析),推荐文档
第1页(共33页)2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=( )12A .﹣ B .﹣ C .﹣ D .0541434【考点】 有理数的混合运算.【专题】 计算题;实数.【分析】 原式先计算乘方运算,再计算加减运算即可得到结果.【解答】 解:原式=﹣1=﹣, 故选C1434【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A.B.C.D.【考点】 简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为( )A.2B.8C.﹣2D.﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.第2页(共33页)4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,的大小为( )则∠2A.55° B.75°C.65° D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°..故选:C【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.第3页(共33页)。
2017年陕西省中考数学试卷-答案
陕西省2017年初中毕业学业考试数学答案解析第Ⅰ卷2.【答案】B【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形. 【提示】根据从正面看得到的图形是主视图,可得答案. 【考点】简单组合体的三视图 3.【答案】A【解析】设正比例函数解析式为:y kx =,将点6(3)A -,代入可得:36k =-,解得:2k =-,∴函数解析式为:2y x =-,将()4B m -,代入可得:24m -=-,解得2m =, 【提示】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m 的值. 【考点】正比例函数图象上点的坐标特征 4.【答案】C【解析】∵12513180ABC ∠=︒∠+∠+∠=︒,,∴31801180259065ABC ∠=-∠-∠=︒-︒-︒=︒. ∵a b ∥,∴2365∠=∠=︒.【提示】由余角的定义求出3∠的度数,再根据平行线的性质求出2∠的度数,即可得出结论. 【考点】平行线的性质 5.【答案】B【考点】分式的运算【考点】等腰直角三角形的性质,勾股定理【考点】两条直线的相交问题,一次函数【解析】如图,连接BE.12AE BF,∴BF12AE BF ,先求出【考点】矩形的性质,勾股定理,三角形的面积公式 322PB ︒=⨯【考点】圆周角定理,垂径定理,垂直平分线的判定和性质,解直角三角形 10.【答案】C【解析】2222222424()4y x mx x mx m m x m m =--=-+--=---.∴点2(4)M m m --,.∴点2)4(M m m '-+,.∴222244m m m +-=+.解得2m =±∵0m >,∴2m =∴8(2)M -,. 【提示】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M '的坐标,然后将点M '的坐标代入抛物线的解析式求解即可.【考点】二次函数的顶点式,关于原点对称的点的坐标第Ⅱ卷【考点】实数大小的比较 12.【答案】64︒2.03【考点】三角形的内角和,角平分线的性质,三次根式,锐角三角函数的计算【考点】反比例函数图象上点的坐标特征14.【答案】18【解析】如图,作AM BC AN CD⊥⊥.,交CD的延长线于点N;∵90BAD BCD∠=∠=︒∴四边形AMCN 为矩形,90MAN∠=︒;∵90BAD∠=︒,∴BAM DAN∠=∠;在A B M A D N△与△中,BAM DANAMB ANDAB AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABM ADN AAS△≌△,∴AM AN=(设为λ);ABM ADN△与△的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:222AC AM MC=+,而6AC=;∴2223618λλ==,.【提示】作辅助线;证明ABM ADN△≌△,得到AM AN ABM ADN=,△与△的面积相等;求出正方形AMCN 的面积即可解决问题.【考点】全等三角形的判定及其性质,正方形的判定及其性质 三、解答题15.【答案】-【考点】二次根式,绝对值和负指数幂的运算 16.【答案】6x =-【解析】去分母得,2()()(323)33()x x x x +--=-+,去括号得,2269269x x x x ++-+=-,移项,系数化为1,得6x =-,经检验,6x =-是原方程的解.【提示】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 【考点】解分式方程17.【答案】如图,点P 即为所求.【解析】根据题意可知,作BDC ∠的平分线交BC 于点P 即可. 【考点】尺规作图,角平分线的性质18.【答案】(1)本次调查的总人数为105%200÷=,则2030~分钟的人数为20065%130⨯=(人),D 项目的百分比为15%10%650%(%2)-++=,补全图形如下:(2)由于共有200个数据,其中位数是第100101,个数据的平均数,则其中位数位于C 区间内; (3)120065%20%02()10⨯+=(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【解析】(1)先根据A 区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C 区间人数及D 区间百分比可得答案; (2)根据中位数的定义求解可得; (3)利用样本估计总体思想求解可得.【考点】频数分布直方图,扇形统计图,中位数和样本估计总体19.【答案】证明:∵四边形ABCD 是正方形,∴90ADF CDE AD CD ∠==︒=,.∵AE CF =,∴DE DF =,在ADF △和CDE △中AD CDADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CDE SAS △≌△,∴DAF DCE ∠=∠,在A G EC G F △和△中,GAE GCFAGE CGF AE CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AGE CGF AAS △≌△,∴AG CG =.【提示】根据正方向的性质,可得90ADF CDE AD CD ∠==︒=,,根据全等三角形的判定与性质,可得答案.【考点】正方形的性质,全等三角形的判定与性质 20.【答案】34【解析】如图,作BD MN CE MN ⊥⊥,,垂足分别为点D E .,设AN x =米,则BD CE x ==米,在Rt MBD △中,t a n 23M D x =︒,在R t M C E△中,t a n 24M E x =︒,∵ME MD DE BC -==,∴tan24tan23 1.7x x ︒-︒=-答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.【考点】解直角三角形的实际应用——仰角问题 21.【答案】(1)750068000y x =+【考点】一次函数和不等式的实际应用22.【答案】(1)12(2)3【提示】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率; (2)根据题意可以写出所有的可能性,从而可以解答本题. 【考点】列表法与画树状图法求概率23.【答案】(1)连接OA ,∵PA 是O 的切线,∴90PAO ∠=︒∵30P ∠=︒,∴60AOD ∠=︒,∵AC PB ⊥,PB 过圆心O ,∴AD DC =在Rt ODA △中,sin 60AD OA =︒=∴2AC AD ==(2)∵30AC PB P ⊥∠=︒,,∴60PAC ∠=︒,∵60AOP ∠=︒∴120BOA ∠=︒,∴60BCA ∠=︒,∴PAC BCA ∠=∠∴BC PA ∥【解析】(1)连接OA ,由于PA 是O 的切线,从而可求出60AOD ∠=︒,由垂径定理可知:AD DC =,由锐角三角函数即可求出AC 的长度.(2)由于60AOP ∠=︒,所以120BOA ∠=︒,从而由圆周角定理即可求出60BCA ∠=︒,从而可证明BC PA ∥【考点】切线的性质,圆周角定理,锐角三角函数,解直角三角形,平行线的判定24.【答案】(1)1C 的函数表示式为223y x x =--,2C 的函数表达式为223y x x =+-(2)()(3)010A B -,,, (3)存在满足条件的点P Q 、,其坐标为()(2525)()()2323P Q P Q ----,,,或,,,. 【解析】(1)∵12C C 、关于y 轴对称,∴12C C 与的交点一定在y 轴上,且12C C 与的形状、大小均相同,∴13a n ==-,,∴1C 的对称轴为1x =,∴2C 的对称轴为1x =-,∴2m =,∴1C 的函数表示式为 223y x x =--,2C 的函数表达式为223y x x =+-;(2)在2C 的函数表达式为223y x x =+-中,令0y =可得2230x x +-=,解得31x x =-=或,∴()(3)010A B -,,,; (3)存在.∵AB 的中点为(10)-,,且点P 在抛物线1C 上,点Q 在抛物线2C 上,∴AB 只能为平行四边形的一边,∴PQ AB ∥且PQ AB =,由(2)可知(134)AB =--=,∴4PQ =,设22()3P t t t --,,则22()(4)23423Q t t t t t t +-----,或,,①当2()423Q t t t +--,时,则22234())243(t t t t --=+++-,解得2t =-,∴2234435t t --=+-=,∴()(2)525P Q -,,,; ②当2()423Q t t t ---,时,则22234())243(t t t t --=-+--,解得2t =,∴2234433t t --=--=-,∴2323()()P Q ---,,,,综上可知存在满足条件的点P Q 、, 其坐标为()(2525)()()2323P Q P Q ----,,,或,,,. 【提示】(1)由对称可求得,a n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由2C 的函数表达式可求得,A B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入2C 的函数表达式可求得P Q 、的坐标.【考点】二次函数的综合应用,待定系数法,对称的性质,函数图象与坐标轴的交点,平行四边形的性质25.【答案】(1)(2)存在,PQ =(3)喷灌龙头的射程至少为19.71米【解析】(1)如图1,过O 作OD AC D ⊥于,则1112622AD AC ==⨯=,∵O 是内心,ABC △是等边三角形,∴116030OAD BAC ∠=∠=⨯︒=︒,在Rt A O D △中,cos cos30ADOAD ∠=︒=,∴6OA =÷=96AB MN=,MN AN少为19.71米.AD【考点】等边三角形的内切圆,垂径定理,矩形的性质,勾股定理,相似三角形的判定和性质。
2017年西安市中考数学模拟试卷(含答案和解释)
2017年西安市中考数学模拟试卷(含答案和解释)(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600× =150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD 上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:海拔高度(单位:米)0100200300400…平均气温(单位:℃)2221.52120.520…(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5× =22﹣0.005x;(2)当y=18时,即22﹣0.005x=18,解得x=800;当y=20时,即22﹣0.005x=20,解得x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴= ,= ,∵CD=DG=EF=2m,DF=52m,FH=4m,∴= ,= ,∴= ,解得BD=52,∴= ,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0元代金券,最多可获60元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为= .【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B= ∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2 .∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°= .∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x ﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+ =0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+ 与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x 轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2 ,点E为BC边的中点,求作一点P,使PE+PC 最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C’E交BD于P,进而判断出△CEC’是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C’交BD于F,连接C’E交BD于P,则PE+PC最小=C’E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2 ,∴tan∠CBD= = = ,∴∠CBD=30°,由对称知,CC’=2CF,CC’⊥BD,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF= ,∴CC’=2CF=2 ,∵点E为BC边的中点,∴CE= BC= ,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C’F,∴△CEC’是直角三角形,在Rt△CEC’中,CC’=2 ,CE= ,∴C’E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA= AC=600,AC⊥BD,在Rt△BOC中,OB= =800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF= OB=400,根据勾股定理得,CF= =300,∴AF=AC﹣CF=1200﹣300=900,连接AE交BD于P,即:PC+PE最小=AE,在Rt△AEF中,根据勾股定理得,AE= =100 ,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC’是直角三角形,解(3)的关键是构造出直角三角形AEF.。
2017年陕西省中考数学试卷(含答案解析)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x2−y2C.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x−y=x2+y2x−y.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3√3 B.6 C.3√2 D.√21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=√AC 2+BC 2=3√2,∠CAB=45°,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3√2,∴∠CAB′=90°,∴B′C=√CA 2+B′A 2=3√3,故选:A .【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l 2与x 轴的交点为A (﹣2,0),求出k 、b 的关系;然后求出直线l 1、直线l 2的交点坐标,根据直线l 1、直线l 2的交点横坐标、纵坐标都大于0,求出k 的取值范围即可.【解答】解:∵直线l 2与x 轴的交点为A (﹣2,0),∴﹣2k +b=0,∴{y =−2x +4y =kx +2k 解得{x =4−2k k+2y =8k k+2∵直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)的交点在第一象限,∴{4−2k k+2>08k k+2>0解得0<k <2. 故选:D .【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3√102 B .3√105 C .√105 D .3√55【考点】相似三角形的判定与性质;LB :矩形的性质. 【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【解答】解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,AE=√AD 2+DE 2=√32+12=√10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=3√105. 故选B .【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .5√32C .5√2D .5√3 【考点】三角形的外接圆与外心;KH :等腰三角形的性质.【分析】连接OA 、OB 、OP ,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB ⊥AP ,AD=PD ,∠OBP=∠OBA=60°,即可求得△AOB 是等边三角形,从而求得PB=OA=5,解直角三角形求得PD ,即可求得PA .【解答】解:连接OA 、OB 、OP ,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB ,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB ,∴OB ⊥AP ,AD=PD ,∴∠OBP=∠OBA=60°,∵OB=OA ,∴△AOB 是等边三角形,∴AB=OA=5,则Rt △PBD 中,PD=cos30°•PB=√32×5=5√32, ∴AP=2PD=5√3,故选D .【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣√3,0,π,√6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>√6>0>−√3>﹣5,故实数﹣5,−√3,0,π,√6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.√173tan38°15′≈.(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC+12∠ACB=12(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=12∠ABC、∠2=12∠ACB,则∠1+∠2=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=64°,故答案为:64°;B、√173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得:{b =3m a −b =2m−5a , 所以3m+2m−5a=0,即5m ﹣5=0, 解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m+2m−5a=0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ;∵∠BAD=∠BCD=90°∴四边形AMCN 为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN ;在△ABM 与△ADN 中,{∠BAM =∠DAN ∠AMB =∠AND AB =AD,∴△ABM ≌△ADN (AAS ),∴AM=AN (设为λ);△ABM 与△ADN 的面积相等;∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣√2)×√6+|√3﹣2|﹣(12)﹣1. 【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣√12+2﹣√3﹣2=﹣2√3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数, 则其中位数位于C 区间内,故答案为:C ;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【考点】正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD ,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD 是正方形,∴∠ADF=CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中{AD =CD ∠ADF =∠CDE DF =DE,∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,{∠GAE =∠GCF ∠AGE =∠CGF AE =CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5√32∴AC=2AD=5√3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB̂于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷√32=4√3, 故答案为:4√3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ=√PM 2+MQ 2=√122+122=12√2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB̂是劣弧, ∴AB̂所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB̂于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB̂上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
2017年陕西省中考数学试卷(含答案解析版)(K12教育文档)
2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改)的全部内容。
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C.D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为( )A.3B.6 C.3D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5D.5(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,10.若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13) C.(2,﹣8) D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B。
2017年陕西省中考数学试卷(含答案解析)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】 有理数的混合运算.【专题】 计算题;实数.【分析】 原式先计算乘方运算,再计算加减运算即可得到结果.【解答】 解:原式=14﹣1=﹣34, 故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】 简单组合体的三视图.【分析】 根据从正面看得到的图形是主视图,可得答案.【解答】 解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75° C.65° D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y﹣yx+y,结果正确的是()A.1 B.x2+y2x2−y2C.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3√3 B.6 C.3√2 D.√21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=√AC2+BC2=3√2,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3√2,∴∠CAB′=90°,∴B′C=√CA2+B′A2=3√3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴{y =−2x +4y =kx +2k 解得{x =4−2k k+2y =8k k+2 ∵直线l 1:y=﹣2x+4与直线l 2:y=kx+b (k ≠0)的交点在第一象限,∴{4−2k k+2>08k k+2>0 解得0<k <2. 故选:D .【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3√102B .3√105C .√105D .3√55【考点】 相似三角形的判定与性质;LB :矩形的性质.【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF,先求出AE ,再求出BF 即可. 【解答】 解:如图,连接BE .∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=√AD2+DE2=√32+12=√10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=3√10 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.5√32C.5√2 D.5√3【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=√32×5=5√32,∴AP=2PD=5√3,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13) C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣√3,0,π,√6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>√6>0>−√3>﹣5,故实数﹣5,−√3,0,π,√6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.√173tan38°15′≈.(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC+12∠ACB=12(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC+12∠ACB=12(∠ABC+∠ACB )=64°, 故答案为:64°;B 、√173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m ≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 .【考点】 反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】 设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】 解:设A (a ,b ),则B (a ,﹣b ),依题意得:{b =3m a −b =2m−5a, 所以3m+2m−5a=0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m+2m−5a=0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】 全等三角形的判定与性质.【分析】 作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】 解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ;∵∠BAD=∠BCD=90°∴四边形AMCN 为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN ;在△ABM 与△ADN 中,{∠BAM =∠DAN ∠AMB =∠AND AB =AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣√2)×√6+|√3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣√12+2﹣√3﹣2=﹣2√3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中{AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,{∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜 2000 12 8000甜瓜 4500 3 5000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=5√3 2∴AC=2AD=5√3(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE ̂于点E,又测得DE=8m.⊥AB交AB请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt△AOD中,利用cos∠OAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.【解答】解:(1)如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=AD OA,∴OA=6÷√32=4√3,故答案为:4√3;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ=√PM2+MQ2=√122+122=12√2;(3)如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,AB̂是劣弧,∴AB̂所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=12AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴12AB•MN=96,12×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴DCMN=ADAN,∴DC8=1218,∴DC=16 3,∴OD<CD,∴点O在△AMB内部,̂于点F,则MF为草坪上的点到M点的最大距离,∴连接MO并延长交AB̂上任取一点异于点F的点G,连接GO,GM,∵在AB∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.温馨提示:最好仔细阅读后才下载使用,万分感谢!。
陕西省西安市碑林区2017年中考数学五模试卷及答案解析
2017年陕西省西安市碑林区中考数学五模试卷一、选择题(共10小题,第小题3分,共30分,每小题只有一个正确答案)1.(3分)4的平方根是()A.2 B.C.±2 D.±2.(3分)下列各式计算正确的是()A.2a2+a3=3a5B.(﹣2x)3=8x3C.2ax•3a5=6a6D.(﹣2x3)÷(﹣6x2)=x3.(3分)如图是由一些相同的小立方块搭成的几何体的主视图和左视图,则该几何体的小立方块最多有()A.4块 B.5块 C.6块 D.7块4.(3分)如图,点G为△ABC的重心,则S△ABG:S△ACG:S△BCG的值是()A.1:2:3 B.2:1:2 C.1:1:1 D.无法确定5.(3分)关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥36.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:67.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.8.(3分)将正方形AOCB和A1CC1B1按如图所示方式放置,点A(0,1)和点A1在直线y=x+1上,点C,C1在x轴上,若平移直线y=x+1至经过点B1,则直线y=x+1向右平移的距离为()A.4 B.3 C.2 D.19.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交CD于点F,则的值为()A.B.C.D.10.(3分)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+4二、填空题(共4小题,每小题3分,共12分)11.(3分)分式方程+=1的解是.12.(3分)选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是;②用计算器求一组数据71,75,63,89,100,77,86的平均数为(精确到0.1).13.(3分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的纵坐标为3,反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当DB⊥x轴时,k的值是.14.(3分)已知点D为∠ABC的一边BC上一定点,且BD=5,线段PQ在∠ABC另一边AB上移动且PQ=2,若sin∠B=,则当∠PDQ达到最大值时PD的长为.三、解答题(共11小题,计78分,解答应写出过程)15.(5分)计算:|﹣1|+tan60°﹣﹣(2017﹣π)0﹣(﹣)﹣1.16.(5分)先化简,再求值÷(﹣),其中x2﹣2x﹣8=0.17.(5分)如图,△ABC中,AB=AC,∠A=108°,请你利用尺规在BC边上求一点P,使∠APC=108°(不写画法,保留作图痕迹)18.(5分)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为;(2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?19.(7分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.20.(7分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)21.(7分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?22.(7分)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率; (2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.23.(8分)如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作⊙O 的切线与CD 的延长线交于点F ,CG ∥AB 交直线AF 于点G (1)若AC=BC ,求证:CG 是⊙O 的切线; (2)如果DE=CE ,AC=8且D 为EF 的中点,求直径AB 的长.24.(10分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),并且与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)如图2,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平等线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求出点E的坐标;若不存在,请说明理由.25.(12分)问题探究:在边长为4的正方形ABCD中,对角线AC、BD交于点O.探究1:如图1,若点P是对角线BD上任意一点,则线段AP的长的取值范围是;探究2:如图2,若点P是△ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点M、N分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,求四边形AMPN面积的最大值.2017年陕西省西安市碑林区中考数学五模试卷参考答案与试题解析一、选择题(共10小题,第小题3分,共30分,每小题只有一个正确答案)1.(3分)4的平方根是()A.2 B.C.±2 D.±【解答】解:∵(±2)2=4,∴4的平方根是±2,故选:C.2.(3分)下列各式计算正确的是()A.2a2+a3=3a5B.(﹣2x)3=8x3C.2ax•3a5=6a6D.(﹣2x3)÷(﹣6x2)=x【解答】解:A、原式不能合并,不符合题意;B、原式=﹣8x3,不符合题意;C、原式=6a6x,不符合题意;D、原式=x,符合题意,故选:D.3.(3分)如图是由一些相同的小立方块搭成的几何体的主视图和左视图,则该几何体的小立方块最多有()A.4块 B.5块 C.6块 D.7块【解答】解:由主视图可得:这个几何体共有2层,结合左视图可得:第一层正方体最多的个数为4块,第二层正方体的个数为1块,故:最多为4+1=5块. 故选:B .4.(3分)如图,点G 为△ABC 的重心,则S △ABG :S △ACG :S △BCG 的值是( )A .1:2:3B .2:1:2C .1:1:1D .无法确定 【解答】解:如图,延长AG 交BC 于点D , ∵G 点为△ABC 的重心, ∴点D 是BC 边的中点,∴S △ABD =S △ACD =S △ABC ; ∵G 点为△ABC 的重心, ∴AG :GD=2:1,∴AG=AD ,∴S △ABG =S △ABD =S △ABC .同理可证:S △ACG =S △BCG =S △ABC . ∴S △ABG :S △ACG :S △BCG =1:1:1. 故选:C .5.(3分)关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥3【解答】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选:D.6.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.7.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.8.(3分)将正方形AOCB和A1CC1B1按如图所示方式放置,点A(0,1)和点A1在直线y=x+1上,点C,C1在x轴上,若平移直线y=x+1至经过点B1,则直线y=x+1向右平移的距离为()A.4 B.3 C.2 D.1【解答】解:∵四边形AOCB、A1CC1B1均为正方形,点A(0,1),∴OC=OA=1,CC1=A1C,A1B1∥x轴.∵点A1在直线y=x+1上,∴点A1的坐标为(1,2),点B1的坐标为(3,2),∴若平移直线y=x+1之经过点B1,则直线y=x+1向右平移2个单位长度.故选:C.9.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交CD于点F,则的值为()A.B.C.D.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OD=OB,∴△DEF∽△BEA,∴=,∵E为OD的中点,∴BE=3DE,∴=,∴AB=3DF,∴DF:CD=1:3,故选:B.10.(3分)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+4【解答】解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=﹣(x﹣1)2+4.故选:B.二、填空题(共4小题,每小题3分,共12分)11.(3分)分式方程+=1的解是x=﹣4.【解答】解:去分母得:3+x(x+3)=x2﹣9,解得:x=﹣4,经检验x=﹣4是分式方程的解,故答案为:x=﹣4.12.(3分)选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是40°;②用计算器求一组数据71,75,63,89,100,77,86的平均数为80.1(精确到0.1).【解答】解:①∵EF⊥DB,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°,故答案为:40°.②≈80.1,故答案为:80.1.13.(3分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的纵坐标为3,反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当DB⊥x轴时,k的值是﹣12.【解答】解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,∵顶点C的纵坐标为3,∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.14.(3分)已知点D为∠ABC的一边BC上一定点,且BD=5,线段PQ在∠ABC另一边AB上移动且PQ=2,若sin∠B=,则当∠PDQ达到最大值时PD的长为.【解答】解:如图,作DH⊥AB于H.∵点D是定点,PQ=2是定长,∴当DH垂直平分线段PQ时,∠PDQ的值最大.在Rt△BDH中,sin∠B==,BD=5,∴DH=3,∵PH=HQ=1,∴PD==,故答案为.三、解答题(共11小题,计78分,解答应写出过程)15.(5分)计算:|﹣1|+tan60°﹣﹣(2017﹣π)0﹣(﹣)﹣1.【解答】解:原式=1+×﹣2﹣1+2=5﹣2.16.(5分)先化简,再求值÷(﹣),其中x2﹣2x﹣8=0.【解答】解:原式=•=,∵x2﹣2x﹣8=0,∴x=﹣2或x=4,∵x+2≠0,即x≠﹣2,∴x=4,则原式=.17.(5分)如图,△ABC中,AB=AC,∠A=108°,请你利用尺规在BC边上求一点P,使∠APC=108°(不写画法,保留作图痕迹)【解答】解:如图,以B为圆心,BA为半径画弧交BC于点P,点P即为所求.理由:∵AB=AC,∠A=108°,∴∠B=36°,∵BA=BP,∴∠BAP=∠BPA=72°,∴∠APC=180°﹣72°=108°.18.(5分)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为54°;(2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?【解答】解:(1)根据题意得:360°×(1﹣40%﹣25%﹣20%)=54°;故答案为:54°;(2)根据题意得:30000×=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.19.(7分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.20.(7分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,∴FG=FC+CG≈1.1m.故跑步机手柄的一端A的高度约为1.1m.21.(7分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【解答】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A 型台灯25盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.22.(7分)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率; (2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由. 【解答】解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=, ∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元. 乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元. ∴我选择甲品牌化妆品.23.(8分)如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作⊙O的切线与CD的延长线交于点F,CG∥AB交直线AF于点G(1)若AC=BC,求证:CG是⊙O的切线;(2)如果DE=CE,AC=8且D为EF的中点,求直径AB的长.【解答】解:(1)连接OC,∵AC=BC,∴=,∴OC⊥AB,∵AB是⊙O的直径,AF是⊙O的切线,∴AB⊥AF,∴AG∥OC,∵CG∥AB,∴四边形AOCG是矩形,∴∠OCG=90°,∴OC⊥CG,∴CG是⊙O的切线;(2)连接AD.∵DE=CE,∴可以假设CE=4k,DEDF=3k,∵AF2=FD•FC,∴AF2=30k2,在Rt△AEF中,AE==k,∵AE•EB=DE•CE,∴BE=2,∵AD=DE=DF,∴∠DAE=∠DEA=∠BCE=∠BEC,∴BC=BE=2k,∵AB是直径,∴∠ACB=90°,∴AC2+BC2=AB2,∴64×5=24k2=54k2,∴k=,∴AB=3k=24.24.(10分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),并且与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)如图2,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平等线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求出点E的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2﹣1,把C(0,3)代入得4a﹣1=3,解得a=1,∴抛物线解析式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)如图2,当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,则B(3,0),设直线BC的解析式为y=kx+m,把B(3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,∵抛物线的对称轴为直线x=2,∴D(2,1),∵EF∥OC,∴∠FED=∠OCB,∴若∠DFE=90°时,△DFE∽△BOC,此时DF∥x轴,当y=1时,x2﹣4x+3=1,解得x1=2+,x2=2﹣,即F点的横坐标为2+或2﹣,当x=2+时,y=﹣x+3=1﹣,此时E点坐标为(2+,1﹣);当x=2﹣时,y=﹣x+3=1+,此时E点坐标为(2+,1+);若∠FDE=90°时,△EDF∽△BOC,∵此时DF⊥BC,∴可设DF的解析式为y=x+n,把D(2,1)代入得2+n=1,解得n=﹣1,解方程组得或,此时F点坐标为(1,0)或(4,3),当x=1时,y=x+3=4,当x=4时,y=x=3=7,∴此时E点坐标为(1,4)或(4,7),综上所述,满足条件的E点坐标为(2+,1﹣)或(2+,1+)或(1,4)或(4,7).25.(12分)问题探究:在边长为4的正方形ABCD中,对角线AC、BD交于点O.探究1:如图1,若点P是对角线BD上任意一点,则线段AP的长的取值范围是≤PA≤4;探究2:如图2,若点P是△ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点M、N分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,求四边形AMPN面积的最大值.【解答】解:(1)如图1中,∵四边形ABCD是正方形,边长为4,∴AC⊥BD,AC=BD=4∴当P与O重合时,PA的值最小最小值=2,当P与B或D重合时,PA的值最大,最大值为4,∴2≤PA≤4.故答案为2≤PA≤4.(2)存在.理由:如图2中,作点P关于AB、AC的对称点E、F,连接EF交AB于M,交AC于N,连接AE、AF、PA.∵PM+MN+PN=EM+MN+NF=EF,∴点P位置确定时,此时△PMN的周长最小,最小值为线段EF的长,∵∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,∴∠EAF=2∠BAC=90°,∵PA=PE=PF,∴△EAF是等腰直角三角形,∵PA的最小值为,∴线段EF的最小值为2,∴△PMN的周长的最小值为2.(3)如图3中,在图2的基础上,以A为圆心AB为半径作⊙A,PA交EF于点O.由题意点P在⊙A上,∵△MAP≌△MAE,△NAP≌△NAF,=S△AEM+S△ANF=S△AEF﹣S△AMN,∴S四边形AMPN∵PA=AE=AF=4,=8,∴S△EAF∴△AMN的面积最小时,四边形AMPN的面积最大,易知当PA⊥MN时,△AMN的面积最小,此时OA=2,OM=ON=OP=4﹣2,∴MN=8﹣4,=×(8﹣4)•2=8﹣8,∴S△AMN∴四边形AMPN的面积的最大值=8﹣(8﹣8)=16﹣8.。
2017陕西省中考数学试卷解析
2017年陕西省中考数学试卷满分:120分版本:北师大版一、选择题(每小题3分,共10小题,合计30分)1.(2017陕西,1,3分)2112⎛⎫-- ⎪⎝⎭A.54-B.14-C.34-D.0答案:C,解析:2112⎛⎫--⎪⎝⎭=114-=34-.故选C.2.(2017陕西,2,3分)如图所示的几何体是由一个长方体和一个圆柱组成的,则它的主视图为A.B.C.D.答案:B,解析:主视图是从前面看,看到的应该是上下两个长方形.故选B.3.(2017陕西,3,3分)若一个正比例函数的图像经过A(3,-6),B(m,-4)两点,则m的值为A.2 B.8 C.-2 D.-8答案:A,解析:设这个正比例函数的解析式为y=kx,将点A(3,-6)代入可得k=-2,即y=-2x,再将点B(m,-4)代入y=-2x,可得m=2.故选A.4.(2017陕西,4,3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为A.55°B.75°C.65°D.85°答案:C,解析:由∠1=25°,∠ABC=90°可得∠3=65°;因为a∥b,所以∠2=∠3=65°.故选C.5.(2017陕西,5,3分)化简x yx y x y--+的正确结果为A.1 B.2222x yx y+-C.x yx y-+D.x2+y2答案:B,解析:x yx y x y--+=()()()()()()x x y y x yx y x y x y x y+---++-=222222x xy xy yx y x y+----=2222x yx y+-.6.(2017陕西,6,3分)如图,两两个大小形状相同的是△ABC 和△A ’B ’C ’拼在一起,其中点A与A ’重合,点C 落在边AB 上,连接B ’C .若∠ACB =∠AC ’B ’=90°,AC =BC =3,则B ’C 的长为A .B .6C .D .答案:A ,解析:由题意得∠CAB =∠CAB ’=45°,△ABC ≌△A ’B ’C ’,由勾股定理得AB =AB ’=B’C =A .7.(2017陕西,7,3分)如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M ,若直线l 2与x 轴的交点为A (-2,0),则k 的取值范围为xA .-2<k <2B .-2<k <0C .0<k <4D .0<k <2答案:D ,解析:将点A (-2,0)代入l 2:y =kx +b (k ≠0),可得b =2k ,即l 2:y =kx +2k (k ≠0);已知直线l 1:y =-2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M ,说明直线l 1方程与直线l 2方程联立的方程组的解x >0,y >0.解方程组242y x y kx k =-+⎧⎨=+⎩得42282k x k k y k -⎧=⎪⎪+⎨⎪=⎪+⎩,由x >0,y >0得0<k<2.故选D .8.(2017陕西,8,3分)在矩形ABCD 中,AB =2,BC =3,若点E 为边CD 的中点,连接AE ,过点B 作BF ⊥AE 于点F ,则BF 长为EABCD答案:B ,解析:由题意得△ADE ∽△BF A ,由题意可知AD =3,DE =1,设AF =x ,则BF =3x ,由勾股定理得:AF2+BF2=AB2,即x2+(3x) 2=22,解得x,所以3x即BF.故选B.9.(2017陕西,9,3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P 是⊙O上的一点,在△ABP中,PB=AB,则P A的长为PA.5 BC.D.答案:D,解析:连接OB、OA、OP,由垂径定理的逆定理可知OB⊥AP;运用“圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等”可知△OAB为等边三角形,再运用解直角三角形的知识可求出AP的长为D.10.(2017陕西,10,3分)已知抛物线y=x2-2mx-4(m>0)的顶点M关于原点O的对称点为M’,过点M’在这条抛物线上,则点M的坐标为A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)答案:C,解析:抛物线y=x2-2mx-4的顶点坐标为M(m,-m2-4),M关于原点O的对称点为M’(-m,m2+4),将点M’的坐标代入y=x2-2mx-4的得,m=±2,由于m>0,所以m =2.故选B.二、填空题:(每小题3分,共4小题,合计12分)11.(2017陕西,11,3分)在实数-5,0,π中,最大的数是.答案:π,解析:根据“正数大于0,0大于负数”可得实数-5,0,π中比较大的是π,由于3<π<4,23,故π12.(2017陕西,12,3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.a.如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2=.b15'︒≈.(精确到0.01)答案:a.64°;b.2.03,解析:a.由条件:BD和CE是△ABC的两条角平分线,可得∠1=12∠ABC,∠2=12∠ACB,根据P。
陕西省西安市碑林区2017年中考数学模拟试卷含答案解析
陕西省西安市碑林区2017年中考数学模拟试卷含答案解析陕西省西安市碑林区2017年中考数学零模试卷⼀、选择题1.的绝对值是()A. ﹣4B.C. 4D. 0.42.下列⼏何体中,正视图是矩形的是()A. B. C. D.3.下列运算正确的是()A. a3+a4=a7B. (2a4)3=8a7C. 2a3?a4=2a7D. a8÷a2=a44.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 140°5.在⼀次函数y= ax﹣a中,y随x的增⼤⽽减⼩,则其图象可能是()A. B. C. D.6.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂⾜为点E,则DE等于()A. B. C. D.7.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A. y=x﹣2B. y=﹣x+2C. y=﹣x﹣2D. y=﹣2x﹣18.如图,在平⾏四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最⼤值与最⼩值的差为()A. 1B. ﹣1C.D. 2﹣9.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°10.⼆次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,则(a+1)2+(1+b)2的值为()A. 9B. 10C. 20D. 25⼆、填空题11.分解因式:x2﹣4(x﹣1)=________.12.⼀个七边形的外⾓和是________.13.计划在楼层间修建⼀个坡⾓为35°的楼梯,若楼层间⾼度为2.7m,为了节省成本,现要将楼梯坡⾓增加11°,则楼梯的斜⾯长度约减少________ m.(⽤科学计算器计算,结果精确到0.01m).14.如图,在平⾯直⾓坐标系中,点M、N分别为反⽐例函数y= 和y= 的图象上的点,顺次连接M、O、N,∠MON=90°,∠ONM=30°,则k=________.15.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE⾯积的最⼤值是________.三、解答题16.(﹣)﹣2﹣(2017﹣π)0﹣| ﹣2|+2sin60°.17.化简:.18.如图,已知线段a和b,a>b,求作直⾓三⾓形ABC,使直⾓三⾓形的斜边AB=a,直⾓边AC=b.(⽤尺规作图,保留作图痕迹,不要求写作法)19.咸阳市教育局为了了解七年级学⽣参加社会实践活动情况,随机抽取了泰郡区部分七年级学⽣2015﹣2016学年第⼀学期参加社会实践活动的天数,并⽤得到的数据绘制了两幅统计图,下⾯给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=________%,并写出该扇形所对圆⼼⾓的度数为________,并补全条形图________.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学⽣约4000⼈,请你估计活动时间不少于6天的学⽣⼈数⼤约有多少?20.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.给窗户装遮阳棚,其⽬的为最⼤限度地遮挡夏天炎热的阳光,⼜能最⼤限度地使冬天温暖的阳光射⼊室内,现请你为我校新建成的⾼中部教学楼朝南的窗户设计⼀个直⾓形遮阳蓬BCD,如图,已知窗户AB⾼度为h=2⽶,本地冬⾄⽇正午时刻太阳光与地⾯的最⼩夹⾓α=32°,夏⾄⽇正午时刻太阳光与地⾯的最⼤夹⾓β=79°,请分别计算直⾓形遮阳蓬BCD中BC,CD的长(结果精确到0.1⽶)22.市园林处为了对⼀段公路进⾏绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:若购买A种树x棵,购树所需的总费⽤为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费⽤最低,应选购A、B两种树各多少棵?此时最低费⽤为多少?23.现有⼀项资助贫困⽣的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以⾃由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停⽌后,指针各⾃指向⼀个数字,(若指针在分格线上,则重转⼀次,直到指针指向某⼀数字为⽌),若指针最后所指的数字之和为12,则获得⼀等奖,奖⾦20元;数字之和为9,则获得⼆等奖,奖⾦10元;数字之和为7,则获得三等奖,奖⾦为5元;其余均不得奖;此次活动所集到的赞助费除⽀付获奖⼈员的奖⾦外,其余全部⽤于资助贫困⽣的学习和⽣活;(1)分别求出此次活动中获得⼀等奖、⼆等奖、三等奖的概率;(2)若此次活动有2000⼈参加,活动结束后⾄少有多少赞助费⽤于资助贫困⽣?24.如图所⽰,以Rt△ABC的直⾓边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平⾏四边形?并在此条件下求sin∠CAE的值.25.如图已知点A (﹣2,4)和点B (1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′,C,D为顶点的三⾓形与△ABC相似.26.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平⾏四边形,则∠ABC=________;(2)如图2,若∠ABC=30°,△ACD是等边三⾓形,AB=3,BC=4.求BD的长;(3)如图3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之间距离是否有最⼤值?如有求出最⼤值;若不存在,说明理由.答案解析部分⼀、选择题1.【答案】B【考点】绝对值【解析】【解答】的绝对值是.故答案为:B【分析】依据负数的绝对值是它的相反数求解即可.2.【答案】B【考点】简单⼏何体的三视图【解析】【解答】A、球的正视图是圆,A不符合题意;B、圆柱的正视图是矩形,B符合题意;C、圆锥的正视图是等腰三⾓形,C不符合题意;D、圆台的正视图是等腰梯形,D不符合题意;故答案为:B.【分析】正视图是从⼏何体的正⾯观察所得得到的图形.3.【答案】C【考点】同底数幂的乘法【解析】【解答】A、不是同底数幂的乘法指数不能相减,A不符合题意;B、积的乘⽅等于乘⽅的积,B不符合题意;C、单项式乘单项式系数乘系数同底数的幂相乘,C符合题意;D、同底数幂的除法底数不变指数相减,D不符合题意.故答案为:C.【分析】依据同类项与合并同类项法则可对A作出判断;依据积的乘⽅法则可对B作出判断;依据单项式乘单项式法则可对C 作出判断;依据同底数幂的除法法则可对D作出判断.4.【答案】B【考点】平⾏线的性质【解析】【解答】∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故答案为:B.【分析】⾸先依据平⾏线的性质可求得∠3的度数,然后在Rt△CBD中,依据直⾓三⾓形两锐⾓互余求解即可.5.【答案】B【考点】⼀次函数的图象【解析】【解答】由y= ax﹣a中,y随x的增⼤⽽减⼩,得a<0,﹣a>0,故答案为:B.【分析】先依据⼀次函数的性质可得到a<0,从⽽可求得a的范围,然后可得到-a>0,最后,依据⼀次函数的性质确定出函数图象经过的象限,从⽽可得到问题的答案.6.【答案】C【考点】全等三⾓形的性质,等腰三⾓形的性质【解析】【解答】连接AD,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD= ×10=5∴AD= =12.∵△ABC的⾯积是△ABD⾯积的2倍.∴2? AB?DE= ?BC?AD,DE= = .故答案为:C.【分析】连接AD,依据等腰三⾓形的性质可得到AD⊥BC,然后依据勾股定理可求得AD的长,然后再△ABD中利⽤⾯积法可求得DE的长.7.【答案】B【考点】⼀次函数图象与⼏何变换【解析】【解答】∵直线l:y=x+2与y轴交于点A,∴A(0,2).设旋转后的直线解析式为:y=﹣x+b,则:2=0+b,解得:b=2,故解析式为:y=﹣x+2.故答案为:B.【分析】先求得点A的坐标为(0,2),由题意可知旋转前后的两条直线相互垂直,依据相互垂直的两条直线的⼀次项系数乘积为-1可设设旋转后的直线解析式为:y=﹣x+b,最后,将点A的坐标代⼊求得b的值即可.8.【答案】C【考点】三⾓形中位线定理,平⾏四边形的性质【解析】【解答】如图,取AD的中点M,连接CM、AG、AC,作AN⊥BC于N.∵四边形ABCD是平⾏四边形,∠BCD=120°,∴∠D=180°﹣∠BCD=60°,AB=CD=2,∵AM=DM=DC=2,∴△CDM是等边三⾓形,∴∠DMC=∠MCD=60°,AM=MC,∴∠MAC=∠MCA=30°,∴∠ACD=90°,∴AC=2 ,在Rt△ACN中,∵AC=2 ,∠ACN=∠DAC=30°,∴AN= AC= ,∵AE=EH,GF=FH,∴EF= AG,易知AG的最⼤值为AC的长,最⼩值为AN的长,∴AG的最⼤值为2 ,最⼩值为,∴EF的最⼤值为,最⼩值为,∴EF的最⼤值与最⼩值的差为.故答案为:C.【分析】取AD的中点M,连接CM、AG、AC,作AN⊥BC于N.⾸先证明出△CDM是等边三⾓形,从⽽可得到∠ACD=90°,然后再求出AC,AN,依据三⾓形中位线定理,可知EF=AG,然后求出AG的最⼤值以及最⼩值,从⽽可得到EF的最⼤值和最⼩值.9.【答案】D【考点】垂径定理,圆周⾓定理【解析】【解答】∵⊙O的直径CD过弦EF的中点G,∴(垂径定理),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省西安市2017年中考数学五模试卷一、选择题1.下列算式中,运算结果为负数的是()A. ﹣|﹣1|B. ﹣(﹣2)3C. ﹣(﹣)D. (﹣3)22.一个几何体的三视图如图所示,则这个几何体是()A. 三棱锥B. 三棱柱C. 圆柱D. 长方体3.下列计算中正确的是()A. a•a2=a2B. 2a•a=2a2C. (2a2)2=2a4D. 6a8÷3a2=2a44.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A. 85°B. 60°C. 50°D. 35°5.本市5月份某一周每天的最高气温统计如下表:则这组数据的中位数和平均数分别是()A. 24,25B. 25,26C. 26,24D. 26,256.对于一次函数y=k2x﹣k(k是常数,k≠0)的图象,下列说法正确的是()A. 是一条抛物线B. 过点(,0)C. 经过一、二象限D. y随着x增大而减小7.如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B的坐标为()A. (0,0)B. (1,﹣1)C. (,﹣)D. (,﹣)8.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A. B. C. D.9.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为()A. 15°B. 75°或15°C. 105°或15°D. 75°或105°10.定义符号min{a,b}的含义为:当a>b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,-3}=﹣3,min{﹣4,﹣2}=﹣4,则min{﹣x2+2,﹣x}的最大值是()A. ﹣1B. ﹣2C. 1D. 0二、填空题11.不等式组的最小整数解是________.12.若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135× sin13°≈________.(精确到0.1)13.如图,双曲线y= (x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3),求△OAC的面积是________.14.如图,在平面直角坐标系中,已知点A(,0),点B在第一象限,且AB与直线l:y=x平行,AB 长为4,若点P是直线l上的动点,则△PAB的内切圆面积的最大值为________.三、解答题15.计算:(﹣)﹣2+ +|1﹣|0﹣2sin60°+tan60°.16.解方程:= + .17.如图,△ABC中,AB=AC,且∠BAC=108°,点D是AB上一定点,请在BC边上找一点E,使以B,D,E 为顶点的三角形与△ABC相似.18.如图,在△ABC中,AB=AC,BD、CE分别是边AB,AC上的高,BD与CE交于点O.求征:BO=CO.19.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.20.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)21.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.22.甲、乙两个盒子中装有质地、大小相同的小球.甲盒中有2个白球、1个蓝球;乙盒中有1个白球、若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.23.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若OA= ,CE=1,求∠ACB的度数.24.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)点Q在直线BC上方的抛物线上,是否存在点Q使△BCQ的面积最大,若存在,请求出点Q坐标.25.综合题(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC,CD上两点,且BM=CN,连接AM 和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;(3)如图③,AC为边长为2 的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.答案解析部分一、选择题1.【答案】A【考点】正数和负数,相反数,绝对值【解析】【解答】∵﹣|﹣1|=﹣1,A符合题意,∵﹣(﹣2)3=﹣(﹣8)=8,B不符合题意,∵﹣(﹣)= ,C不符合题意,∵(﹣3)2=9,D不符合题意,故答案为:A.【分析】首先依据绝对值的性质、相反数的定义、有理数的乘方法则进行计算,然后依据计算结果进行判断即可.2.【答案】B【考点】由三视图判断几何体【解析】【解答】根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故答案为:B.【分析】根据主视图和左视图为矩形可知该几何体为直棱柱,然后依据俯视图可得到两个底面为三角形,故此可得到问题的答案.3.【答案】B【考点】整式的混合运算【解析】【解答】A、原式=a3,A不符合题意;B、原式=2a2,B符合题意;C、原式=4a4,C不符合题意;D、原式=2a6,D不符合题意.故答案为:B【分析】依据同底数幂的乘法法则可对A作出判断;依据单项式乘单项式法则可对B作出判断;依据积的乘方法则可对C作出判断;依据单项式除单项式法则可对D作出判断.4.【答案】C【考点】平行线的性质【解析】【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故答案为:C.【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.5.【答案】D【考点】中位数、众数【解析】【解答】按从小到大的顺序排列数为22,22,24,26,26,26,29,由中位数的定义可得:这组数据的中位数是26,这组数据的平均数分别是=25,故答案为:D.【分析】先将这些数据按从小到大的顺序排列,然后找出中间一个数字,从而可得到这组数据的中位数,接下来,依据加权平均数公式可得到这组数据的平均数.6.【答案】B【考点】一次函数的性质【解析】【解答】函数y=k2x﹣k(k是常数,k≠0)符合一次增函数的形式.A、是一次函数,是一条直线,A不符合题意;B、过点(,0),B符合题意;C、k2>0,﹣k<0时,图象在一、三、四象限,C不符合题意;D、根据k2>0可得y随着x的增大而增大,D不符合题意.故答案为:B.【分析】先依据函数的解析式可得到该函数为一次函数,然后再依据一次项系数以及常数项的正负,可判断出函数图像经过的象限、依据该函数的增减性.7.【答案】D【考点】一次函数的性质【解析】【解答】解:∵A(0,﹣),点B为直线y=﹣x上一动点,∴当AB⊥OB时,线段AB最短,此时点B在第四象限,作BC⊥OA于点C,∠AOB=45°,如下图所示:∴OC=CB= OA,∴点B的坐标为(,﹣).故答案为:D.【分析】先依据点A的坐标可得到OA的长,然后再依据垂线段最短可得到当AB⊥OB时,线段AB最短,接下来,再证明△OAB为等腰三角形三角形,过点B作BC⊥OA,垂足为C,然后再求得OC和BC的长,从而可得到点B的坐标.8.【答案】D【考点】矩形的性质【解析】【解答】解:连接EF,如图所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∠A=∠D=90°,∵点E为AD中点,∴AE=DE=1,∴BE= = = ,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE= ,∵△BCE的面积=△BEF的面积+△CEF的面积,∴BC×AB= BE×FG+ CE×FH,即BE(FG+FH)=BC×AB,即(FG+FH)=2×3,解得:FG+FH= ;故选:D.【分析】连接EF,由矩形的性质得出AB=CD=3,AD=BC=2,∠A=∠D=90°,由勾股定理求出BE,由SAS证明△ABE≌△DCE,得出BE=CE= ,再由△BCE的面积=△BEF的面积+△CEF的面积,即可得出结果.9.【答案】C【考点】垂径定理,特殊角的三角函数值【解析】【解答】解:如图1,∵AD为直径,∴∠ABD=∠ABC=90°,在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°,在Rt△ABC中,AD=6,AB=3 ,∠CAD=45°,则∠BAC=105°;如图2,,∵AD为直径,∴∠ABD=∠ABC=90°,在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°,在Rt△ABC中,AD=6,AB=3 ,∠CAD=45°,则∠BAC=15°,故选:C.【分析】从弦AB、AC在直径AD的同旁和两旁两种情况进行计算,根据特殊角的三角函数值分别求出∠BAD和∠CAD的度数,计算得到答案.10.【答案】C【考点】二次函数的应用【解析】【解答】联立,解得,,所以min{﹣x2+2,﹣x}的最大值是1.故答案为:C.【分析】将抛物线的解析式和直线的解析式联立求得两个函数的交点坐标,然后找出交点坐标的最大值即可.二、填空题11.【答案】0【考点】一元一次不等式组的整数解【解析】【解答】解:,解①得x>﹣1,解②得x≤3,不等式组的解集为﹣1<x≤3,不等式组的最小整数解为0,故答案为0.【分析】先解不等式组,求出解集,再找出最小的整数解即可.12.【答案】35;83503.8【考点】计算器—数的开方,多边形的对角线,多边形内角与外角,计算器—三角函数【解析】【解答】解:360°÷36°=10,所以这个正多边形是正十边形,∴这个正多边形有=35条对角线,135× sin13°≈83503.8,故答案为:35,83503.8.【分析】(1)依据任意多边形的外角和为360°以及正多边形的一个外角等于36°,可求得正多边形的边数,然后,再依据多边形的对角线公式进行计算即可;(2)利用计算器进行计算,然后再按照要求取近似值即可.13.【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A(2,3)在双曲线y= (x>0)上,∴k=2×3=6.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即= ,∴=()2,∵A,C都在双曲线y= 上,∴S△OCN=S△AOM=3,由= ,得:S△AOB=9,则△AOC面积= S△AOB= .故答案是:.【分析】过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,将点A(2,3)代入反比例函数的解析式可求得k的值,从而可得到S△OCN=S△AOM=3,由MB∥CN可证明△OCN∽△OBM,然后依据相似三角形的面积比等于相似比的平方可求得△AOB的面积,最后,再依据△AOC面积=S△AOB求解即可.14.【答案】π【考点】两条直线相交或平行问题,三角形的内切圆与内心【解析】【解答】解:作点A关于直线l的对称点A′,连接AA′交直线l于点C,由直线y=x中k=1可知∠COA=45°,在Rt△AOC中,OC=AC=OAcos∠AOC= × = ,则AA′=2AC=3,∵AB∥直线l,∴∠BAD=45°,∴∠BAA′=90°,连接A′B交直线l于点P,连接PA,则此时△PAB的周长最小,S△PAB= ×4× =3,在Rt△AA′B中,A′B= = =5,∴△PAB周长的最小值为3+4+5=12,由三角形内切圆的半径r= 知,三角形的周长最小时,三角形内切圆的半径最大,最大半径r== ,∴△PAB的内切圆面积的最大值为π,故答案为:π.【分析】先求得点P到AB的距离,然后依据三角形的面积公式求出△ABP的面积,利用三角形与内切圆关系是:r=(2×三角形面积)÷三角形周长(a+b+4),再根据a+b>4找r的最大值后求得最大面积即可.三、解答题15.【答案】解:(﹣)﹣2+ +|1﹣|0﹣2sin60°+tan60°=4+2 +1﹣2× +=5+2 ﹣+=5+2【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值【解析】【分析】先依据负整数指数幂的性质、二次根式的性质、零指数幂的性质进行化简,然后再将特殊锐角三角函数值代入计算,最后,再依据实数的加减法则进行计算即可.16.【答案】解:= + ,= + ,去分母,得3x×14=3(x+8)×4+10x,解得x= ,检验:当x= 时,3x(x+8)≠0,∴x= 是原分式方程的解.【考点】解分式方程【解析】【分析】先确定出分母的最小公倍数为3x(x+8),然后方程两边同时乘以3x(x+8),将分式方程转化为整式方程,接下来,再求得整式方程的解,最后,再进行检验即可.17.【答案】解:如图,这样的点有两个.①过D作DE∥AC交BC于E,根据平行于三角形一边的直线与其他两边相交,可得△BDE∽△BAC;②以D为顶点,DB为一边,作∠BDE=∠C,已知有公共角∠B,根据有两角对应相等的两个三角形相似可得△BDE∽△BCA.【考点】等腰三角形的性质,相似三角形的判定【解析】【分析】可分为△BDE∽△BAC和△BDE∽△BCA两种情况,然后依据相似三角形的判定定理找出,它们相似的条件,然后画出图形即可.18.【答案】证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°,在△BEC和△CDB中,,∴△BEC≌△CDB,∴∠BCE=∠CBD,∴OB=OC;【考点】全等三角形的判定与性质【解析】【分析】首先依据等腰三角形的性质可得到∠ABC=∠ACB,然后依据高线的定义可得到∠BEC=∠BDC=90°,接下来,依据AAS可证明△BEC≌△CDB,依据全等三角形的性质可得到∠BCE=∠CBD,最后,依据等角对等边的性质求解即可.19.【答案】(1)解:60÷30%=200(人),即本次被调查的学生有200人(2)解:选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)解:1600× (人).即全校选择体育类的学生有560人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)根据条形统计图和扇形统计图可得到选择劳技的学生由60人,占总体的30%,最后,依据总数=频数÷百分比求解即可;(2)依据频数=总数×百分比可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)用全校总人数乘以选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.20.【答案】解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴= ,∵FB=4米,BE=6米,DE=9米,∴= ,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC= ,∴AC= = =6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.【考点】解直角三角形的应用【解析】【分析】首先依据物高和影长的关系可求得AB的长,然后再依据锐角三角函数的定义可求得AC 的长,最后,依据树高=AB+AC求解即可.21.【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)解:由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【考点】一次函数的应用【解析】【分析】(1)先表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列不等式组求解即可;(2)由(1)中的函数关系式可知该函数为一次函数,然后依据y随x增大而减少,可知当x=80时,y最小,并求出最小值,写出运输方案即可.22.【答案】(1)解:设乙盒中蓝球的个数为x,根据题意,得:=2× ,解得:x=2,答:乙盒中蓝球的个数为2;(2)解:画树状图如下:由于共有9种等可能情况,其中两球均为蓝球的有2种,∴这两球均为蓝球的概率为.【考点】列表法与树状图法,概率公式【解析】【分析】(1)设乙盒中蓝球的个数为x,根据“乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍”列方程求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.23.【答案】(1)解:∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEC=90°,∵D为AC的中点,∴AD=DE,∴∠DAE=∠AED,∵AC是⊙O的切线,∴∠CAE+∠EAO=∠CAB=90°,∵OA=OE,∴∠OAE=∠OEA,∴∠DEA+∠OEA=90°,∴∠DEO=90°,∴DE是⊙O的切线;(2)解:∵OA= ,∴AB=2 ,∵∠CAB=90°,AE⊥BC,∴AB2=BE•BC,即(2 )2=BE(BE+1),∴BE=3,(负值舍去),∴BC=4,∵sin∠ACB= = ,∴∠ACB=60°.【考点】切线的判定与性质【解析】【分析】(1)首先依据直径所对的圆周角为90°可得到∠AEB=90°,然后依据直角三角形斜边上中线的性质可得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;(2)首先依据射影定理得到AB2=BE•BC,然后由CE=1可得到BC=BE+1,从而可求得BE、BC的值,然后依据锐角三角函数的定义以及特殊锐角三角函数值可求得∠ACB的度数.24.【答案】(1)解:∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(﹣3,0),∴解得:∴抛物线的解析式为y=﹣x2﹣4x﹣3(2)解:由y=﹣x2﹣4x﹣3,可得D(﹣2,1),C(0,﹣3),∴OB=3,OC=3,OA=1,AB=2,可得△OBC是等腰直角三角形,∴∠OBC=45°,CB=3 ,如图,设抛物线对称轴与x轴交于点F,∴AF= AB=1,过点A作AE⊥BC于点E,∴∠AEB=90°,可得BE=AE= ,CE=2 ,在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP,∴= ,= ,解得PF=2,∵点P在抛物线的对称轴上,∴点P的坐标为(﹣2,2)或(﹣2,﹣2)(3)解:存在,因为BC为定值,当点Q到直线BC的距离最远时,△BCQ的面积最大,设直线BC的解析式y=kx+b,直线BC经过B(﹣3,0),C(0,﹣3),∴解得:k=﹣1,b=﹣3,∴直线BC的解析式y=﹣x﹣3,设点Q(m,n),过点Q作QH⊥BC于H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,﹣m﹣3),∴QS=n﹣(﹣m﹣3)=n+m+3,∵点Q(m,n)在抛物线y=﹣x2﹣4x﹣3上,∴n=﹣m2﹣4m﹣3,∴QS=﹣m2﹣4m﹣3+m+3=﹣m2﹣3m=﹣(m+ )2+ ,当m=﹣时,QS有最大值,∵BO=OC,∠BOC=90°,∴∠OCB=45°∵QS∥y轴,∴∠QSH=45°,∴△QHS是等腰直角三角形,∴当斜边QS最大时QH最大,∵当m=﹣时,QS最大,∴此时n=﹣m2﹣4m﹣3=﹣+6﹣3= ,∴Q(﹣,),∴Q点的坐标为(﹣,)时,△BCQ的面积最大.【考点】二次函数的应用【解析】【分析】(1)将A、B的坐标代入抛物线的解析式,得到关于b、c的方程组,从而可求得b、c 的值,于是可得到抛物线的解析式;(2)首先求得D、C的坐标,从而可证明△OBC是等腰直角三角形,过A作BC的垂线,垂足为E,在Rt △ABE中,根据∠ABE的度数及AB的长即可求出AE、BE、CE的长,连接AC,设抛物线的对称轴与x轴的交点为F,若∠APD=∠ACB,接下来,再证明△AEC∽△AFP,根据得到的比例线段,即可求出PF的长,也就求得了P点的坐标;(3)过Q作y轴的平行线,交BC于S,然后求得直线BC的解析式,可设出Q点的坐标,根据抛物线和直线BC的解析式,分别表示出Q、S的纵坐标,然后列出三角形的面积与点Q的横坐标之间的函数关系式,最后,利用配方法可求得△BCQ的面积的最大值,以及点Q的横坐标,从而可求得问题的答案. 25.【答案】(1)解:结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)解:如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB 于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2 ,∴△APB周长的最大值=4+4 .(3)解:如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2 +4.【考点】正方形的性质【解析】【分析】(1)首先证明△ABM≌△BCN,然后,依据全等三角形的性质可得到∠BAM=∠CBN,接下来,由∠CBN+∠ABN=90°,可证明∠ABN+∠BAM=90°,从而可得到问题的答案;(2)以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.首先证明PA+PB=2EF,求出EF的最大值即可解决问题;(3)延长DA到K使AK=AB,然后可证明△ABK是等边三角形,连接PK,取PH=PB.然后再证明PA+PB=PK,接下来,求出PK的最大值即可解决问题.。