初一有理数提高练习题及问题详解

合集下载

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。

(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

(人教版)福州七年级数学上册第一单元《有理数》提高练习(答案解析)

(人教版)福州七年级数学上册第一单元《有理数》提高练习(答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.若12a=,3b=,且0ab<,则+a b的值为()A.52B.52-C.25±D.52±3.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍4.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个5.2--的相反数是()A.12-B.2-C.12D.26.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()A.109.01510⨯B.39.01510⨯C.29.01510⨯D.109.0210⨯7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.758.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+9.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006 10.如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-1311.计算-3-1的结果是()A.2 B.-2 C.4 D.-412.若1<x <2,则|2||1|||21x x x x x x---+--的值是( ) A .﹣3B .﹣1C .2D .113.6-的相反数是( ) A .6B .-6C .16D .16-14.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 15.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+ B .a 1a b a b a 1+>+>->- C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题16.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______. 17.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 18.计算:3122--=__________;︱-9︱-5=______. 19.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 20.定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.21.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.22.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.23.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____; (2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____; (3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.24.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.25.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米. 26.一个数的25是165-,则这个数是______.三、解答题27.计算:2334[28(2)]--⨯-÷- 28.计算: (1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭29.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额.30.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?。

七年级数学上册有理数专题提高练习-有理数的乘法(含答案)

七年级数学上册有理数专题提高练习-有理数的乘法(含答案)

七年级数学上册有理数专题提高练习有理数的乘法学校:___________姓名:___________班级:___________一.选择题(共12小题)1.计算:(﹣3)×(﹣5)=()A.﹣8 B.8 C.﹣15 D.152.计算4×(﹣9)的结果等于()A.32 B.﹣32 C.36 D.﹣363.﹣9×的结果是()A.﹣3 B.3 C.D.4.若()×=﹣1,则括号内应填的数是()A.2 B.﹣2 C.D.﹣5.计算2×(﹣3)的结果等于()A.6 B.﹣6 C.﹣1 D.56.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了,下面两个图框是用法国“小九九”计算8×9和6×7的两个示例,若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,4 B.3,3 C.3,4 D.2,37.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.2017 B.2016 C.2017!D.2016!8.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大9.已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2×(﹣),下列判断正确的是()A.a>b>c B.b>c>a C.c>b>a D.a>c>b10.正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.2611.若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定12.利用裂项技巧计算﹙﹚×33时,最恰当的方案可以是()A.(100﹣)×33 B.(﹣100﹣)×33 C.﹣(99+)×33 D.﹣(100﹣)×33二.填空题(共10小题)13.计算=.14.a<0,ab<0,则b0.15.乘积是6的两个负整数之和为.16.数﹣5,1,﹣4,6,﹣3中任取二个数相乘,积最小值为.17.已知|a|=5,|b|=3,且ab<0,则a﹣b=.18.两个有理数之积是﹣1,已知一个数是﹣2,则另一个数是.19.若有理数a、b满足|a|=2,|b|=5,且ab<0,则a﹣b=.20.设有理数a,b,c满足a+b+c=0,abc>0,则a,b,c中正数的个数为.21.绝对值不大于3的所有整数的积是.22.在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是.三.解答题(共6小题)23.如果|a|=4,|b|=8,|c|=3,ab<0,求c﹣a﹣|b|的值.24.已知|x|=2,|y|=8.(1)若x<y,求x﹣y的值;(2)若xy<0,求x+y的值.25.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).26.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?27.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=.28.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)参考答案与试题解析一.选择题(共12小题)1.【分析】根据有理数的乘法法则计算可得.【解答】解:(﹣3)×(﹣5)=+(3×5)=15,故选:D.2.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣36,故选:D.3.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣9×=﹣(9×)=﹣3,故选:A.4.【分析】根据积除以一个因式得到另一个因式即可.【解答】解:根据题意得:﹣1÷=﹣1×2=﹣2,故选:B.5.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣2×3=﹣6,故选:B.6.【分析】根据示例得出左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,据此可得.【解答】解:根据题意,左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,所以计算7×9,左、右手依次伸出手指的个数是2和4,故选:A.7.【分析】根据题意将原式变形为即可得.【解答】解:==2017,故选:A.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.9.【分析】首先利用有理数的加法法则、减法法则、乘方法则计算出a、b、c的值,再比较大小即可.【解答】解:a=﹣2+(﹣10)=﹣12,b=﹣2﹣(﹣10)=﹣2+10=8,c=﹣2×(﹣)=,∵8>>﹣12,∴b>c>a,故选:B.10.【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选:A.11.【分析】根据有理数的乘法法则,得a、b同号,再由有理数的加法法则,得a、b都是负数.【解答】解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.12.【分析】将变形为﹣100+,进一步根据乘法分配律进行计算.【解答】解:﹙﹚×33=﹣(100﹣)×33=﹣3300+1=﹣3299.故选:D.二.填空题(共10小题)13.【分析】根据乘法分配律展开,再根据有理数的乘法和加减法运算法则计算.【解答】解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.【分析】根据异号得负解答即可.【解答】解:∵a<0,ab<0,∴b>0.故答案为:>.15.【分析】利用有理数的乘法法则确定出两个负整数,求出之和即可.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣516.【分析】根据所求的积最小,选取最大的正数和最小的负数相乘,即可解答.【解答】解:﹣5×6=﹣30,故答案为:﹣30.17.【分析】由a与b异号,利用绝对值的代数意义求出a与b的值,即可确定出a ﹣b的值.【解答】解:∵|a|=5,|b|=3,且ab<0,∴a=﹣5,b=3;a=5,b=﹣3,则a﹣b=±8,故答案为:±818.【分析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】解:﹣1÷(﹣2)=﹣1÷(﹣)=故答案为:19.【分析】根据异号得负和绝对值的性质确定出a、b的值,然后相减即可得解.【解答】解:∵ab<0,|a|=2,|b|=5,∴a=2时,b=﹣5,a﹣b=2﹣(﹣5)=2+5=7,a=﹣2时,b=5,a﹣b=﹣2﹣5=﹣7,∴a﹣b=7或﹣7.故答案为:7或﹣7.20.【分析】由abc>0可以得到a、b、c中负数有偶数个,而a+b+c=0,由此即可判定其中的正数的个数.【解答】解:∵abc>0,∴a、b、c中负数有偶数个,而a+b+c=0,∴a,b,c中负数有2个,即正数的个数为一个.故填空答案:1.21.【分析】根据绝对值的含义,写出符合条件的整数,然后求出它们的积.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,它们的积是:(﹣1)×(﹣2)×(﹣3)×1×2×3×0=0.故答案是:0.22.【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【解答】解:∵(﹣4)×(﹣6)=24>3×5.故答案为:24.三.解答题(共6小题)23.【分析】根据绝对值的意义得到a=±4,b=±8,c=±3,由ab<0,则a=4,b=﹣8或a=﹣4,b=8,把它们分别代入c﹣a﹣|b中计算即可.【解答】解:∵|a|=4,|b|=8,|c|=3,ab<0,∴a=4,b=﹣8,c=3或a=4,b=﹣8,c=﹣3或a=﹣4,b=8,c=3或a=﹣4,b=8,c=﹣3,∴c﹣a﹣|b|=﹣9或﹣15或﹣1或﹣7.24.【分析】(1)根据绝对值的性质以及有理数的大小比较判断出x、y的值,然后相减计算即可得解;(2)根据有理数的乘法运算法则和绝对值的性质判断出x、y的值,然后相加计算即可得解.【解答】解:(1)∵|x|=2,|y|=8,x<y,∴x=±2,y=8,∴x﹣y=2﹣8=﹣6,或x﹣y=﹣2﹣8=﹣10;(2)∵|x|=2,|y|=8,xy<0,∴x=2,y=﹣8或x=﹣2,y=8,∴x+y=2+(﹣8)=﹣6,或x+y=﹣2+8=6.25.【分析】(1)直接利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣0.75×(﹣0.4 )×=××=;(2)原式=0.6×(﹣)×(﹣)×(﹣2)=﹣×××=﹣1.26.【分析】(1)根据题意可以a、b的符号相反、可得a=﹣10,根据a+b=80可得b的值,本题得以解决;(2)①根据题意可以求得两只电子蚂蚁在数轴上的点C相遇是点C对应的数值;②根据题意和分类讨论的数学思想可以解答本题.【解答】解:(1)∵A,B两点在数轴上对应的数分别为a,b,且点A在点B 的左边,|a|=10,a+b=80,ab<0,∴a=﹣10,b=90,即a的值是﹣10,b的值是90;(2)①由题意可得,点C对应的数是:90﹣[90﹣(﹣10)]÷(3+2)×2=90﹣100÷5×2=90﹣40=50,即点C对应的数为:50;②设相遇前,经过m秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)﹣20]÷(3+2)=80÷5=16(秒),设相遇后,经过n秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.27.【分析】(1)分3种情况:a<0、b<0;a>0、b>0;a、b异号讨论即可求解;(2)分4种情况:a<0、b<0、c<0;a>0、b>0、c>0;a、b、c两负一正;a、b、c两正一负讨论即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.所以+=±2或0,故答案为:±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.所以++=±1或±3,故答案为:±1或±3.28.【分析】(1)根据计算判断小军的解法好;(2)把49写成(50﹣),然后利用乘法分配律进行计算即可得解;(3)把19写成(20﹣),然后利用乘法分配律进行计算即可得解.【解答】解:(1)小军解法较好;(2)还有更好的解法,49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;(3)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159.。

【精选】七年级有理数(提升篇)(Word版 含解析)

【精选】七年级有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

(人教版)福州七年级数学上册第一章《有理数》提高练习(答案解析)

(人教版)福州七年级数学上册第一章《有理数》提高练习(答案解析)

1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】+-+--解:根据题意得:859=94,854=81,8511=96,857=78,850=85即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.-一定是负数;② a-一定是正数;③倒数等于它本身的数是2.下列说法中,①a±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A.①②③B.②③④C.①④D.①②③④D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.6.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.7.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B 解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.10.用计算器求243,第三个键应按( )A .4B .3C .y xD .=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.11.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克B 解析:B【解析】-0.02克,选A.12.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10D 解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45=C .(0.8+3.2)÷45=D .0.8+3.2÷45=B 解析:B【分析】 根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 14.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.4.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.5.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.8.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 9.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a ;结合律(a+b )+c=a+(b+c )依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a ;结合律(a+b )+c=a+(b+c ).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.10.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 11.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位).【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.1.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.2.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.3.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 4.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+=3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.。

初一数学提高题题库-有理数的运算含答案解析

初一数学提高题题库-有理数的运算含答案解析

初一数学提高题题库-有理数的运算一、填空题1、 计算2)1372(-+2)1330(,得到_____________. 2、 如果a = -2,则在-3a ,4a ,a 24,1这五个数值中,最大的值是_________. 3、 在数轴上,点A 、B 分别表示有理数a ,b ,原点O 恰是AB 的中点,则1995a ⨯b 326的值是______________.4、 计算(2543⨯⨯⨯)*(21+31+41+51),得到_________ 5、 计算:12+2-34⨯÷5+62+7-8⨯9÷10=____________________6、 若n =131-127+209-3011+4213-5615+7217。

则n 的负倒数是__________________. 7、 =-+-+-+-5432)4()3()2()1( .8、 计算:-4021×⨯÷-÷+43)5.0()144109411(34-[]222)2(34--=_______。

9、 自然数最小的一个合数是 . 10、 计算=----+2)61(9465181125 . 11、 在数轴上有如图所示的A ,B ,C 三点,线段AC =4.2,AB :BC =5:2.若B 点对应的有理数为1.996,则A 点对应的有理数等于_____.12、 若5≤x ≤15,20≤y ≤30,则yx 可能取到的最大值与可能的最小值之和是___ 13、 对一切有理数,我们规定运算"★",若a ★b =2a -b ,则(5★3)★1=_____.14、 对23231996199519971995199619961997199519971996⨯-⨯-⨯-⨯+计算,所得的结果是______________参考答案二、填空题1、 36解:(-1372)2+(1330)2=22136⨯122+22136⨯52=22136⨯(122+52) =22136⨯132=62=362、 6解:当a = -2时,4a <0,a24 <0,不可能取最大,而a 2|2-=a =4、-3a |2-=a =6 所以a = -2时,所给五个单项式的值最大的是6。

七年级有理数(提升篇)(Word版 含解析)

七年级有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.8.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)4(2)解:设经过a秒后P、Q相距5cm,由题意得,20-(2+3)a=5,解得:,或(2+3)a−20=5,解得:a=5,答:再经过3秒或5秒后P、Q相距5cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或s,设点Q的速度为ycm/s,当2s时相遇,依题意得,2y=20−2=18,解得y=9当5s时相遇,依题意得,5y=20−6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.【解析】【解答】解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4秒,点P、Q两点相遇;故答案为:4.【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.11.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.【答案】(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.12.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.【答案】(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.。

初一有理数提高练习题及答案

初一有理数提高练习题及答案

有理数提高训练一、选择题1、已知|a|=2 , |b|=3,且在数轴上表示有理数b的点在a的左边,贝0 a - b的值为()A . -1B . -5 C. -1 或- 5 D. 1或52、下列说法正确的是()3、如果a和2b互为相反数,且b^ 0,那么a的倒数是()1 1 2■ ■—A.丄B. 2-C. ■-D.4、如下图,数轴的单位长度为 1.如果点A, B表示的数的绝对值相等,那么点A表示的数是()I 丨A BA.—4 B 2 C . 0 D . 45、如果与1互为相反数,则丨迄+习等于()A. 2 B . _ C . 1 D . 16、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,「:■ L -」,有以下结论:①-I.;②「「: . ■」:③; ' _ :;④一;. 山:“则所有正确的结论是()A.①,④B. ①,③C. ②,③D. ②,④7、下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④8、下列说法中,正确的是( )。

9、下面的说法中,正确的个数是( )值最小的有理数,请问: ...、一:、]三数之和为多少?”你能回答主持人的问题吗?其和应为(A 、一 1B 、0 11、若 -l<a<0 ,则的大小关系是12、有理数a 、b 、c 、d 在数轴上的位置如图 1所示,下列结论中错误的是 ()图1A.a+b<0B.c+d>0C.|a+c|=a+cD.|b+d|=b+d13、如图,一八1在数轴上的位置如图所示,A . T 是正数 B. — a 是负数 C. 也是负数 D. 一尬不是负数①若 a + b=0,则 |a|=|b| ③若 |a|=|b|,则 a=b A.1个 B.2 个 ②若 |a|=a,贝U a > 0④若a 为有理数,则a 2=(-a )C.3 个D.4 个10、在一次智力竞赛中,主持人问了这样的一道题目: 」是最小的正整数,-是最大的负整数的相反数,I 是绝对D、2则-:----:--■ - -■ - L'-14、对于有理数、_:,如果,- J :' ! ' 11 ,则下列各式成立的是(:A' <0-且」」* D .「;』■川且・」a,b 是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b 按照从小到大的顺序排列二、填空题16、如果 |a-2|=0 ,|b|=3 , 求a+b 的值17、绝对值不大于 10的所有整数的和等于 ,绝对值小于5的所有负整数的和为18、在数轴上,若 A 点表示数:,点B 表示数一5,A 、B 两点之间的距离为 7,则::- 19、 已知:J71-120、如果,Hr 21、设一;> 0, : v 0,且 22、=0,则「V 的值为,用“v”号把...、—」、:、—一:连接起来小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有个.15、A -b v -a v av bB -a v -b v av bC -b v av -a v bD -b v bv -a v a23、用“ 一”与“ 一”表示一种法则:(a — b ) = - b ,( a — b )=-玄,如(2一 3) = -3 , 则:「UM . I" . 丁厂-124、 右0v a v 1,则a , a ,二的大小关系是25、 水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是三、简答题26、已知 |a-3 | + | b-4 | =0,求; 的值.27、如图所示,一个点从数轴上的原点开始,先向右移动 3个单位长度,再向左移动 5个单位长度,可以看到终点表 示的数是-匚,已知点A ,B 是数轴上的点,请参照下图并思考。

七年级数学有理数(提升篇)(Word版 含解析)

七年级数学有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.3.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.【答案】(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.4.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?【答案】(1)13(2)-2(3)解:设运动t秒后,点A与点B相距4个单位,由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,∴,∴或解得t=17或9.答:运动9秒或17秒后,点A与点B 相距4个单位.【解析】【解答】解:(1)AB=4-(-9)=13(2)设点C表示的数是x,则AC=x-(-9)=x+9,BC=4-x,∵A落在点B的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x)=2x+5=1,解得:x=-2,∴点C表示的数是-2.故答案为:-2.【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526将明文转成密文,如:,即R变为L;,即A 变为S.将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.(1)按上述方法将明文NE T译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.【答案】(1)解:即NET密文为MQP.(2)解:即密文DWN的明文为FYC .【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.6.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.7.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得 t=,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得 t=③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得 t=(不符合题意舍去).综上或;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.【解析】【解答】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故依次填:5,6;【分析】(1)中根据非负数的性质即可得解;(2)分三种情况,分别表示MP和MA,根据MP=MA列出方程,解方程即可(需注意t>0);(3)依据题意画出图形,根据图形可知MN=NO+OM=11t.M,N,O,A为端点的所有线段的长度和为3MN+OA=142,将MN=11t代入,即可求出t的值,M点表示的数可求.8.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.【答案】(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.9.阅读理解:若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。

最新人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

最新人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.4.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。

最新七年级数学上册有理数(提升篇)(Word版 含解析)

最新七年级数学上册有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F 10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 6 78 9 10 1112字母 n o p q r s t u v w x y z序号13 14 15 16 17 18 19 20 21 2223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127二.填空题(共10小题)13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值围是.④当x= 时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值围及y的最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了 1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.(2010春•期末)要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数【分析】如果为整数,则(a﹣5)2为4的倍数,可确定a的取值.【解答】解:∵为整数,∴(a﹣5)2为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.(2013秋•期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013•天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F 10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数的运算,理解十六进制的含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010•)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 6 78 9 10 11 12字母 n o p q r s t u v w x y z序号13 14 15 16 17 18 19 20 21 2223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题的关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有 3 个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b 对应的点在P与R之间,若|a|+|b|=2,则原点是N或P (填入M、N、P、R 中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N 或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2015•)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012•)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9 .【分析】首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010= ﹣2009 .【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确的规律是解答本题的关键.20.(2006•)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数的运算法则的有关容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1 .【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+= 1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合的思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.(2016秋•市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.25.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.(2014秋•区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c 的正负情况是解题的关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x 为1或﹣3 ;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值围是﹣1≤x≤2 .④当x= 3或﹣2 时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.(2016•)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.30.(2015秋•古田县校级期末)同学们都知道:|5﹣(﹣2)|表示5与﹣2之。

初一数学有理数难题与提高练习和培优综合题压轴题含解析

初一数学有理数难题与提高练习和培优综合题压轴题含解析

初一数学有理数难题与提高练习和培优综合题压轴题含解析一.选择题共12小题1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a810.为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127二.填空题共10小题13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是填入M、N、P、R中的一个或几个.15.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.只填序号,答案格式如:“①②③④”.21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题共18小题23.计算:++++…+.24.请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.28.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x=时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.30.同学们都知道:|5﹣﹣2|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:1数轴上表示5与﹣2两点之间的距离是,2数轴上表示x与2的两点之间的距离可以表示为.3如果|x﹣2|=5,则x=.4同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.5由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:11+2+22+23+24+…+21021+3+32+33+34+…+3n其中n为正整数32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:1当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.2已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:××××××…××××.35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.1以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗2小彬家距中心广场多远3小明一共跑了多少千米36.已知:b是最小的正整数,且a、b满足c﹣52+|a+b|=0,请回答问题1请直接写出a、b、c的值.a=,b=,c=2a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时即0≤x≤2时,请化简式子:|x+1|﹣|x﹣1|+2|x+5|请写出化简过程3在12的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:1;2﹣24+3﹣16﹣5;3;4;5;6;7;8;9;10;11;12﹣47.65×2+﹣37.15×﹣2+10.5×﹣7.39.1+2+3+…+100= 经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…nn+1=观察下面三个特殊的等式1×2=1×2×3﹣0×1×22×3=2×3×4﹣1×2×33×4=3×4×5﹣2×3×4将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:1直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…nn+1=2探究并计算:1×2×3+2×3×4+3×4×5+…+nn+1n+2=3请利用2的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.1如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;2如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;3如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;4一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数A、B两点间的距离为多少初一数学有理数难题与提高练习和培优综合题压轴题含解析参考答案与试题解析一.选择题共12小题1.2016春碑林区校级期末1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米分析首先根据题意求出头发丝的半径是60 000÷2纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.解答解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.2014秋赛罕区校级期末足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0分析每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.解答解:由题意知,红队共进4球,失2球,净胜球数为:4+﹣2=2,黄队共进3球,失5球,净胜球数为3+﹣5=﹣2,蓝队共进2球,失2球,净胜球数为2+﹣2=0.故选A.点评每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.2010春佛山期末要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数分析如果为整数,则a﹣52为4的倍数,可确定a的取值.解答解:∵为整数,∴a﹣52为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.点评本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.2013秋郑州期末体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%分析根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.解答解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.点评本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.2014 新华区模拟有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.2008分析从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.解答解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣﹣1=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.点评考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.2016春沭阳县期末有理数a,b,c都不为零,且a+b+c=0,则++= A.1 B.±1 C.﹣1 D.0分析根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.解答解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选B点评本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.2013 天桥区一模计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.22分析首先把A+C利用十进制表示,然后化成16进制即可.解答解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.点评本题考查了有理数的运算,理解十六进制的含义是关键.8.2012秋祁阳县校级期中若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0分析两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.解答解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.点评本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.2011秋南海区期末如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a8分析从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.解答解:A、a1+a2+a3+a7+a8+a9=a4+a5+a6﹣21+a4+a5+a6+21=2a4+a5+a6,正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2a2+a5+a8,正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、a3+a6+a9﹣a1+a4+a7=6,错误,符合题意.故选D.点评本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.2010 广州为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc分析m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.解答解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.点评本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.2009秋和平区校级期中设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值分析根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.解答解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x 的范围为﹣1≤x≤1,故选D.点评本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127分析根据题目信息,表示出C125与C126,然后通分整理计算即可.解答解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.点评本题是信息给予题,读懂题目信息是解题的关键.二.填空题共10小题13.2009秋绥中县期末2.40万精确到百位,有效数字有3个.分析根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.解答解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.点评从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.2016秋余杭区期末如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N或P填入M、N、P、R中的一个或几个.分析根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.解答解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.点评此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.2015 茂名为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+...+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015的值是.分析根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.解答解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点评本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.2013 天河区一模我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是13.分析根据题目信息,利用有理数的乘方列式进行计算即可得解.解答解:11012=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.点评本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.2012 台州请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.分析由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.解答解:根据题意可得:1⊕2=2⊕1=3=+,﹣3⊕﹣4=﹣4⊕﹣3=﹣=+,﹣3⊕5=5⊕﹣3=﹣=+,则a⊕b=+=.故答案为:.点评此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.2011 越秀区校级模拟我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.分析首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.解答解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.点评本题考查了不等式的整数解,正确确定x,y的值是关键.19.2011春宿迁校级期末符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=﹣2009.分析此题是一道找规律的题目,通过观察可发现1中等号后面的数为前面括号中的数的2倍减1,2中等号后面的数为分母减去1再乘2,计算即可.解答解:G2010﹣G﹣2010=2010×2﹣1﹣2010﹣1×2﹣2010=﹣2009.点评找到正确的规律是解答本题的关键.20.2006 连云港a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.只填序号,答案格式如:“①②③④”.分析首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.解答解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=b+1a+1<0,故④正确.所以一定成立的有①②④.故答案为:①②④.点评此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.2006 贺州若|x|=2,|y|=3,且<0,则x+y=±1.分析根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.解答解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+﹣3=﹣1或﹣2+3=1.故答案为:±1.点评理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.2004 乌鲁木齐王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.分析结合图形,知+=1﹣,++=1﹣,推而广之即可.解答解:结合图形,得+++…+=1﹣.点评此题注意运用数形结合的思想进行分析.三.解答题共18小题23.计算:++++…+.分析把++++…+变形为+++++++ +…++,再根据加法交换律和结合律计算即可求解.解答解:++++…+=++++++++…++=+++++++…+++=2×2014+=4028+=4028.点评此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.2016秋湖北月考请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.分析观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.解答解:解法1,﹣÷﹣+﹣=﹣÷+﹣+=﹣÷﹣=﹣÷=﹣;解法2,原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣56=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故﹣÷﹣+﹣=﹣.点评此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.2016秋东莞市期末已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.分析读懂题意,掌握规律,按规律计算每个式子.解答解:12※4=2×4+1=9;21※4※﹣2=1×4+1×﹣2+1=﹣9;3﹣1※5=﹣1×5+1=﹣4,5※﹣1=5×﹣1+1=﹣4;4∵a※b+c=ab+c+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※b+c+1=a※b+a※c.点评解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.2014秋朝阳区期末若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.分析根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.解答解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.点评本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.2016秋东台市期中有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.分析1根据数轴判断出a、b、c的正负情况,然后分别判断即可;2去掉绝对值号,然后合并同类项即可.解答解:1由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;2|b﹣c|+|a+b|﹣|c﹣a|=c﹣b+﹣a﹣b﹣c﹣a=c﹣b﹣a﹣b﹣c+a=﹣2b.点评本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.2016秋镜湖区校级期中1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.分析①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.解答解:①|2﹣5|=3,|﹣2﹣﹣5|=3,|1﹣﹣3|=4;②|x﹣﹣1|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则x+1+x﹣2=5,解得x=3,若x+1<0,x﹣2<0,则﹣x+1﹣x﹣2=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.点评本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.2016 河北请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.分析1将式子变形为1000﹣1×﹣15,再根据乘法分配律计算即可求解;2根据乘法分配律计算即可求解.解答解:1999×﹣15=1000﹣1×﹣15=1000×﹣15+15=﹣15000+15=﹣14985;2999×118+999×﹣﹣999×18=999×118﹣﹣18=999×100=99900。

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

初一有理数提高练习题及答案

初一有理数提高练习题及答案

、选择题A .- 4B . - 2D.4个10、在一次智力竞赛中,主持人问了这样的一道题目:“ -<■是最小的正整数,勺是最大的负整数的相反数,厂是绝对值最小的有理数,请问 2 :-<> :、 「三数之和为多少?”你能回答主持人的问题吗?其和应为()A - 1B 、0C 1D11、 若」< a.•;:-,则 的大小关系1空1 2 2 1a <— —<a <a—<aa < cJ < — 是().A .B .C. -JD.a12、有理数 a 、 b 、c 、d 在数轴上的位置如图所示, 下列结论中错误的是 ()rb----------- ---- ---- ►订 1 ' |;A.a+bvOB.c+d>0C.|a+c|=a+cD.|b+d|=b+d13、如图,主、—「在数轴上的位置如图所示,一 _ -厂 则- I- 'I I'-:1 _______14、对于有理数 二、:’,如果L :L '- ■',,则下列各式成立的是(>0上<a 且01 3 C . a <D 20且同為D .盘占uQ 且有理数提高训练1、已知|a|=2 , |b|=3,且在数轴上表示有理数 b 的点在 a 的左边,则 a -b 的值为( )A.-1 B.-5 C.-1 或-5 D.1 或52、下列说法正确的是()A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D. - 1的倒数是-13、如果a 和2b 互为相反数,且b 工0,那么a 的倒数是(2)A.B.--1C.D.4、如下图,数轴的单位长度为 1.如果点A ,B 表示的数的绝对值相等, 那么点A 表示的数是(5、如果二与1互为相反数,则'等于()A. 2-26、已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,结论:①<0 ;②b —Q D ;③卜°| S ④门 .Q则所有正确的结论是( )A.①,④B.①,③C. ②,③7、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A ①②B ①③C ①②③①②③④8、下列说法中,正确的是( )。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数提高训练
一、选择题
1、已知|a|=2,|b|=3,且在数轴上表示有理数b的点在a的左边,则a﹣b的值为()A.﹣1 B.﹣5 C.﹣1或﹣5 D. 1或5
2、下列说确的是()
A.负数没有倒数B.正数的倒数比自身小
C.任何有理数都有倒数D.﹣1的倒数是﹣1
3、如果a和2b互为相反数,且b≠0,那么a的倒数是()
A. B. C. D.
4、如下图,数轴的单位长度为1.如果点A,B表示的数的绝对值相等,那么点A表示的数是()
A.-4 B.-2 C.0 D.4
5、如果与1互为相反数,则等于()
A.2 B.C.1 D.
6、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,,有以下
结论:①;②;③;④.
则所有正确的结论是()
A.①,④
B. ①,③
C. ②,③
D. ②,④
7、下列说确的是( )
①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数
④两个数比较,绝对值大的反而小
A ①②
B ①③
C ①②③
D ①②③④
8、下列说法中,正确的是()。

A.是正数 B.-a是负数 C.-是负数 D.不是负数
9、下面的说法中,正确的个数是()
①若a+b=0,则|a|=|b| ②若|a|=a,则a>0
③若|a|=|b|,则a=b ④若a为有理数,则a2=(-a)2
A.1个
B.2个
C.3个
D.4个
10、在一次智力竞赛中,主持人问了这样的一道题目:“是最小的正整数,是最大的负整数的相反数,是绝对值最小的有理数,请问:、、三数之和为多少?”你能回答主持人的问题吗?其和应为()
A、-1
B、0
C、1
D、2
11、若,则的大小关系是( ).
A.B.
C. D.
12、有理数a、b、c、d在数轴上的位置如图1所示,下列结论中错误的是( )
图1
A.a+b<0
B.c+d>0
C.|a+c|=a+c
D.|b+d|=b+d
13、如图,、、在数轴上的位置如图所示,
则。

14、对于有理数、,如果,则下列各式成立的是()
A. B.且
C.且D.且
15、 a,b是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b按照从小到大的顺序排列( )
A -b<-a<a<b
B -a<-b<a<b
C -b<a<-a<b
D -b<b<-a<a
二、填空题
16、如果|a-2|=0,|b|=3,求a+b的值___________.
17、绝对值不大于10的所有整数的和等于_____,绝对值小于5的所有负整数的和为_______.
18、在数轴上,若A点表示数,点B表示数-5,A、B两点之间的距离为7,则
_______________.
19、已知:=0,则的值为 .;
20、如果m__ __,
21、设>0,<0,且,用“<”号把、-、、-连接起来 .
22、小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有______个.
23、用“”与“”表示一种法则:(a b)= -b,(a b)= -a,如(23)= -3,则.
24、若0<a<1,则a,a2,的大小关系是 .
25、水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是_____________________________.
三、简答题
26、已知│a-3│+│b-4│=0,求的值.
27、如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是,已知点A,B是数轴上的点,请参照下图并思考。

(1)如果点A表示数,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________.
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A,B两点间的距离为________.
(3)如果点A表示数,将A点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B表示的数是________,A,B两点间的距离是________.
28、若|a|=a,|b|=b,|c|=-c,|d|=-d,且无一个数为0,还满足|a|>|b|>|c|>|d|,请把a、b、c、d四个数从小到大排列.
29、分类讨论是一种重要的数学方法,如在化简时,可以这样分类:当a>0时,;当a=0时,;当a<0时,.用这种方法解决下列问题:
(1)当a=5时,求的值.
(2)当a=-2时,求的值.
(3)若有理数a不等于零,求的值.
(4)若有理数a、b均不等于零,试求的值.
30、阅读与探究:我们知道分数写为小数即,反之,无限循环小数写成分数即.一般地,任何一个无限循环小数都可以写成分数形式.现在就以为例进行讨论:设:,由:…,得:…,…,
于是:……,即:,解方程得:,于是得:.
请仿照上述例题完成下列各题:
(1)请你把无限循环小数写成分数,即.
(2)你能化无限循环小数为分数吗?请完成你的探究过程.
参考答案
一、选择题
1、D
2、D
3、A 解析:因为和互为相反数,所以,故的倒数是.
4、B 解析:设原点为O,是AB的中点,则OA=AB=2,故点A表示的数是-2.
5、C
6、A
7、A;
8、 D
9、B
10、D;
11、B(
12、C
13、0
14、D
15、C
二、填空题
16、5或-1
17、0 -10
18、2或-12;
19、3.5
20、m < 0;
21、b<-a<a<-b
22、9
23、2011
24、
25、-8米
三、简答题
26、解:由│a-3│+│b-4│=0,得a-3=0且b-4=0,所以a=3,b=4,=.
27、(1)4,7 (2)1,2 (3),1
28、 c<d<b<a
29、(1)当a=5时,,∴. (2分)
(2)当a=-2时,,∴. (4分)
(3)当a>0时,=1. (5分)
当a<0时,=-1. (6分)
(4)当a>0,b>0时,=1+1=2. (7分)当a>0,b<0时,=1+(-1)=0. (8分)
当a<0,b>0时,=(-1)+1=0. (9分)
当a<0,b<0时,=(-1)+(-1)=-2.(10分)∴的值为2或0或-2.
30、(1)(2)得:。

相关文档
最新文档