51单片机-查表指令

合集下载

51单片机-查表指令-课件

51单片机-查表指令-课件
把控制码建成一个表,而利用MOVC A,@ A+DPTR做取码的操作,就可方便地处理一 些复杂的控制动作
三、举例 4、流程图
三、举例 5、程序段 查表指令控制流水灯.txt
三、举例
④ 数据表(平方表)在ROM中存放的示意图: (注意:这里,标号 TABLE实际上是数据表 的首地址,它是一个具 体的值。只不过在这里, 用TABLE这个标号来 表示更为方便而已。)
三、举例
⑤程序执行情况分析: MOV R0,#2;待查2的平方,将R0赋值为2 MOV DPTR,#TABLE;将平方表的首地址送入DPTR中,假 设为1000H(标号为TABLE) MOV A,R0;A=R0=2 MOVC A,@A+DPTR;将A与DPTR相加,即1002H(TABLE+2),以该值为 地址,到ROM中相应单元去取数。程序中该单元的数据为4,正是2的平 方。 (显示程序段……) TABLE: DB 0,1,4,9,16,25
MOVC A,@A+PC—程序存储器ROM向累加器A传送数据的指令 A—累加器,用于保存临时数据 PC—程序计数指针,PC的值等于当前要执行的指令的存放地址(举例) DPTR—16位寄存器,在查表程序中,DPTR的值一般等于待查数据表的首 地址。 @—表示间接寻址方式。
此条指令的含义是将累加器A中的值与寄存器DPTR中的值 相加,相加后的结果是程序存储器ROM中的某个存储单元 的地址。将这个地址中的数据传送到A中保存起来。
二、查表程序格式
在使用时,将DPTR赋值为欲查数据表的首地 址,累加器A赋值为要查的数据,即可实现查 表功能,查得的数据保存在A中。通用格式如 下: MOV DPTR,#TABLE MOVC A,@A+DPTR ……(其他程序段) TABLE:DB ……(数据库)

51单片机符号

51单片机符号

ls的乱写PC = progammer counter //程序计数器ACC = accumulate //累加器PSW = progammer status word //程序状态字SP = stack point //堆栈指针DPTR = data point register //数据指针寄存器IP = interrupt priority //中断优先级IE = interrupt enable // 中断使能TMOD = timer mode //定时器方式(定时器/计数器控制寄存器)ALE = alter (变更,可能是)PSEN = progammer saving enable //程序存储器使能(选择外部程序存储器的意思) EA = enable all(允许所有中断)完整应该是enable all interruptPROG = progamme (程序)SFR = special funtion register //特殊功能寄存器TCON = timer control //定时器控制PCON = power control //电源控制MSB = most significant bit//最高有效位LSB = last significant bit//最低有效位CY = carry //进位(标志)AC = assistant carry //辅助进位OV = overflow //溢出ORG = originally //起始来源DB = define byte //字节定义EQU = equal //等于DW = define word //字定义E = enable //使能OE = output enable //输出使能RD = read //读WR = write //写中断部分:INT0 = interrupt 0 //中断0INT1 = interrupt 1//中断1T0 = timer 0 //定时器0T1 = timer 1 //定时器1TF1 = timer1 flag //定时器1 标志(其实是定时器1中断标志位)IE1 = interrupt exterior //(外部中断请求,可能是)IT1 = interrupt touch //(外部中断触发方式,可能是)ES = enable serial //串行使能ET = enable timer //定时器使能EX = enable exterior //外部使能(中断)PX = priority exterior //外部中断优先级PT = priority timer //定时器优先级PS = priority serial //串口优先级全局变量与局部变量c51中如何实现对全局变量的声明,注意项目含有多个文件,要声明一个全局变量,使得各模块都能使用该变量。

C51汇编111条指令

C51汇编111条指令
逻辑运算指令
54 逻辑与 ANL A, Rn 将累加器A的值和寄存器Rn的值进行与操作,结果保存到累加器A中
55 ANL A, direct 将累加器A的值和direct地址单元内的值进行与操作,结果保存到累加器A中
56 ANL A, @Ri 寄存器Ri内为RAM地址,将累加器A的值和该地址单元内的值进行与操作,结果保存到累加器A中
23 MOVX A , @DPTR 将DPTR寄存器所指外部RAM地址单元内的数据送累加器A
24 MOVX A, @Ri 寄存器Ri内为片外RAM地址,将该地址单元内的数据送累加器A
25 MOVX @Ri, A 寄存器Ri内为片外RAM地址,将该地址单元内的数据送累加器A
26 与ROM传送 MOVC A, @A+DPTR A+DPTR构成ROM地址,将该地址内的数据送累加器A内
85 CJNE A, #data, rel If(累加器A!= 立即数)则PC加2再加上rel作为目标地址
86 CJNE Rn, #data, rel If(寄存器Rn的值!= 立即数)则PC加2再加上rel作为目标地址
87 CJNE @Ri, #data, rel 寄存器Ri内为RAM地址,If(该地址单元的值!= 立即数)则PC加2再加上rel作为目标地址
66 逻辑异或 XRL A, Rn 将累加器A的值和寄存器Rn的值进行异或操作,结果保存到累加器A中
67 XRL A, direct 将累加器A的值和direct地址单元内的值进行异或操作,结果保存到累加器A中
68 XRL A, @Ri 寄存器Ri内为RAM地址,将累加器A的值和该地址单元内的值进行异或操作,结果保存到累加器A中
控制转移指令

51单片机查表指令

51单片机查表指令

51单⽚机查表指令51单⽚机查表指令51单⽚机具有两条查表指令,⽤于从 ROM 中读出预存的数据:MOVC A, @A + PCMOVC A, @A + DPTR问题:在“MOVC A,@A+DPTR”和“MOVC A,@A+PC”中,分别使⽤了DPTR和PC作基址,请问这两个基址代表什么地址?使⽤中有何不同?答案:使⽤@A+DPTR基址变址寻址时,DPTR为常数且是表格的⾸地址,A为从表格⾸址到被访问字节地址的偏移量。

使⽤@A+PC基址变址寻址时,PC仍是下条指令⾸地址,⽽A则是从下条指令⾸地址到常数表格中的被访问字节的偏移量。

PC是程序计数器,DPTR是数据指针。

⽤这个MOVC A,@A+DPTR⽐较⽅便的,DPTR是16位。

范围⼴。

建议使⽤。

这两条都是查表指令,MOVC A,@A+PC,只能给累加器A赋值,所以只能查这条指令所在地址以后256字节范围内的代码或常数。

⽽MOVC A,@A+DPTR,可以给DPTR赋给任何⼀个16位的地址值,所以查表范围可达整个程序存储器64K字节空间的代码或常数。

其中前⼀条指令的⽤法,⽐较难,使⽤的时候,需要计算⼀个“偏移量”。

不了解“指令的字节数”的⼈,都不清楚应该如何计算。

做⽽论道曾在以前的⽂章中,介绍过“偏移量”的⾃动计算⽅法,可见如下链接:--------------------最佳答案:51单⽚机汇编语⾔有⼀条查表指令是:MOVC A, @A + DPTR它不是单独使⽤的,要和 DB 伪指令配套使⽤。

例如:若累加器A中有⼀个0~9的数,请⽤查表法求出该数的平⽅值,设平⽅表表头地址为1000H。

程序如下:;-------------------------------------MOV DPTR, #1000HMOVC A, @A + DPTR……ORG 1000HDB 0, 1, 4, 9, 16, 25......;-------------------------------------DB 伪指令从 ROM 1000H 开始,顺序存放了⼀系列的“平⽅”数据。

MCS-51指令系统

MCS-51指令系统
18
4、控制转移类指令(二)
无条件转移:(LJMP,AJMP,SJMP,JMP—4条) LJMP addr16 长跳转指令
——可在64K范围内跳转 AJMP addr11 绝对跳转指令
——可在指令所在的2K范围内跳转 SJMP rel 相对跳转指令
——可在当前PC-128与+127范围内跳转 JMP @A+DPTR 间接长跳转指令
1
累加器清零/取反操作 (CLR,CPL—2条)
CLR A —对累加器清零
1 Byte 1 Tm
CPL A ——对累加器按位取非 1 Byte 1 Tm 15
3、逻辑运算及移位类指令(三)
逻辑运算指令在程序中的应用(下面的例子认为Acc 的内容为9AH)
逻辑与ANL运算用于对某些位进行清0或者保留: 例: ANL A, #0FH; 则(A) = 0AH
位清零/置位指令(4条): CLR bit(或C) —— (bit或 C)“0” SETB bit(或C) —— (bit或 C)“1”
位逻辑与/或/非指令(6条): ANL C,bit(或/bit) ORL C,bit(或/bit) CPL bit (或 C) 注: “/bit”表示对bit位先取反然后再参加运算
带借位减法(SUBB):(A) ← (A)- (Cy)- (第二操作数)
10
2、算术运算类指令(三)
加1/减1操作: (INC,DEC—9条) INC, DEC与用加/减法指令做加1/减1 操作不 同之处在于INC、DEC不影响标志位。
单字节乘/除运算: (MUL,DIV—2条) 两个单字节数的乘/除法运算只在A与B之间 进行。 MUL AB: (A)与(B)相乘, 积为16位数,

MCS51单片机指令系统

MCS51单片机指令系统

第一条指令为远查表指令,可以在64K的程序存储器空间寻 址。基地址寄存器为DPTR,其意思为,DPTR里面存放的是 程序存储器中数据表格的首地址,A为数据地址的偏移量。
这条指令执行以后,以 (A)+(DPTR)的数值为地址数 据就送进A里面来了,也就是从表格首地址开始以后的第(A) 个数据被送进A了。(举例子说明)
编写好的程序都放在程序存储器中,由于一个存储地址所 指示的存储单元只能存放一字节的数据。所以,在存放指令时, 必须将指令拆分成一个一个字节进行连续存放。
比如: 实现“累加器加10H”这条指令,其机器语言为 0111010000010000, 占用了两个字节,就必须拆成两个字节 进行连续存储。
但是,用二进制来表示比较麻烦,因此,也常用十六进制来 表示如:74H 10H来表示以上这条机器语言。可见,用十六进 制表示指令比较简单,但是,指令系统有上百条指令,不易记 住。所以,一般采用容易记住的一些缩写符号来表示机器语言,
2. 在指令中直接给出操作数的地址, 这种寻址方式就属
于直接寻址方式。在这种方式中, 指令的操作数部分直接 是操作数的地址。
比如:MOV A,30H;将30H里面的数送到A里面 MOV 21H,30H;将30H里面的数存放到21H里面 在MCS -51 单片机指令系统中, 直接寻址方式中可
以访问 3 种存储器空间: (1) 内部数据存储器的低 128 个字节单元(00H~
7. 位寻址 指按照位进行的寻址操作,(前面讲的都是按字节进
行的寻址操作)。该种寻址方式中, 操作数是内部RAM单元 中20H到2FH的128个位地址以及SFR中的11个可进行 位寻址的寄存器中的位地址寻址。
比如:MOV C,20H;就是将RAM中位寻址区中20H位地 址中的内容送给C。区别与MOV A,20H;这个是将内部 RAM中20H单元的内容送给A。

51单片机中查表指令的使用

51单片机中查表指令的使用

个偏移量,以补偿数据表首址与MoVc A,@A+PC后面下! 一条指令地址的差值。也就是说,基址加变址A+Pc中, !
PC虽然不能改变,但可将A中的数据进行调整(加上偏 移量),就能实现准确查表。实际应用中,使用MOVC A,@”Pc指令编写程序时,调整偏移量有以下几种处理 方法:
1.子程序法。将查表指令写成子程序,子程序后紧 跟着安排数据表。

MOV DPTR, #TABLE
MOV A, @A+DPTR

‘ ●



TABLE:DB……·

在实际的单片机应用系统中,往往需要扩展外部数!
据存储器或输入输出接口(如键盘和数码显示等)。在!
这种情况下,程序中就要用到数据指针DPTR,要将其指;
向外RAM地址(或键盘与显示器地址),利用Movx;
式。用MOVC A,@A+DPT财旨令查表,因为数据指针DPTR
是16位的,故数据表可安排在64KB的ROM的任意地址范l
围内。使用时只要将数据指针DPTR(基址寄存器)指向I
欲查数据表的首地址,将累加器A(变址参数寄存器)I
赋以要查表的数据,就可实现查表功能,查得的数据存l
在累加器A中。通用的程序如下:
A,@DPTR和MOVx@DPTR,A指令与外RAM进行数据交换。;
若此时还需要查表(如数码显示程序,需查找七段显示;
器的段码),使用MoVc A,@A+DPTR指令就不太方便。;
数据指针DPTR既要指向内部程序存储器RoM的数据表首;
址,又要指向外部RAM或其他接口的地址,这虽然可用;
堆栈等方法来实现,但比较麻烦。在这种情况下最好使!
应用设计
5 1单片机中查表指令的使用

大学课件MCS51单片机指令系统与汇编语言程序设计

大学课件MCS51单片机指令系统与汇编语言程序设计

ANL C, P ; (C)← (C)∧(P)
其中:P是PSW的第0位,C是PSW的第7位。
(4)字节符号地址(字节名称)加位序号的形式。对于部分特 殊功能寄存器(如状态标志寄存器PSW),还可以用其字节名 称加位序号形式来访问某一位。AC 如:
定义:操作数存放在MCS-51内部的某个工作寄存器Rn (R0~R7)或部分专用寄存器中,这种寻址方式称为 寄存器寻址。
特点:由指令指出某一个寄存器的内容作为操作数。 存放操作数的寄存器在指令代码中不占据单独的一个 字节,而是嵌入(隐含)到操作码字节中。
寻址范围:四组通用寄存器Rn(R0~R7)、部分专用 寄存器( A, B, DPTR, Cy )。
伪指令只出现在汇编前的源程序中,仅提供汇编用的某些控制 信息,不产生可执行的目标代码,是CPU不能执行的指令。
(1)定位伪指令ORG
格式:ORG n
其中:n通常为绝对地址,可以是十六进制数、标号或表达式。
功能:规定编译后的机器代码存放的起始位置。在一个汇编 语言源程序中允许存在多条定位伪指令,但每一个n值都应和前
2.2.2 直接寻址
定义:将操作数的地址直接存放在指令中,这种寻址方式称为 直接寻址。 特点:指令中含有操作数的地址。该地址指出了参与操作的数 据所在的字节单元地址或位地址。计算机执行它们时便可根据 直接地址找到所需要的操作数。
寻址范围:ROM、片内RAM区、SFR和位地址空间。P42
2.2.3 寄存器寻址
定义:指令中给出的操作数是一个可单独寻址的位地址,这种寻址 方式称为位寻址方式。
特点:位寻址是直接寻址方式的一种,其特点是对8位二进制数中 的某一位的地址进行操作。
寻址范围:片内RAM低128B中位寻址区、部分SFR(其中有83位 可以位寻址)。

常见51单片机指令及详解

常见51单片机指令及详解

常见51单片机指令及详解数据传递类指令(1)以累加器为目的操作数的指令MOV A,RnMOV A,directMOV A,@RiMOV A,#data第一条指令中,Rn代表的是R0-R7。

第二条指令中,direct就是指的直接地址,而第三条指令中,就是我们刚才讲过的。

第四条指令是将立即数data送到A中。

下面我们通过一些例子加以说明:MOV A,R1 ;将工作寄存器R1中的值送入A,R1中的值保持不变。

MOV A,30H ;将内存30H单元中的值送入A,30H单元中的值保持不变。

MOV A,@R1 ;先看R1中是什么值,把这个值作为地址,并将这个地址单元中的值送入A中。

如执行命令前R1中的值为20H,则是将20H单元中的值送入A中。

MOV A,#34H ;将立即数34H送入A中,执行完本条指令后,A中的值是34H。

(2)以寄存器Rn为目的操作的指令MOV Rn,AMOV Rn,directMOV Rn,#data这组指令功能是把源地址单元中的内容送入工作寄存器,源操作数不变。

(3)以直接地址为目的操作数的指令MOV direct,A 例: MOV 20H,AMOV direct,Rn MOV 20H,R1MOV direct1,direct2 MOV 20H,30HMOV direct,@Ri MOV 20H,@R1MOV direct,#data MOV 20H,#34H(4)以间接地址为目的操作数的指令MOV @Ri,A 例:MOV @R0,AMOV @Ri,direct MOV @R1,20HMOV @Ri,#data MOV @R0,#34H(5)十六位数的传递指令MOV DPTR,#data168051是一种8位机,这是唯一的一条16位立即数传递指令,其功能是将一个16位的立即数送入DPTR中去。

其中高8位送入DPH,低8位送入DPL。

例:MOV DPTR,#1234H,则执行完了之后DPH中的值为12H,DPL中的值为34H。

51单片机复习题

51单片机复习题

单片机0一、填空题1.在8051汇编指令格式中,唯一不能缺省的部分是。

2.当MCS-51执行MOVC A,@A+PC指令时,伴随着PSEN 读控制信号有效。

3.当MCS-51单片机复位时PSW=00H,这时当前的工作寄存器区是0 区,R4所对应的存储单元地址为04 H。

4.MCS-51有4个并行I\O口,其中P0—P3是准双向口,所以,由输出转输入时必须先写入 1 。

5.MCS-51的堆栈是软件填写堆栈指针临时在内部RAM 内开辟的区域.6.在MCS-51单片机应用系统中,外部设备与外部数据存储器传送数据时,使用MOVEX 指令。

二、单选题1.MCS-51系列单片机的指令系统共(A)条指令。

A、111B、112C、113D、1152.在CPU内部,反映程序运行状态或反映运算结果的寄存器是(B )。

A、PCB、PSWC、AD、SP3.外扩程序存储器的高8位地址来自(C )口。

A、P0B、P1C、P2D、P34.要访问MCS-51的特殊功能寄存器应选用的寻址方式是(C)。

A、寄存器间接寻址B、变址寻址C、直接寻址D、相对寻址5.MCS-51的并行I/O口信息有两种读取方法,一种是读引脚,还有一种是(A )。

A、读锁存器B、读数据C、读A累加器D、读CPU6.8051单片机中,唯一一个用户可以使用的16位寄存器是(D)。

A、PSWB、ACCC、SPD、DPTR7.指令MOV A ,20H的字节数是(B )。

A、1B、2C、3D、48.下列指令能使累加器A的最高位置1的是(D )。

A、ANL A,#7FHB、ANL A,#80HC、ORL A,#7FHD、ORL A,#80H9.8031单片机的定时器T1用作计数方式时(A )。

A、外部计数脉冲由T1(P3.5)输入B、外部计数脉冲由内部时钟频率提供C、外部计数脉冲由T0(P3.4)输入D、以上均不是10.指令 MOV R0,#20H中的20H是指(A)。

(完整版)51单片机汇编指令(全)

(完整版)51单片机汇编指令(全)

指令中常用符号说明Rn当前寄存器区的8个工作寄存器R0~R7(n=0~7)Ri当前寄存器区可作为地址寄存器的2个工作寄存器R0和R1(i=0,1)Direct8位内部数据寄存器单元的地址及特殊功能寄存器的地址#data表示8位常数(立即数)#data16表示16位常数Add16表示16位地址Addr11表示11位地址Rel8位代符号的地址偏移量Bit表示位地址@间接寻址寄存器或基址寄存器的前缀( )表示括号中单元的内容(( ))表示间接寻址的内容指令系统数据传送指令(8个助记符)助记符中英文注释MOV Move 移动MOV A , Rn;Rn→A,寄存器Rn的内容送到累加器AMOV A , Direct;(direct)→A,直接地址的内容送AMOV A ,@ Ri;(Ri)→A,RI间址的内容送AMOV A , #data;data→A,立即数送AMOV Rn , A;A→Rn,累加器A的内容送寄存器RnMOV Rn ,direct;(direct)→Rn,直接地址中的内容送RnMOV Rn , #data;data→Rn,立即数送RnMOV direct , A;A→(direct),累加器A中的内容送直接地址中MOV direct , Rn;(Rn)→direct,寄存器的内容送到直接地址MOV direct , direct;(direct)→direct,直接地址的内容送到直接地址MOV direct , @Ri;((Ri))→direct,间址的内容送到直接地址MOV direct , #data;8位立即数送到直接地址中MOV @Ri , A;(A)→@Ri,累加器的内容送到间址中MOV @Ri , direct;direct→@Ri,直接地址中的内容送到间址中MOV @Ri , #data; data→@Ri ,8位立即数送到间址中MOV DPTR , #data16;data16→DPTR,16位常数送入数据指针寄存器,高8位送入DPH,低8位送入DPL中(单片机中唯一一条16位数据传送指令)(MOV类指令共16条)MOVC Move Cod 查表指令MOVC A , @A+PC;PC+1→PC,(A+PC)→AMOVC A , @A+DPTR;(A+DPTR) →A(MOVC类指令共两条)MOVX Move External 与外部数据寄存区传送数据MOVX A , @DPTR;(DPTR)→A,DPTR间址单元内容送AMOVX @DPTR , A;A→(DPTR),A中内容送入DPTR间址单元MOVX A , @Ri;(Ri)→A,Ri间址单元内容送AMOVX @Ri , A;A→(Ri),A中内容送Ri间址单元(MOVX类指令4条)XCH Exchange 交换指令XCH A , Rn;Rn←→A , Rn的内容与A的内容交换XCH A , Direct; Direct ←→A ,直接地址的内容与A的内容交换XCH A , @Ri;(Ri)←→A ,间址的内容与A的内容交换XCHD Exchange Decimal十进制交换XCHD A , @Ri;(Ri.3~Ri.0) ←→A.3~A.0,间址内容低四位与A中内容低四位交换SWAP Swap 交换SWAP A;A.3~A.0←→ A.7~A.4 , A中低四位与高四位内容交换PUSH Push 入栈PUSH direct;SP+1→SP , (direct)→(SP);直接地址内容压入堆栈顶POP Pop 出栈POP direct;(SP)→(direct) , SP-1→SP;堆栈内容弹出到直接地址●算术运算类指令(7个助记符)ADD Add 加法运算ADD A , Rn;A + Rn→A , A与Rn的内容相加,结果送到A中ADD A , direct;(direct)+A→A,A与直接地址的内容相加,结果送到A中ADD A , @Ri;((Ri))+A→A, A与间址中的内容相加,结果送到A中ADD A , #data;data+A→A,A与立即数相加,和送入AADDC ADD with Carry 带进位加法ADDC A , Rn;A + Rn+CY→A , A与Rn的内容、进位状态相加,结果送到A中ADDC A , direct;(direct)+A+CY→A,A与直接地址的内容、进位状态相加,结果送到A中ADDC A , @Ri;((Ri))+A+CY→A, A与间址中的内容、进位状态相加,结果送到A中ADDC A , #data;data+A+CY→A,A与立即数、进位状态相加,和送入ASUBB Subbtract with Borrow 带进位减法SUBB A , Rn;A-Rn-CY→A,A减寄存器Rn的内容及进位标志,结果送ASUBB A , direct; A-(direct)-CY→A,A直接地址的内容及进位标志,结果送ASUBB A , @Ri; A-((Ri))-CY→A,A间址的内容及进位标志,结果送ASUBB A , #data; A-data-CY→A,A立即数及进位标志,结果送AMUL Multiply 乘法指令MUL AB;A x B→B和A,结果16位,高8位存入B,低8位存入A;若结果大于FFH,则将溢出标志OV置1DIV Divide 除法指令DIV AB;A÷B 商→A,余数→B;若除数为0,结果不确定,则将溢出标志OV置1INC Increment 加1指令INC A;A+1→A,A加1,结果放在AINC Rn; Rn +1→ Rn, Rn加1,结果放在RnINC direct; (direct)+1→ direct,直接地址的内容加1,结果放在该地址中INC @Ri;((Ri))+1→( Ri),间址中的内容加1,结果放在该间址中INC DPTR;(DPTR)+1→DPTR,数据指针内容加1,结果放在数据指针寄存器(DPTR)中DEC Decrement 减1指令INC A;A-1→A,A减1,结果放在AINC Rn; Rn -1→ Rn, Rn减1,结果放在RnINC direct; (direct)-1→ direct,直接地址的内容减1,结果放在该地址中INC @Ri;((Ri))-1→( Ri),间址中的内容减1,结果放在该间址中DA Decimal Adjust 十进制加法调整指令DA A;在加法指令后,把A中二进制码自动调整为BCD码;DA A只能更跟在ADD或ADDC加法指令后,不适用于减法●逻辑运算指令(9个助记符)ANL Logical And 逻辑与运算ANL A , Rn; (A)与(Rn)→A, A的内容与Rn中的内容相与,结果放在A中ANL A , direct; (A)与(direct)→A, A的内容与直接地址中的内容相与,结果放在A中ANL A , @Ri; (A)与((Ri))→A, A的内容与间址的内容相与,结果放在A中ANL A , #data; (A)与(data)→A, A的内容与立即数相与,结果放在A中ANL direct , A; (direct)与(A)→direct, 直接地址中的内容相与A的内容相与,结果放在直接地址中ANL direct , #data;(direct)与#data→direct, 直接地址中的内容相与立即数相与,结果放在直接地址中ORL Logical OR 逻辑或运算ORL A , Rn; (A) 或(Rn)→A, A的内容与Rn中的内容相或,结果放在A中ORL A , direct; (A) 或(direct)→A, A的内容与直接地址中的内容相或,结果放在A中ORL A , @Ri; (A) 或((Ri))→A, A的内容与间址的内容相或,结果放在A中ORL A , #data; (A) 或(data)→A, A的内容与立即数相或,结果放在A中ORL direct , A; (direct) 或A)→direct, 直接地址中的内容相与A的内容相或,结果放在直接地址中ORL direct , #data;(direct) 或#data→direct, 直接地址中的内容相与立即数相或,结果放在直接地址中XRL Logical exclusive or 逻辑异或运算ORL A , Rn; (A) 异或(Rn)→A, A的内容与Rn中的内容相异或,结果放在A中ORL A , direct; (A) 异或(direct)→A, A的内容与直接地址中的内容相异或,结果放在A中ORL A , @Ri; (A) 异或((Ri))→A, A的内容与间址的内容相异或,结果放在A中ORL A , #data; (A) 异或(data)→A, A的内容与立即数相异或,结果放在A中ORL direct , A; (direct) 或A)→direct, 直接地址中的内容相与A的内容相异或,结果放在直接地址中ORL direct , #data;(direct) 异或#data→direct, 直接地址中的内容相与立即数相异或,结果放在直接地址RL Rotate Left 循环左移指令RL A;每执行一次,A中的内容左移一位RR Rotate Right 循环右移指令RR A;每执行一次,A中的内容右移一位RLC Rotate Left with the Carry flag 带进位循环左移指令RLC A;每执行一次,CY和A中的内容左移一位RRC Rotate Right with the Carry flag带进位循环又移指令RRC A;每执行一次,CY和A中的内容右移一位注意:循环移位指令只能对A中的内容进行移位操作CPL Complement 取反指令(求补指令)CPL A;累加器内容按位取反,0变1,1变0CLR Clear 清零指令CLR A;累加器清零(A各位全变为0)●控制转移指令(9个助记符)LJMP Long Jump 长跳转指令LJMP add16;add16→PC,无条件跳转到add16地址,可在64KB范围内转移AJMP Absolute Jump 绝对跳转指令AJMP add11;add11→PC,无条件跳转到add11地址,可在2KB范围内转移SJMP Short Jump 短跳转指令SJMP rel;PC+2+rel→PC,rel是偏移量,8位有符号数(-127~127),可向前后跳转±128个地址单元JMP Jump 跳转指令JMP @A+DPTR;A+DPTR→PC,属于散转指令,无条件转向A与DPTR内容相加后形成的新地址JZ Jump if acc is Zero累加器为零转移JZ rel;A=0转向PC+2+rel→PC,A≠0,顺序执行JNZ Jump if acc is Not Zero累加器不为零转移JNZ rel;A≠0转向PC+2+rel→PC,A=0,顺序执行CJNE Compare and Jump if Not Equal比较不相等则转移CJNE A , direct , rel;A≠(direct)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC);(A)>(direct)CY=0, (A)<(direct)CY=1CJNE A , #data , rel;A≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC);(A)>(data)CY=0,( A)<(data)CY=1CJNE Rn , #data , rel; Rn≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC); (Rn) >(data)CY=0, (Rn) <(data)CY=1CJNE @Ri , #data , rel;((Ri))≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC); ((Ri))>(data)CY=0, ((Ri)) <(data)CY=1DJNE Decrement and Jump if Not Zero 减1不为0则转移DJNE Rn , rel;Rn-1→Rn, Rn≠0转向PC+2+rel→PC,否则顺序执行(PC+2→PC)DJNZ direct , rel;(direct-1)→direct, direct≠0转向PC+2+rel→PC,否则顺序执行(PC+2→PC)LCALL Long Call 长条用指令LCALL addr16;调用程序入口地址为addr16的之程序ACALL Absolute Call短调用ACALL addr11;调用程序入口地址为addr11的之程序RET ReturnRET;放在子程序最后,使程序准确返回到主程序断点处RETI Return from InterruptRETI;中断返回指令,能清楚优先级状态NOP No Operation 空操作指令NOP;空操作,产生一个机器周期延时●位操作指令MOV Move 数据传送指令MOV C , bit;(bit)→C,寻址位的状态送入CMOV bit , C;(C)→bit,C的转态送入地址中CLR Clear 清零指令CLR C;0→C,清零累加器CLR bit;清零直接寻址位CPL Complement 取反指令(求补指令)CPL C;c取反CPL bit;直接寻址位取反SETB Set Bit 置位SETB C;C置1SETB bit;直接寻址位置1ANL And Logical 与逻辑运算ANL C , bit;直接寻址位与C相与,结果放在CANL C , /bit; 直接寻址位与非C相与,结果放在CORL OR Logical 或逻辑运算ORL C , bit;直接寻址位与C相或,结果放在CORL C , /bit; 直接寻址位与非C相或,结果放在CJC Jump if Carry is set 进位位为1则转移JC rel;C=1,转向PC+2+rel→PC,否则顺序执行PC+2→PCJNC Jump if Carry is Not set 进位位为不为1则转移JNC rel;C=0,转向PC+2+rel→PC,否则顺序执行PC+2→PCJB Jump if Bit is set 进位位为1则转移JB bit , rel;(bit)=1,转向PC+3+rel→PC,否则顺序执行PC+3→PCJNB Jump if Bit is Not set 进位位为1则转移JNB bit , rel;(bit)=0,转向PC+3+rel→PC,否则顺序执行PC+3→PCJBC Jump if Bit is set and Clear bit指定位等于1转移并清该位JBC bit , rel; (bit)=1,转向PC+3+rel→PC,同时0→bit否则顺序执行PC+3→PC伪指令ORG Origin 代码起始地址指令ORG 0000HMOV A , #0010H;这条指令从0000H这个地址单元开始写起END End 汇编程序结束指令END;汇编指令结束DB字节定义伪指令ORG 1000HDB 01H , 02H;则(1000H)=01H,(1001H)=02HORG 1100HDB ‘01’;则(1100H)=30H,30H是0的ASCII码,(1101H)=31H,31H是1的ASCII码DW双字节定义伪指令ORG 2000HDW 2546H , 0178H; (2000H)=25H, (2001H)=46H, (2002H)=01H, (2003H)=78H,EQU数据赋值伪指令X EQU n;将n的值赋给xBIT位数据赋值伪指令y BIT b;y是用户定义标号,b为0或1MACRO宏指令宏指令名MACRO 形式参数······代码段······ENDM;宏指令定义结束寻址方式及相关的存储空间寻址方式寻址范围寄存器寻址R0~R7A 、B、C(CY)、AB(双字节)、DPTR(双字节)、PC(双字节)直接寻址内部RAM低128字节特殊功能寄存器内部RAM位寻区的128个位特殊功能寄存器中可寻址的位寄存器间接寻址内部数据存储器RAM【@R0,@R1,@SP(仅PUSH,POP)】内部数据存储器单元的低4位(@R0,@R1)外部RAM或I/O口(@R0,@R1,@DPTR)立即寻址程序存储器(常数)程序存储器(@A+PC,@A+DPTR)基寄存器加变址寄存器间接寻址。

51系列单片机指令系统

51系列单片机指令系统

MOV DPTR,#1000H MOVX A,@DPTR INC DPTR, MOVX @DPTR,A 7、程序存储器向累加器A传送指令 MOVC A,@A+DPTR MOV DPTR,#100H MOV A,R0 MOVC A,@A+DPTR ORG 0100H. DB 0,1,4,9,16,25 8、堆栈操作指令 PUSH direct POP direct 第一条指令称之为入栈指令,就是将direct中的内容 送入堆栈中,第二条指令称之为弹出指令,就是将堆栈 中的内容送回到direct中。
位寻址时,操作数是二进制数的某一位,其位地 址出现在指令中,例如指令 • SETB bit ;(bit) ← l • 51系列单片机可用于位寻址的空间是内部RAM的可 位寻址区和SFR区中的字节地址可以被8整除(即地址以 “0”或“8”结尾)的寄存器所占空间,寻址方式如表 2-2所示。
表2-2 寻址方式一览表
寻 址 方 式
寻 址 范 围
R0-R7 ,DPTR ACC,B,C(CY位)
内部RAM 00H-7FH 特殊功能寄存器 80H-FFH 内部RAM位寻址区 (20H-2FH): 位地址00H-7FH 可寻址的特殊功能寄存器: 位地址 80H-F7H 以数据指针表示操作数 内部RAM 00H-7FH 外部RAM或I/O端口 00H-FFH / 0000H-FFFFH
图2-3 寄存器间接寻址
图2-4 立即寻址
4、立即寻址

立即寻址时,指令中直接给出操作数。例如指令 MOV A,#76H ;数据76H送累加器 A。 • 立即数寻址过程如图2-4所示。
5、变址寻址

变址寻址时,指定的变址寄存器的内容与指令中 给出的偏移量相加,所得的结果作为操作数的地址。 例如指令MOVC A, @A+DPTR ;((A)+(DPTR))送 A。变址寻址过程如图2-5所示。 不论用DPTR或PC作为基址指针,变址寻址方式都 只适用于51系列单片机的程序存储器,通常用于读取 数据表也就是将程序存储器中的数送入A中。因此也称 为查表指令,常用此指令来查一个已做好在程序存储 器中的表格,这条指令采用变址寻址。

51单片机汇编指令总结

51单片机汇编指令总结

51单片机汇编指令总结数据传输指令一.片内RAM数据传输指令1.以累加器A为目的操作数的指令:MOV A , RnMOV A , directMOV A , @RiMOV A , #data2.以寄存器Rn为目的操作数的指令:MOV Rn , AMOV Rn ,directMOV Rn ,data3.以直接地址为目的操作数的指令:MOV direct ,AMOV direct ,RnMOV direct1 ,derect2MOV direct ,@RiMOV direct ,#data4.间接地址为目的操作数的指令:MOV @Ri ,AMOV @Ri ,directMOV @Ri ,#data5.十六位数据传送指令:MOV DPTR , #data16二.累加器A与片外RAM数据传送指令:MOVX A ,@RiMOVX A , @DPTRMOVX @Ri ,AMOVX @DPTR ,A三.查表寻址:MOVC A ,@A+DPTR (先PC←(PC)+1,后A←((A)+(DPTR)))+MOVC A ,@A+PC (先PC←(PC)+1,后A←((A)+(PC)))四.交换指令:1.字节交换指令:XCH A ,RnXCH A ,directXCH A ,@Ri2.半字节交换指令:XCHD A ,@Ri3.累加器半字节交换指令:SWAP A五.栈操作指令:1.PUSH(入栈指令)PUSH direct2.POP(出栈指令)POP direct算术运算指令:一.加法减法指令:1.加法指令:ADD A ,RnADD A ,directADD A ,@RiADD A ,#data2.带进位加法指令:ADDC A ,Rn A←(A)+(Rn)+CYADDC A ,direct A←(A)+(direct)+CYADDC A ,@Ri A←(A)+((Ri))+CYADDC A ,#data A←(A)+(data)+CY3.带借位减法指令:SUBB A ,Rn A←(A)-CY-(Rn)SUBB A ,direct A←(A)-CY-(direct)SUBB A ,@Ri A←(A)-CY-((Ri))SUBB A ,#data A←(A)-CY-#data二.乘法除法指令:1.乘法指令:MUL AB BA←(A) ×(B)高字节放在B中,低字节放在A中2.除法指令:DIV AB A←(A) ÷(B)的商,(B) ←(A) ÷(B)的余数三.加1减1指令:1.加1指令:INC A A←(A)+1INC Rn Rn←(Rn)+1INC direct direct←(direct)+1INC @Ri (Ri) ←((Ri))+1INC DPTR DPTR←(DPTR)+12.减1指令:DEC ADEC RnDEC directDEC @Ri四.十进制调制指令:DA A 调整累加器A的内容为BCD码逻辑操作指令:一.逻辑与、或、异或指令:1.逻辑与指令:ANL A ,RnANL A ,directANL A ,@RiANL A ,#data2.逻辑或这令:ORL A ,RnORL A ,directORL A ,@RiORL A ,#dataORL direct ,AORL direct ,#data3.逻辑异或指令:XRL A ,RnXRL A ,directXRL A ,@RiXRL A ,#dataXRL direct ,AXRL direct ,#data二.清零、取反指令:1.累加器A清零指令:CRL A2.累加器A取反指令:CPL A三.循环位移指令:1.累加器A循环左移指令:RL A2.累加器A循环右移指令:RR A3.累加器A连同进位位循环左移指令:RLC A4. 累加器A连同进位位循环右移指令:RRC A控制转移指令:一.无条件转移指令:1.绝对转移指令:AJMP addr11 (先PC+2,然后将addr11的低十位传给PC,PC的高六位不变)2.长转移指令:LJMP addr16 (用addr16的值替换PC的值)3.相对转移(短转移)指令:SJMP rel(带符号的偏移字节数)(PC+2,再加rel赋值给PC)4.间接转移指令:JMP @A+DPTR (A)+(DPTR) →(PC)二.条件转移指令:1.累加器判零转移指令:JZ rel 先PC+2;后判断,A为0时转移,PC+rel赋值给PC;否则顺序执行JNZ rel 先PC+2,后判断,A不为0时转移,PC+rel赋值给PC;否则顺序执行2.比较转移指令:CJNE 目的操作数,源操作数,relCJNE A,direct,rel 先PC+3传回PC,再比较目的操作数和原操作数CJNE A,#data,rel 目>源时,程序转移,PC+rel传回PC且CY=0CJNE Rn,#data,rel 目=源时,程序顺序执行CJNE @Ri,#data,rel 目<源时,程序转移,PC+rel传回PC且CY=13.减一非0指令:DJNZ Rn,rel 先PC\+2,Rn-1,当Rn为0时程序顺序执行,否则PC+rel传回PCDJNZ direct,rel 先PC+3,direct-1,direct为0时程序顺序执行,否则PC+rel 传回PC二.子程序调用、返回指令:1.绝对调用指令ACALL:ACALL addr11 先PC+2,SP+1将PC的低八位存入SP;SP+1,将PC的高八位存入SP。

单片机指令系统

单片机指令系统

② 外部传送指令
指令格式: 指令格式:
目的操作数和源操作数 中必须有一个是A 实现片外数据存储器和A累加器之间的数据传送。 实现片外数据存储器和A累加器之间的数据传送。
MOVX 目的操作数,源操作数 目的操作数,
例:位地址的表示方法(4种) 40H 位地址的表示方法( MOV C,40H ;
28H 设指令执行前 C = 1,位地址 ,C 40H 存储器单元如图, 执行指令后, C 40H 存储器单元如图 , 执行指令后 ,–MOV EA29H = 0 ?
–MOV 20H ,C 位编语言: 汇编语言: A, MOV A,R0 R6, MOV R6,#32H 40H, MOV 40H,#100H
11101000 机器语言: 机器语言: E8H 7E 32H 75 40 64H 01111110 00110010 01110101 01000000 01100100
例:顺序执行下列指令序列,求每一步执行结果。 顺序执行下列指令序列,求每一步执行结果。 ;A= 30H A, MOV A,#30H ;(4FH)= 30H 4FH, MOV 4FH,A R0, MOV R0,#20H ;R0= 20H @R0, MOV @R0,4FH ;(20H)= 30H 21H, MOV 21H,20H ;(21H)= 30H 例:用两种寻址方式实现,将片内RAM 60H单元的数据 用两种寻址方式实现,将片内RAM 60H单元的数据 传送给累加器A 传送给累加器A。 解: MOV A,60H MOV R0,#60H R0, A, MOV A,@R0
注意:数值前加#符号表 注意:数值前加# 示该数是立即数
● 变址寻址方式是单片机中用于访问程序存储器的 变址寻址方式是单片机中用于访问程序存储器 程序存储器的 寻址方式。 寻址方式。 数据在程序存储器 程序存储器中 ● 数据在程序存储器中,指令给出的寄存器中为数 据的基地址和偏移地址。( 据的基地址和偏移地址。(数据地址 = 基地址 + 偏移地

MCS-51单片机指令周期表

MCS-51单片机指令周期表

MCS-51单片机指令周期表mcs-51指令速查表类别指令格式功能简述字节数周期MOV A,Rn寄存器送累加器11MOV Rn,A累加器送寄存器11MOV A,@Ri内部RAM单元送累加器11MOV@Ri,A累加器送内部RAM单元11MOV A,#data立即数送累加器21MOV A,direct直接寻址单元送累加器21MOV direct,A累加器送直接寻址单元21MOV Rn,#data立即数送寄存器21MOV direct,#data立即数送直接寻址单元32MOV@Ri,#data立即数送内部RAM单元21MOV direct,Rn寄存器送直接寻址单元22数据传送类指令期MOV Rn,direct直接寻址单元送寄存器22MOV direct,@Ri内部RAM单元送直接寻址单元22MOV@Ri,direct直接寻址单元送内部RAM单元22MOV direct2,direct1直接寻址单元送直接寻址单元32MOV DPTR,#data1616位立即数送数据指针32MOVX A,@Ri外部RAM单元送累加器(8位地址)12MOVX@Ri,A累加器送外部RAM单元(8位地址)12MOVX A,@DPTR外部RAM单元送累加器(16位地址)12MOVX@DPTR,A累加器送外部RAM单元(16位地址)12MOVC A,@A+DPTR查表数据送累加器(DPTR为基址)12MOVC A,@A+PC查表数据送累加器(PC为基址)12XCH A,Rn累加器与寄存器交换11算术运算类指令XCH A,@Ri累加器与内部RAM单元交换11XCHD A,direct累加器与直接寻址单元交换21XCHD A,@Ri累加器与内部RAM单元低4位交换11SWAP A累加器高4位与低4位交换11POP direct栈顶弹出指令直接寻址单元22PUSH direct直接寻址单元压入栈顶22ADD A,Rn累加器加寄存器11ADD A,@Ri累加器加内部RAM单元11ADD A,direct累加器加直接寻址单元21ADD A,#data累加器加立即数21ADDC A,Rn累加器加寄存器和进位标志11ADDC A,@Ri累加器加内部RAM单元和进位标志11ADDC A,#data累加器加立即数和进位标志21ADDC A,direct累加器加直接寻址单元和进位标志21INC A累加器加111INC Rn寄存器加111INC direct直接寻址单元加121INC@Ri内部RAM单元加111INC DPTR数据指针加112DA A十进制调整11SUBB A,Rn累加器减寄存器和进位标志11SUBB A,@Ri累加器减内部RAM单元和进位标志11SUBB A,#data累加器减立即数和进位标志21SUBB A,direct累加器减直接寻址单元和进位标志21DEC A累加器减111DEC Rn寄存器减111DEC@Ri内部RAM单元减111DEC direct直接寻址单元减121MUL AB累加器乘寄存器B14DIV AB累加器除以寄存器B14ANL A,Rn累加器与寄存器11逻辑运算类指令ANL A,@Ri累加器与内部RAM单元11ANL A,#data累加器与立即数21ANL A,direct累加器与直接寻址单元21ANL direct,A直接寻址单元与累加器21ANL direct,#data直接寻址单元与立即数31ORL A,Rn累加器或寄存器11ORL A,@Ri累加器或内部RAM单元11ORL A,#data累加器或立即数21ORL A,direct累加器或直接寻址单元21ORL direct,A直接寻址单元或累加器21ORL direct,#data直接寻址单元或立即数31XRL A,Rn累加器异或寄存器11XRL A,@Ri累加器异或内部RAM单元11XRL A,#data累加器异或立即数21XRL A,direct累加器异或直接寻址单元21XRL direct,A直接寻址单元异或累加器21XRL direct,#data直接寻址单元异或立即数32RL A累加器左循环移位11RLC A累加器连进位标志左循环移位11RR A累加器右循环移位11RRC A累加器连进位标志右循环移位11CPL A累加器取反11CLR A累加器清零11ACCALL addr112KB范围内绝对调用22AJMP addr112KB范围内绝对转移22LCALL addr162KB范围内长调用32LJMP addr162KB范围内长转移32SJMP rel相对短转移22JMP@A+DPTR相对长转移12RET子程序返回12RET1中断返回12控制转移类指令JZ rel累加器为零转移22JNZ rel累加器非零转移22CJNE A,#data,rel累加器与立即数不等转移32CJNE A,direct,rel累加器与直接寻址单元不等转移32CJNE Rn,#data,rel寄存器与立即数不等转移32CJNE@Ri,#data,rel RAM单元与立即数不等转移32DJNZ Rn,rel寄存器减1不为零转移22DJNZ direct,rel直接寻址单元减1不为零转移32NOP空操作11MOV C,bit直接寻址位送C21MOV bit,C C送直接寻址位21CLR C C清零11CLR bit直接寻址位清零21CPL C C取反11CPL bit直接寻址位取反21SETB C C置位11SETB bit直接寻址位置位21布尔操作类指令ANL C,bit C逻辑与直接寻址位22ANL C,/bit C逻辑与直接寻址位的反22ORL C,bit C逻辑或直接寻址位22ORL C,/bit C逻辑或直接寻址位的反22JC rel C为1转移22JNC rel C为零转移22JB bit,rel直接寻址位为1转移32JNB bit,rel直接寻址为0转移32JBC bit,rel直接寻址位为1转移并清该位32。

MCS-51单片机指令系统-数据传送类指令

MCS-51单片机指令系统-数据传送类指令

• 例 从片外程序存储器2000H单元 开始存放0~9的平方值,以DPTR作 为基址寄存器进行查表得3的平方 值。
1FFDH 1FFEH 1FFFH 2000H 0 1 4 9 16 25 36 49 64 81
• • • • •
如果用以DPTR为基址寄存器 2001H 的查表指令,其程序如下: MOV DPTR, #2000H;置表首地址 MOV A, #03H MOVC A, @A+DPTR 2009H
• 设MOVC指令所在地址(PC)=1FFDH,则 偏移量=2000H-(1FFDH+1)=02H。 • 相应的程序如下: MOV A,#03H ;(A)←03H ADD A,#02H ;用加法指令 进 行地址调整 MOVC A,@A+PC ;(A)←(A+PC+1) 执行结果为:(PC)=1FFEH,(A)=09。
• 前一条指令采用DPTR作基址寄存器,因此可以很方便地把 一个16位地址送到DPTR,实现在整个64 KB程序存储器单 元到累加器A的数据传送。即数据表格可以存放在程序存 储器64 KB地址范围的任何地方。 • 后一条指令以PC作为基址寄存器,CPU取完该指令操作码 时PC会自动加1,指向下一条指令的第一个字节地址,即 此时是用(PC)+1作为基址的。另外,由于累加器A中的内 容为8位无符号数,这就使得本指令查表范围只能在256个 字节范围内(即(PC)+1H~(PC)+100H),使表格地址空间分 配受到限制。同时编程时还需要进行偏移量的计算,即 MOVC A,@A+PC指令所在地址与表格存放首地址间的距离 字节数的计算,并需要一条加法指令进行地址调整。偏移 量计算公式为: • 偏移量 = 表首地址-(MOVC指令所在地址+1)

mcs51单片机指令集

mcs51单片机指令集

一个单片机所需执行指令的集合即为单片机的指令系统。

单片机使用的机器语言、汇编语言及高级语言,但不管使用是何种语言,最终还是要“翻译”成为机器码,单片机才能执行之。

现在有很多半导体厂商都推出了自己的单片机,单片机种类繁多,品种数不胜数,值得注意的是不同的单片机它们的指令系统不一定相同,或不完全相同。

但不管是使用机器语言、汇编语言还是高级语言都是使用指令编写程序的。

所谓机器语言即指令的二进制编码,而汇编语言则是指令的表示符号。

在指令的表达式上也不会直接使用二进制机器码,最常用的是十六进制的形式。

但单片机并不能直接执行汇编语言和高级语言,都必须通过汇编器“翻译”成为二进制机器码方能执行,但如果直接使用二进制来编写程序,那将十分不便,也很难记忆和识别,不易编写、难于辨读,极易出错,同时出错了也相当难查找。

所以现在基本上都不会直接使用机器语言来编写单片机的程序。

最好的办法就是使用易于阅读和辨认的指令符号来代替机器码,我们常称这些符号为助记符,用助记符的形式表示的单片机指令就是汇编语言,为便于记忆和阅读,助记符号通常都使用易于理解的英文单词和拼音字母来表示。

每种单片机都有自己独特的指令系统,那么指令系统是开发和生产厂商定义的,如要使用其单片机,用户就必须理解和遵循这些指令标准,要掌握某种(类)单片机,指令系统的学习是必须的。

MCS-51共有111条指令,可分为5类:[1].数据传送类指令(共29条)[2].算数运算类指令(共24条)[3].逻辑运算及移位类指令(共24条)[4].控制转移类指令(共17条)[5].布尔变量操作类指令(共17条)一些特殊符号的意义在介绍指令系统前,我们先了解一些特殊符号的意义,这对今后程序的编写都是相当有用的。

Rn——当前选中的寄存器区的8个工作寄存器R0—R7(n=0-7)。

Ri——当前选中的寄存器区中可作为地址寄存器的两个寄存器R0和R1(i=0,1)direct—内部数据存储单元的8位地址。

51单片机实验程序

51单片机实验程序

用查表方式编写y=x13+x23+x33。

(x为0~9的整数)#include<reg51。

h>void main(){int code a[10]={0,1,8,27,64,125,216,343,512,729};//将0~9对应的每位数字的三次方的值存入code中,code为程序存储器,当所存的值在0~255或-128~+127之间的话就用char,而现在的值明显超过这个范围,用int较合适.int的范围是0~65535或-32768~32767。

int y,x1,x2,x3;//此处定义根据习惯,也可写成char x1,x2,x3但是变量y一定要用int 来定义。

x1=2;x2=4;x3=9;//x1,x2,x3三个的值是自定的,只要是0~9当中的数值皆可,也可重复.y=a[x1]+a[x2]+a[x3];while(1);//单片机的程序不能停,这步就相当于无限循环的指令,循环的内容为空白。

}//结果的查询在Keilvision软件内部,在仿真界面点击右下角(一般初始位置是右下角)的watch的框架内双击“double-click or F2 to add”文字输入y后按回车,右侧会显示其16进制数值如0x34,鼠标右键该十六进制,选择第一行的decimal,可查看对应的10进制数。

1、有10个8位二进制数据,要求对这些数据进行奇偶校验,凡是满足偶校验的数据(1的个数为偶数)都要存到内RAM50H开始的数据区中。

试编写有关程序。

#include〈reg51。

h>void main(){int a[10]={0,1,5,20,24,54,64,88,101,105};//将所要处理的值存入RAM中,这些可以根据个人随意设定,但建议不要超过0~255的范围.char i; //定义一个变量char *q=0x50;//定义一个指针*q指向内部0x50这个地址。

for(i=9;i〉=0;i--)//9~0循环,共十次,也可以用for(i=0;i〈10;i++){ACC=a[i];//将a[i]的值赋给累加器ACCif (P==0)//PSW0位上的奇偶校验位,如果累加器ACC内数值1的个数为偶数那么P为0,若为奇数,P为1。

单片机指令表汇总

单片机指令表汇总

51单片机指令表汇总51单片机是一种广泛应用的微控制器,其指令集是进行编程的基础。

下面将51单片机的指令表进行汇总,以帮助初学者更好地理解其指令集。

一、数据传输指令1、MOV指令:将源操作数的内容传送到目标操作数。

2、XCH指令:将两个操作数的内容互换。

3、MOVC指令:从外部存储器将数据传送到目标操作数。

4、MOVX指令:将外部存储器中的数据传送到目标操作数。

5、PUSH指令:将数据压入堆栈。

6、POP指令:从堆栈中弹出数据。

二、算术运算指令1、ADD指令:将两个操作数相加,并将结果存放在目标操作数中。

2、SUB指令:从目标操作数中减去源操作数,并将结果存放在目标操作数中。

3、MUL指令:将两个操作数相乘,并将结果存放在目标操作数中。

4、DIV指令:将目标操作数除以源操作数,并将结果存放在目标操作数中。

5、ANL指令:对目标操作数和源操作数进行按位与运算,并将结果存放在目标操作数中。

6、ORL指令:对目标操作数和源操作数进行按位或运算,并将结果存放在目标操作数中。

7、XRL指令:对目标操作数和源操作数进行按位异或运算,并将结果存放在目标操作数中。

8、CPL指令:对目标操作数进行按位取反运算,并将结果存放在目标操作数中。

9、INC指令:将目标操作数加1。

10、DEC指令:将目标操作数减1。

11、ASR指令:将目标操作数右移n位,最高位用符号位补齐。

12、LSR指令:将目标操作数右移n位,最低位用0补齐。

13、ROL指令:将目标操作数循环左移n位,最高位移入最低位。

14、ROR指令:将目标操作数循环右移n位,最低位移入最高位。

单片机汇编指令表一、概述在单片机的世界里,汇编语言扮演着举足轻重的角色。

它是一种低级语言,能够直接与硬件进行交互,提供高效的代码执行效率。

下面,我们将详细列出一些常见的单片机汇编指令,以及它们的功能。

二、指令表1、MOV指令:用于将数据从一个寄存器移动到另一个寄存器。

例如,MOV R1, R2将把 R2的内容移动到 R1中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
MOVC A,@A+PC MOVC A,@A+DPTR
MOVC—程序存储器ROM向累加器A传送数据的指令 A—累加器,用于保存临时数据 PC—程序计数指针,PC的值等于当前要执行的指令的存放地址(举例) DPTR—16位寄存器,在查表程序中,DPTR的值一般等于待查数据表的首
地址。 @—表示间接寻址方式。
此条指令的含义是将累加器A中的值与寄存器DPTR中的值 相加,相加后的结果是程序存储器ROM中的某个存储单元 的地址。将这个地址中的数据传送到A中保存起来。
3
二、查表程序格式
在使用时,将DPTR赋值为欲查数据表的首地 址,累加器A赋值为要查的数据,即可实现查 表功能,查得的数据保存在A中。通用格式如 下: MOV DPTR,#TABLE MOVC A,@A+DPTR ……(其他程序段) TABLE:DB ……(数据库)
后面的数,即0~5的平方值0,1,4,9,16,25存放 在ROM中。
③待查的数据保存在R0中,可根据需 要进行修改。
6
三、举例
④ 数据表(平方表)在ROM中存放的示意图: 是一个具 体的值。只不过在这里, 用TABLE这个标号来 表示更为方便而已。)
4
三、举例
例1:将累加器A中的数(0~5),用查表的方法求 平方值。 MOV R0,#待查值 MOV DPTR,#TABLE MOV A,R0 MOVC A,@A+DPTR (显示程序段……) TABLE: DB 0,1,4,9,16,25
5
三、举例
讲解:①TABLE是数据表首地址的标号。 ②DB是一条伪指令,它的用途是将其
左移2次,右移2次,闪烁2次(延时的时间 0.2秒)。
10
三、举例
2、电路原理图 控制流水灯实验\流水灯.DSN 3、设计思路
把控制码建成一个表,而利用MOVC A,@ A+DPTR做取码的操作,就可方便地处理一 些复杂的控制动作
11
三、举例 4、流程图
12
三、举例 5、程序段
查表指令控制流水灯.txt
地址,到ROM中相应单元去取数。程序中该单元的数据为4,正是2的平 方。 (显示程序段……) TABLE: DB 0,1,4,9,16,25
8
三、举例 例2:基于单片机的简易计算器设计 基于单片机的简易计算器.doc
9
三、举例
例3:用查表方式控制广告灯显示
1. 实验任务 利用取表的方法,使端口P1做单一灯的变化:
模块七 查表指令
1
在日常生活中,很多场合需要单片机控制电 路做复杂的显示或运算。如大型的LED中文 显示屏,复杂的数据计算等。通常的做法是: 事先做好数据库(比如汉字库),然后让单 片机通过“查表”的方式调用数据库中的内 容进行相应的显示或其他操作。
2
一、指令讲解
51单片机指令系统中,有两个查表指令。
7
三、举例
⑤程序执行情况分析: MOV R0,#2;待查2的平方,将R0赋值为2 MOV DPTR,#TABLE;将平方表的首地址送入DPTR中,假
设为1000H(标号为TABLE) MOV A,R0;A=R0=2 MOVC A,@A+DPTR;将A与DPTR相加,即1002H(TABLE+2),以该值为
相关文档
最新文档