锂离子电池基本原理、配方及工艺流程
锂离子电池生产工艺流程
锂离子电池生产工艺流程一、原理1.0 正极构造LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理3.1 充电过程如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)负极上发生的反应为6C+XLi++Xe=====LixC63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二、工艺流程三、电池不良项目及成因:1.容量低产生原因:a. 附料量偏少;b. 极片两面附料量相差较大;c. 极片断裂;d. 电解液少;e. 电解液电导率低;f. 正极与负极配片未配好;g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透)j. 分容时未充满电; k. 正负极材料比容量小。
2.内阻高产生原因:a. 负极片与极耳虚焊;b. 正极片与极耳虚焊;c. 正极耳与盖帽虚焊;d. 负极耳与壳虚焊;e. 铆钉与压板接触内阻大;f. 正极未加导电剂;g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。
3.电压低产生原因:a. 副反应(电解液分解;正极有杂质;有水);b. 未化成好(SEI膜未形成安全);c. 客户的线路板漏电(指客户加工后送回的电芯);d. 客户未按要求点焊(客户加工后的电芯);e. 毛刺;f. 微短路;g. 负极产生枝晶。
(完整版)锂离子电池工作原理
1 锂离子电池基础知识锂是锂离子电池的核心,它是最轻的金属元素,金属锂的比重只有水的一半,铝是较轻的金属,锂的比重只有铝的五分之一。
锂的电负性是所有金属中最负的,锂离子的还原电位高达-3V。
根据计算,1克锂转化为锂离子时所能得到的电荷数为3860mAh,加之它的大于3V的工作电压,锂作为电池的负极材料当之无愧轻量级的大力士。
早期负极为金属锂的“锂电池”,但金属锂的化学活性太大,充电时产生的枝晶会使电池短路,目前尚未真正解决其安全问题。
经过长期的探索、研究,发现锂可与许多金属形成合金,其活性要小许多,更奇妙的是锂可以在许多层状结构的物质中可逆地嵌入和脱出。
锂以这些材料为载体就安全多了。
锂离子电池的未来将发展新的正负极材料,如部分动力电池:负极LiC+正极LiMn2O4锂聚合物电池。
在正、负电极粘结剂、电解质三者中任何一种使用高分子聚合物的锂离子电池就可以成为锂聚合物电池。
现在常见的是使用高分子胶体取代常规液体电解质的锂聚合物电池。
1.1锂离子电池简介•正极采用锂化合物Li X CoO2、Li X NiO2、LiFePO4或Li X MnO2•负极采用锂-碳层间化合物Li X C6。
•电解质为溶解有锂盐LiPF6、LiAsF6等有机溶液。
充电池时,此时正极上的电子从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态。
放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
锂离子电池基本原理配方及工艺流程
锂离⼦电池基本原理配⽅及⼯艺流程锂离⼦电池原理及⼯艺流程⼀、原理1.0 正极构造LiCoO2+ 导电剂+ 粘合剂(PVDF) + 集流体(铝箔)正极2.0 负极构造⽯墨+ 导电剂+ 增稠剂(CMC) + 粘结剂(SBR) + 集流体(铜箔)负极3.0⼯作原理3.1 充电过程:⼀个电源给电池充电,此时正极上的电⼦e从通过外部电路跑到负极上,正锂离⼦Li+从正极“跳进”电解液⾥,“爬过”隔膜上弯弯曲曲的⼩洞,“游泳”到达负极,与早就跑过来的电⼦结合在⼀起。
负极上发⽣的反应为6C + xLi++ x e?→Li x C63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加⼀个可以随电压变化⽽变化的可变电阻,恒阻放电的实质都是在电池正负极加⼀个电阻让电⼦通过。
由此可知,只要负极上的电⼦不能从负极跑到正极,电池就不会放电。
电⼦和Li+都是同时⾏动的,⽅向相同但路不同,放电时,电⼦从负极经过电⼦导体跑到正极,锂离⼦Li+从负极“跳进”电解液⾥,“爬过”隔膜上弯弯曲曲的⼩洞,“游泳”到达正极,与早就跑过来的电⼦结合在⼀起。
3.3 充放电特性电芯正极采⽤LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是⼀种层结构很稳定的晶型,但当从LiCoO2拿⾛x个Li离⼦后,其结构可能发⽣变化,但是否发⽣变化取决于x的⼤⼩。
通过研究发现当x > 0.5时,Li1-x CoO2的结构表现为极其不稳定,会发⽣晶型瘫塌,其外部表现为电芯的压倒终结。
所以电芯在使⽤过程中应通过限制充电电压来控制Li1-X CoO2中的x值,⼀般充电电压不⼤于4.2V那么x⼩于0.5 ,这时Li1-X CoO2的晶型仍是稳定的。
负极C6其本⾝有⾃⼰的特点,当第⼀次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有⼀部分Li留在负极C6中⼼,以保证下次充放电Li的正常嵌⼊,否则电芯的压倒很短,为了保证有⼀部分Li留在负极C6中,⼀般通过限制放电下限电压来实现:安全充电上限电压≤ 4.2V,放电下限电压≥ 2.5V。
锂离子电池生产工艺流程
锂离子电池生产工艺流程锂离子电池是一种典型的新能源电池,它具有高能量密度、长循环寿命、无污染等优点,因此在电动汽车、移动通讯、储能等领域得到了广泛的应用。
而锂离子电池的生产工艺流程对电池的性能和品质有着至关重要的影响。
下面将详细介绍锂离子电池的生产工艺流程。
首先,锂离子电池的生产工艺流程包括正极材料的制备、负极材料的制备、电解液的配制、电池的装配等几个主要环节。
正极材料一般采用氧化物,如钴酸锂、锰酸锂、三元材料等,其制备过程包括原料的配比、混合、成型、烘干等步骤。
而负极材料一般采用石墨或石墨烯等材料,其制备过程包括原料的筛分、混合、成型、烘干等步骤。
电解液是锂离子电池中的重要组成部分,其配制过程包括原料的称量、混合、搅拌、过滤等步骤。
电池的装配是将正极、负极、隔膜、电解液等材料按照一定的工艺流程组装成电池的过程。
其次,锂离子电池的生产工艺流程中需要严格控制各个环节的工艺参数,以确保电池的性能和品质。
在正极材料的制备过程中,需要控制原料的配比、烘干温度、成型压力等参数;在负极材料的制备过程中,需要控制原料的筛分粒度、混合时间、烘干温度等参数;在电解液的配制过程中,需要控制原料的纯度、配比、搅拌时间等参数;在电池的装配过程中,需要控制组装压力、隔膜的厚度、电解液的注入量等参数。
只有严格控制这些工艺参数,才能保证电池的性能和品质稳定。
最后,锂离子电池的生产工艺流程还需要注重安全和环保。
在生产过程中,需要加强安全生产教育,提高员工的安全意识,严格执行操作规程,做好安全防护措施,确保生产过程安全可靠。
同时,还需要加强环保意识,优化工艺流程,减少废水、废气、废固的排放,推动清洁生产,实现循环经济,减少资源浪费,保护环境。
综上所述,锂离子电池的生产工艺流程对电池的性能和品质有着至关重要的影响。
只有严格控制各个环节的工艺参数,注重安全和环保,才能生产出性能稳定、品质优良的锂离子电池,满足不同领域的需求。
希望本文的介绍能够对锂离子电池的生产工艺流程有所帮助,也希望锂离子电池行业能够不断创新,推动新能源产业的发展。
锂离子生产工艺流程
锂离子电池是一种常见的二次电池,具有高能量密度、长寿命和轻量化的特点,广泛应用于移动电子设备、电动汽车等领域。
锂离子电池的核心组成部分是正极材料、负极材料和电解液,其中正负极材料主要通过特定工艺生产得到。
下面将详细描述锂离子电池正负极材料的生产工艺流程:1.正极材料生产工艺流程:–原料准备:根据正极材料的配方,准备所需的原料,通常包括锂盐、过渡金属氧化物、导电剂等。
–混合:将经过粉碎和筛分处理后的原料按照一定比例混合均匀。
–烧结:将混合好的原料放入烧结炉中,在高温下进行烧结,使原料中的成分发生化学反应,并形成颗粒状物质。
–粉碎:将烧结后的颗粒物质进行粉碎处理,得到所需的正极材料粉末。
–表面处理:对正极材料粉末进行表面处理,包括涂覆一层保护膜,以提高正极材料的稳定性和电化学性能。
–干燥:将表面处理后的正极材料粉末进行干燥处理,去除水分和有机溶剂等。
–筛分:对干燥后的正极材料粉末进行筛分,以得到所需的颗粒大小范围。
2.负极材料生产工艺流程:–原料准备:根据负极材料的配方,准备所需的原料,通常包括石墨、导电剂等。
–混合:将经过粉碎和筛分处理后的原料按照一定比例混合均匀。
–制浆:将混合好的原料与溶剂混合,形成浆状物质。
–涂布:将制浆后的物质涂布在铜箔上,并通过压延等工艺使其均匀一致。
–干燥:将涂布在铜箔上的物质进行干燥处理,去除水分和有机溶剂等。
–烘烤:将干燥后的负极材料进行烘烤,使其形成致密的结构,提高电化学性能。
–切割:将烘烤后的负极材料进行切割,得到所需的形状和尺寸。
除了正负极材料的生产工艺外,锂离子电池还需要电解液的制备。
电解液主要由有机溶剂和锂盐组成,其生产工艺流程如下: - 原料准备:根据电解液的配方,准备所需的有机溶剂和锂盐。
- 混合:将有机溶剂和锂盐按一定比例混合,并进行搅拌使其充分溶解。
- 过滤:对混合好的电解液进行过滤处理,去除其中的杂质颗粒等。
- 脱水:对过滤后的电解液进行脱水处理,去除其中的水分和其他不纯物质。
锂离子生产工艺流程
锂离子生产工艺流程一、介绍锂离子电池是目前最常见的可充电电池之一,广泛应用于移动通信、电动车和储能等领域。
锂离子电池的核心是正极材料、负极材料和电解液。
而其中的正极材料则主要是采用锂离子化合物,如锂铁磷酸盐、锂镍酸盐等。
本文将详细探讨锂离子生产的工艺流程。
二、锂离子生产工艺流程锂离子生产的工艺流程包括原料处理、化学合成、制备电极材料、电池组装等环节。
下面将对每个环节进行详细介绍。
1. 原料处理原料处理是锂离子生产的第一步,它的目的是将原料进行处理和净化,以便后续合成步骤的顺利进行。
常见的原料包括锂硫酸、锂氢氧化物等。
原料处理包括以下几个步骤:•原料粉碎:将原料进行粉碎,使其颗粒尺寸均匀,有利于后续的化学合成。
•原料筛分:通过筛网将不符合要求的颗粒筛掉,保证原料的质量。
•原料干燥:对原料进行干燥处理,去除其中的水分或其他杂质。
2. 化学合成化学合成是锂离子生产的核心环节,它主要用于合成锂离子化合物,如锂铁磷酸盐、锂镍酸盐等。
化学合成包括以下几个步骤:•反应槽装填:将经过原料处理的物质装入反应槽中,并在槽中加入适量的溶剂。
•加热搅拌:启动反应槽的加热搅拌系统,控制温度和搅拌速度,促进反应的进行。
•过滤分离:将反应后的混合物进行过滤分离,得到合成产物。
•洗涤干燥:对合成产物进行洗涤和干燥处理,去除溶剂和杂质,得到纯净的锂离子化合物。
3. 制备电极材料制备电极材料是锂离子生产的关键环节,电极材料包括正极材料和负极材料。
制备电极材料包括以下几个步骤:•配料混合:将正极活性材料、负极活性材料和导电剂按一定比例进行混合,并加入适量的粘结剂和溶剂。
•混合搅拌:对配料进行混合搅拌,使其均匀分布,形成电极浆料。
•涂布:将电极浆料涂布在铝箔或铜箔基片上,并通过烘干处理,形成电极片。
•切割压制:对电极片进行切割和压制,获得所需尺寸的电极。
4. 电池组装电池组装是锂离子生产的最后一步,它将制备好的正负极材料和电解液组装成电池。
锂离子电池原理及混料配料工艺流程
工 艺 流 程一、 原理1.正极构造LiFePO 4(磷酸铁锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)2.负极构造石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)3.工作原理3.1 充电过程:一个电源给电池充电,此时正极上的电子e 从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为LiFePO 4→Li 1-x FePO 4+Xli ++Xe(电子)负极上发生的反应为6C+XLi ++Xe →Li x C 63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二 工艺流程1、正极极片制备1.1原料的烘干(1)磷酸铁锂:真空烘烤。
(2)导电剂:常压烘烤。
(3)粘合剂:常压烘烤。
1.2浆料搅拌a) 将NMP倒入真空搅拌机中, PVDF加入其中;b) 正极干料平均分四次加入。
c) 真空下高速搅拌,时间为3-5小时;d) 出料准备涂布。
1.3 涂布a) 在精密的涂布机上面把浆料均匀地涂覆在铝箔表面,涂布厚度可以根据不同的要求进行调整。
2、负极极片制备2.1 原料不需要烘干。
2.2 浆料制备a) 纯净水倒入真空搅拌机中。
B) 加CMC,搅拌,完全溶解;c) 加入SBR和去离子水,搅拌60分钟;d) 负极干料分四次平均顺序加入搅拌机中。
e) 高速真空搅拌3-5小时;f) 出料准备涂布2.3 涂布a) 在精密的涂布机上面把浆料均匀地涂覆在铜箔表面,涂布厚度可以根据不同的要求进行调整。
锂离子电池工艺流程
锂离子电池工艺流程锂离子电池是一种常见的蓄电池,常用于手机、笔记本电脑和电动车等设备中。
下面是锂离子电池的工艺流程。
首先,制备正极材料。
正极材料通常是由锂离子和过渡金属氧化物组成,如锰酸锂、三氧化钴和三氧化镍等。
制备正极材料的方法可以是溶胶-凝胶法、固相法或水热法等。
接着,制备负极材料。
负极材料通常是由石墨或硅基材料组成。
制备负极材料的方法可以是固相法、化学还原法或高温炭化等。
然后,制备电解液。
电解液通常由有机溶剂和盐组成,如碳酸盐、磷酸盐或硫酸盐等。
制备电解液的方法可以是溶液法、溶剂热法或纺丝法等。
接下来,将正负极材料涂覆到铝箔和铜箔上。
正极材料涂覆在铝箔上,负极材料涂覆在铜箔上。
这些涂层会进行一系列的干燥和固化处理。
然后,将正负极材料与隔膜一起叠层。
隔膜是用于隔离正负极材料的薄膜,通常由聚合物材料制成。
叠层后的材料会被轧制和切割成所需的形状和尺寸。
接着,将叠层后的材料组装成电池。
正负极材料与隔膜交替叠层并卷入圆筒形的壳体中。
这个壳体通常由铝或钢制成,用于容纳电池的正负极和电解液。
然后,对电池进行充电。
充电时,正极材料中的锂离子会向负极移动,同时电解液中的盐也会释放锂离子。
这样,电池就存储了电能。
最后,测试和封装电池。
电池会经过一系列的测试,以确保其性能和质量。
通过测试后,电池会被封装,通常使用热封或冷封的方式。
封装后的电池可以用于各种设备。
总之,锂离子电池的工艺流程包括制备正极材料、制备负极材料、制备电解液、涂覆正负极材料、叠层与切割、电池组装、充电、测试和封装。
这些工艺步骤的高效运行和严格控制,对于生产高质量的锂离子电池至关重要。
锂电池原理及工艺流程详细介绍
锂电池原理及工艺流程详细介绍锂离子电池原理及工艺流程锂离子电池原理及工艺流程一、原理 1.0正极构造LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0负极构造石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+集流体(铜箔)负极3.0工作原理3.1充电过程电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上锂离子电池原理及工艺流程锂离子电池原理及工艺流程一、原理1.0正极构造LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0负极构造石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+集流体(铜箔)负极3.0工作原理 3.1充电过程电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)负极上发生的反应为6C+XLi++Xe=====LixC6 3.2电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二、工艺流程三、电池不良项目及成因: 1.容量低产生原因: a.附料量偏少;b.极片两面附料量相差较大;c.极片断裂; d.电解液少;e.电解液电导率低;f.正极与负极配片未配好;g.隔膜孔隙率小;h.胶粘剂老化→附料脱落;i.卷芯超厚(未烘干或电解液未渗透)j.分容时未充满电;k.正负极材料比容量小。
锂离子电池制备工艺流程
锂离子电池制备工艺流程
锂离子电池是一种高能量密度、长寿命的电池,广泛应用于移动电力、储能设备、电动工具等领域。
其制备工艺流程主要包括以下几个步骤:
1.正负极材料制备:锂离子电池的正负极材料分别为锂离子富集材料和石墨材料。
制备方法主要包括固态反应、溶剂热法和物理混合等。
2.悬浮液制备:将正负极材料粉末与导电剂、粘合剂、溶剂等混合,在高速分散器中搅拌分散,得到均质的悬浮液。
3.涂布:将悬浮液涂覆到铝箔或铜箔上,形成正负极电极,再在电极表面覆盖一层聚烯烃过滤膜,以防止内部污染。
4.电池组装:在电解液中完全浸泡正负极电极,以建立起离子传输通道,将正负极叠放或卷绕起来,放入电池壳中。
5.密封充电:通过与电极相连的正负极端子,对电池进行密封充电,使电解液中的锂离子逆向迁移,从而形成电池电势。
6.电池测试:通过电容、电阻、电化学等测试手段,检测电池的性能指标如容量、循环寿命、内阻、安全性等。
以上是锂离子电池的制备流程,工艺的精细度和质量控制是确保电池性能及安全的关键。
同时,实现材料开发、制备技术及封装工艺等方面的创新,将有助于提高锂离子电池的性能和应用范围。
锂电池生产工艺详解
锂电池生产工艺详解锂电池是一种以锂离子为主要载流子的可充电电池,广泛应用于移动电子设备、电动汽车等领域。
锂电池的生产工艺非常关键,下面将对锂电池的生产工艺进行详解。
首先是正负电极的制备。
正电极通常由锂盐、导电剂和粘合剂组成。
首先将锂盐溶解在有机溶剂中,然后加入导电剂和粘合剂,充分搅拌打膏。
然后,将膏状物加热并涂布在铝箔上,形成正极片。
负电极的制备步骤与正电极类似,但使用的是铜箔。
接下来是电解液的制备。
电解液是锂离子电池中的重要组成部分,由有机溶剂和锂盐组成。
首先,将锂盐溶解在有机溶剂中,然后进行滤除杂物等处理,最终获得稳定的电解液。
然后是隔膜的制备。
隔膜是隔开正负电极的关键部分,通常使用聚合物薄膜制成。
隔膜制备的过程包括溶解聚合物、涂布在导电薄膜上、干燥和切割等步骤。
接着是电池的组装。
首先,将正负极片分别与铜、铝导线连接,形成正负极片组件。
然后,将正负极片组件与隔膜层叠在一起,形成正负极片与隔膜的多层叠压结构。
最后,将电解液注入叠压结构中,并封装。
最后是电池的充放电和封装。
电池组装完成后,需要进行充放电循环,以激活电池,并检测电池的性能和安全性。
充电时,锂离子从正极移动至负极,而放电时则相反。
充放电循环完成后,会对电池进行制冷、充气、封装等处理,确保电池的稳定性和安全性。
综上所述,锂电池的生产工艺包括正负电极的制备、电解液的制备、隔膜的制备、电池的组装以及充放电和封装等步骤。
通过精细的操作和严格的控制,可以生产出品质优良、性能稳定的锂电池,满足人们对电力存储和移动电源的需求。
锂离子电池生产工艺流程
锂离子电池生产工艺流程引言锂离子电池作为一种高效、高能量密度的电池,广泛应用于移动设备、电动汽车等领域。
为了确保锂离子电池的质量和性能,生产过程需要经过多个步骤,本文将介绍锂离子电池的生产工艺流程。
1. 步骤一:正极材料生产正极材料是锂离子电池的重要组成部分,包括正极活性材料、碳副极材料和导电剂等。
正极材料的生产过程通常包括以下几个步骤:•原料准备:将正极活性材料的原料进行混合,并按照一定比例加入碳副极材料和导电剂。
通常使用的正极活性材料有氧化钴、氧化锰等。
•混合和烘干:将混合好的材料进行搅拌混合,并通过烘干设备将材料中的水分去除,以确保材料的纯度和干燥度。
•成型和压片:将混合好的材料放入成型机中,经过一定的压力和温度条件下进行压片成型,形成所需的正极片。
2. 步骤二:负极材料生产负极材料是锂离子电池的另一个重要组成部分,负责存储和释放锂离子。
负极材料的生产过程通常包括以下几个步骤:•原料准备:将负极材料的原料进行混合,并按照一定比例加入导电剂和粘结剂。
通常使用的负极材料有石墨等。
•混合和烘干:将混合好的材料进行搅拌混合,并通过烘干设备将材料中的水分去除,以确保材料的纯度和干燥度。
•成型和压片:将混合好的材料放入成型机中,经过一定的压力和温度条件下进行压片成型,形成所需的负极片。
3. 步骤三:电池组装电池组装是锂离子电池生产过程中最重要的步骤之一,主要包括正负极片的层叠、隔膜的安装和电解液注入等。
电池组装的主要步骤如下:•正负极片层叠:将正极片和负极片交替层叠,形成电池的正负极。
在层叠的过程中,需要确保正负极之间没有接触,避免短路。
•隔膜安装:将隔膜层放置在正负极片之间,起到隔离正负极的作用。
隔膜通常使用聚烯烃材料或陶瓷材料。
•电解液注入:将电解液注入电池中,电解液通常是由溶解锂盐的有机溶剂和添加剂组成的电解液。
4. 步骤四:封装和成品测试封装是锂离子电池生产的最后一道工序,主要包括电池的封装和电池包的组装。
锂电池的制造过程及工艺原理
锂电池的制造过程及工艺原理
锂电池是一种以锂离子作为电荷载体的蓄电池,具有高能量密度、长寿命、无记忆效应等优点,广泛应用于移动电子设备、电动车辆等领域。
其制造过程包括以下几个关键步骤:
1. 正负极材料的制备:锂电池的正极材料主要有锂钴氧化物、锂镍锰钴氧化物等,负极材料主要有石墨、硅基材料等。
这些材料需要经过粉碎、烘干、搅拌等处理,以获得均匀、稳定的颗粒。
2. 电解液的准备:锂电池的电解液通常采用含有锂盐的有机溶剂,如碳酸锂、丙烯腈等。
制备过程需要注意控制溶液的浓度、纯度等参数,避免产生不利于电池性能的杂质。
3. 电池组装:将正负极材料、电解液以及隔膜等组装在一起,形成电池单体。
电池单体的结构和尺寸需要根据应用场景进行设计和优化,以满足不同的功率和容量需求。
4. 电池测试和包装:制造完成的电池单体需要进行电性能测试,以检验其容量、内阻、循环寿命等指标是否符合设计要求。
测试合格的电池单体会进行包装和标记,以便于运输和销售。
在整个制造过程中,控制工艺参数和质量检测是关键。
例如,正负极材料的配比、烘干温度和时间等参数会直接影响电池的性能;电池组装的过程要求精密度高,以避免电池内部短路等安全问题。
除了制造过程,锂电池的使用和处理也需要注意相关安全措施,避免发生电池漏液、爆炸等意外情况。
- 1 -。
锂离子电池工艺大全PPT幻灯片课件
• 负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极 C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6 中心,以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一 部分Li留在负极C6中,一般通过限制放电下限电压来实现:安全充电上限电压 ≤4.2V,放电下限电压≥2.5V。
• 记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应。但是,锂离子 电池在多次充放后容量仍然会下降,其原因是复杂而多样的。主要是正负极材 料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、 堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他 化合物。物理上还会出现正极材料逐渐剥落等情况,总之最终降低了电池中可 以自由在充放电过程中移动的锂离子数目。
6
• 正极活性物质:
• 钴酸锂:正极活性物质,锂离子源,为电池提高锂源。非极性物质,不规则形状,粒径 D50一般为6-8 μm,含水量≤0.2%,通常为碱性,pH值为10-11左右。
• 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱 碱性,pH值为8左右。
从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与 早就跑过来的电子结合在一起。此时:正负极物理反应为:
3
• 1.3.2 电池放电过程 • 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变
化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可 知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时 行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极, 与早就跑过来的电子结合在一起。 • 1.3.3 充放电特性 • 电芯正极采用LiCoO2 、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶 型,但当从LiCoO2拿走x个Li离子后,其结构可能发生变化,但是否发生变化取决于 x的大小。通过研究发现当x >0.5时,Li1-xCoO2的结构表现为极其不稳定,会发生 晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电 电压来控制Li1-xCoO2中的x值,一般充电电压不大于4.2V那么x小于0.5 ,这时Li1xCoO2的晶型仍是稳定的。
锂离子电池工艺流程
锂离子电池工艺流程锂离子电池是一种电池,它是将锂离子从一个电极移动到另一个电极来存储和释放能量的。
下面是锂离子电池的工艺流程。
首先,需要准备电池的正负极材料。
正极通常采用氧化物材料,如锂钴氧化物(LiCoO2)和锂铁磷酸盐(LiFePO4)。
负极通常采用石墨材料。
接下来,制备正负极材料的浆料。
正极浆料由阳离子、锂盐和其他添加剂混合而成,而负极浆料由石墨材料、碳黑和聚合物粘结剂混合而成。
这些浆料需要经过搅拌和过滤等步骤来得到均匀的浆料。
然后,需要制备电解液。
电解液通常由有机溶剂和锂盐组成,如碳酸乙烯丙烯酯(EC/DMC)和硫酸锂(Li2SO4)。
制备电解液时需要把锂盐溶解在有机溶剂中,并加入适量的添加剂,以提高电池的性能和安全性。
接着,需要将正负极材料涂覆在导电剂上。
正极材料通常涂覆在铝箔上,而负极材料通常涂覆在铜箔上。
这些涂覆的过程需要控制涂覆厚度和均匀性,并使用辊压机将材料和导电剂粘合在一起。
随后,需要将正负极材料叠层并卷绕在一起。
正负极材料之间需要用隔离膜隔离开,以防止短路。
叠层的过程需要保证正负极之间的良好接触,并控制电池的厚度和尺寸。
然后,需要密封电池。
将叠层好的电池放入铝塑膜袋中,并将其封口。
密封的过程需要确保电池内部不会泄漏和受到外界污染。
最后,需要对电池进行充放电测试和组装。
电池充放电测试用来评估电池的性能和容量,而组装主要是将电池和电池管理系统(BMS)组合在一起,以便控制电池的充放电过程和保护电池。
总的来说,锂离子电池的工艺流程包括正负极材料的制备、电解液的制备、材料的涂覆和叠层、电池的密封和充放电测试以及电池的组装等步骤。
这些工艺流程需要高度的精密控制和质量管理,以确保电池的性能和安全性。
锂离子电池生产工艺流程
锂离子电池生产工艺流程
《锂离子电池生产工艺流程》
锂离子电池是一种重要的储能设备,广泛应用于手机、平板电脑、电动汽车等领域。
其生产工艺流程经过多道工序,包括原材料采购、电极材料制备、电池组装和测试等环节。
首先是原材料采购阶段。
锂离子电池的主要原材料包括锂盐、电极材料和电解质等。
锂盐通常从矿石中提取,而电极材料则是由石墨、锰酸锂等物质制成。
电解质则是由有机溶剂和锂盐混合而成。
这些原材料需要经过严格的筛选和测试,确保其质量符合标准。
接下来是电极材料制备。
电极材料一般是由石墨和锰酸锂等物质混合而成,然后在特定的工艺条件下进行加工成片。
这些电极片需要经过烘烤、成型、涂布等工序,最终得到符合要求的电极材料。
电池组装是整个生产流程的关键环节。
在电池组装过程中,将阳极、阴极等部件按照一定的结构组装在一起,并注入电解质。
这个过程需要在严格的无尘室中进行,以确保电池内部的环境洁净。
最后是电池测试。
在生产过程中,需要对电池进行各种性能测试,包括充放电循环测试、内阻测试、安全性测试等。
只有经过严格的测试,确保电池性能稳定可靠,才能投入市场销售。
通过上述一系列工艺流程,锂离子电池才能最终生产出来,为各种电子设备和新能源汽车提供动力支持。
随着科技的进步,锂离子电池的生产工艺也将不断改进,以满足市场需求并提升产品性能。
锂离子电池制作工艺
锂离子电池制作工艺
锂离子电池是一种高效、环保、轻便的电池,已经广泛应用于手机、笔记本电脑、电动车等领域。
锂离子电池的制作工艺主要包括原材料准备、正负极材料制备、电解液制备、组装和封装等步骤。
一、原材料准备
1.正负极材料:正极材料通常采用钴酸锂或磷酸铁锂,负极材料通常采用石墨或硅基材料。
2.电解液:锂离子电池的电解液通常由有机溶剂和锂盐组成,有机溶剂可以是碳酸酯类或磷酸酯类,锂盐可以是六氟磷酸锂或硫酸锂等。
3.隔膜:隔膜是将正负两极分开的关键部件,通常采用聚丙烯或聚乙烯等高分子材料制成。
二、正负极材料制备
1.正极材料制备:将钴酸锂或磷酸铁锂与碳酸钠、氧化钴或氧化铁等混合,经过高温煅烧后,形成颗粒状的正极材料。
2.负极材料制备:将石墨或硅基材料与聚丙烯酸或羟丙基甲基纤维素等混合,制成浆料后涂布在铜箔上,经过干燥和压制后形成负极片。
三、电解液制备
1.有机溶剂的准备:将碳酸二甲酯、碳酸二乙酯等有机溶剂加入反应釜中,加入少量锂盐催化剂,在高温高压下反应得到有机溶剂。
2.锂盐的准备:将六氟磷酸锂或硫酸锂等锂盐加入反应釜中,与有机溶剂进行配比和搅拌,得到电解液。
四、组装和封装
1.组装:将正负极片按一定比例叠放在一起,用隔膜将其分开,并注入电解液。
2.封装:将组装好的电池放入壳体中,并进行密封处理。
同时,在壳体上安装保护电路板,以保证电池的安全性和稳定性。
以上就是锂离子电池的制作工艺。
需要注意的是,在制作过程中要严格控制各个环节的质量,确保电池的稳定性和安全性。
同时,还需要不断进行技术创新和改进,以提高电池的性能和使用寿命。
锂离子电池工艺流程
锂离子电池工艺流程锂离子电池是一种重要的储能装置,广泛应用于移动通讯、笔记本电脑、电动汽车等领域。
它具有高能量密度、长循环寿命和较低的自放电率等优点,因此备受关注。
在锂离子电池的制造过程中,工艺流程是至关重要的,它直接影响到电池的性能和品质。
下面将介绍锂离子电池的工艺流程。
第一步是正极材料的制备。
正极材料通常是由锂化合物、导电剂和粘结剂组成的混合物。
制备过程中需要严格控制原料的配比和混合工艺,以确保正极材料的均匀性和稳定性。
第二步是负极材料的制备。
负极材料一般由碳材料构成,其主要作用是储存锂离子。
制备过程中需要进行粉碎、混合和成型等工艺,以获得具有良好导电性和结构稳定性的负极材料。
第三步是电解液的配制。
电解液是锂离子电池中的重要组成部分,其主要成分包括有机溶剂、锂盐和添加剂。
在配制过程中,需要严格控制各种成分的含量和配比,以确保电解液具有良好的离子传输性能和热稳定性。
第四步是电池的组装。
在电池组装过程中,需要将正负极材料、电解液和隔膜等组件按照一定的工艺流程进行层叠和封装,然后进行充电和放电等充放电循环,以激活电池并确保其性能稳定。
第五步是电池的封装和测试。
在电池封装过程中,需要对电池进行密封和外壳包装,以确保其安全性和可靠性。
同时,还需要进行电池的性能测试和品质检验,以确保电池符合相关标准和规定。
总的来说,锂离子电池的工艺流程包括正极材料制备、负极材料制备、电解液配制、电池组装、电池封装和测试等多个环节。
每个环节都需要严格控制工艺参数和质量标准,以确保最终产品具有良好的性能和品质。
希望以上内容能够对锂离子电池的工艺流程有所了解,谢谢阅读。
锂离子电池工艺配料
1.正负极配方配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。
配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。
1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔))LiCoO(10μm):93.5%;其它:6.5%如Super-P:4.0%;PVDF761:2.5;2NMP(增加粘结性):固体物质的重量比约为810:1496a) 正极黏度控制6000cps(温度25转子3);b) NMP重量须适当调节,达到黏度要求为宜;c) 特别注意温度湿度对黏度的影响●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。
钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。
锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。
●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。
提高正极片的电解液的吸液量,增加反应界面,减少极化。
非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。
●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。
非极性物质,链状物,分子量从300000到3000000不等;吸水后分子量下降,粘性变差。
●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。
●正极引线:由铝箔或铝带制成。
1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔))负极材料:94.5%;Super-P:1.0%;SBR:2.25%;CMC:2.25%水:固体物质的重量比为1600:1417.5a)负极黏度控制5000-6000cps(温度25转子3)b)水重量需要适当调节,达到黏度要求为宜;c)特别注意温度湿度对黏度的影响2.正负极混料★石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造石墨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
锂离子电池原理及工艺流程
一、 原理 1.0 正极构造 LiCoO2 + 导电剂 + 粘合剂 (PVDF) + 集流体(铝箔) 2.0 负极构造 石墨 + 导电剂 + 增稠剂 (CMC) + 粘结剂 (SBR) + 集流体(铜箔) 负极 正极
2)
性物质, 提高与水性粘合剂的相容能力, 修圆石墨表面棱角 (有些材料为保持表面特性, 不允许烘烤,否则效能降低) 。 水性粘合剂:适当稀释,提高分散能力。
2.2.2 掺和、浸湿和分散: 1) 石墨与粘合剂溶液极性不同,不易分散。 2) 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。 3) 应适当降低搅拌浓度,提高分散性。 4) 分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时 总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流 动性,降低分散难度。 5) 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。 6) 分散原理、分散方法同正极配料中的相关内容 2.2.3 稀释: 将浆料调整为合适的浓度,便于涂布。 2.2.4 物料球磨 1) 将负极和 Ketjenblack ECP 倒入料桶同时加入球磨(干料:磨球=1:1.2)在滚瓶及上进 行球磨,转速控制在 60rmp 以上; 2) 4 小时结束,过筛分离出球磨; 2.2.5 操作步骤 1) 纯净水加热至至 80?C 倒入动力混合机(2L) 2) 加 CMC,搅拌 60± 分钟; 2 动力混合机参数设置:公转为 25± 分钟,自转为 15± 转/分; 2 2 3) 加入 SBR 和去离子水,搅拌 60± 分钟; 2 动力混合机参数设置:公转为 30± 分钟,自转为 20± 转/分; 2 2 4) 负极干料分四次平均顺序加入,加料的同时加入纯净水,每次间隔 28-32 分钟;动力 混合机参数设置:公转为 20± 转/分,自转为 15± 转/分; 2 2 5) 第四次加料 30± 分钟后进行高速搅拌,时间为 480± 分钟; 2 10 动力混合机参数设置:公转为 30± 转/分,自转为 25± 转/分; 2 2 6) 真空混合:将动力混合机接上真空,保持真空度为-0.09 到 0.10Mpa,搅拌 30± 分钟; 2 动力混合机参数设置:公转为 10± 分钟,自转为 8± 转/分 2 2 7) 取 500 毫升浆料,使用黏度计测量黏度; 测试条件:转子号 5,转速 30rpm,温度范围 25?C; 8) 将负极料从动力混合机中取出进行磨料、过筛,同时在不锈钢盆上贴上标识,与拉浆 设备操作员交接后可流入拉浆作业工序。 2.2.6 注意事项 1) 完成,清理机器设备及工作环境; 2) 操作机器时,需注意安全,避免砸伤头部。
2.正负极混料 ? 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造石墨两 大类。非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也 不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径 D50 为 20μm 左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。 ? 导电剂:其作用为:
3.0 工作原理 3.1 充电过程: 一个电源给电池充电, 此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+从正极“跳 来的电子结合在一起。
正极上发生的反应为 LiCoO2 ?? Li1-xCoO2 + xLi+ + xe(电子) 负极上发生的反应为 6C + xLi+ + xe ?? LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可 变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电。电子和 Li+都是同时行动的,方向相同但路不同, 放电时,电子从负极经过电子导体跑到正极,锂离子 Li+从负极“跳进”电解液里,“爬过”隔膜上 弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 3.3 充放电特性 电芯正极采用 LiCoO2、LiNiO2、LiMn2O2,其中 LiCoO2 本是一种层结构很稳定的晶型,但 当从 LiCoO2 拿走 x 个 Li 离子后,其结构可能发生变化,但是否发生变化取决于 x 的大小。 通过研究发现当 x > 0.5 时,Li1-xCoO2 的结构表现为极其不稳定,会发生晶型瘫塌,其外部 表现为电芯的压倒终结。 所以电芯在使用过程中应通过限制充电电压来控制 Li1-XCoO2 中的 x 值, 一般充电电压不大于 4.2V 那么 x 小于 0.5 ,这时 Li1-XCoO2 的晶型仍是稳定的。 负极 C6 其本身有自己的特点,当第一次化成后,正极 LiCoO2 中的 Li 被充到负极 C6 中, 当放电时 Li 回到正极 LiCoO2 中,但化成之后必须有一部分 Li 留在负极 C6 中心,以保证下次充 放电 Li 的正常嵌入,否则电芯的压倒很短,为了保证有一部分 Li 留在负极 C6 中,一般通过限 制放电下限电压来实现:安全充电上限电压 ≤ 4.2V,放电下限电压 ≥ 2.5V。 记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应。但是,锂离子电池在多次 充放后容量仍然会下降,其原因是复杂而多样的。主要是正负极材料本身的变化,从分子层面 来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、堵塞;从化学角度来看,是正负极材料活 性钝化,出现副反应生成稳定的其他化合物。物理上还会出现正极材料逐渐剥落等情况,总之 最终降低了电池中可以自由在充放电过程中移动的锂离子数目。 过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,可以直 观的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把 太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来。 不适合的温度,将引发锂离子电池内部其他化学反应生成我们不希望看到的化合物,所以 在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂。在电池升温到一定的 情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保电池充 电温度正常。 二 锂电池的配方与工艺流程 1. 正负极配方
? ? ? ?
? ?
提高负极片的导电性,补偿负极活性物质的电子导电性。 提高反应深度及利用率。 防止枝晶的产生。 利用导电材料的吸液能力,提高反应界面,减少极化。 (可根据石墨粒度分布选择加或不加) 。 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀 ? 增稠剂/防沉淀剂(CMC) :高分子化合物,易溶于水和极性溶剂。 ? 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶 液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。 ? 乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液 的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度 (异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然 后选择添加哪种) 。 水性粘合剂(SBR) :将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。小分子 线性链状乳液,极易溶于水和极性溶剂。 去离子水(或蒸馏水) :稀释剂,酌量添加,改变浆料的流动性。 负极引线:由铜箔或镍带制成。
2.1.5 操作步骤 a) 将 NMP 倒入动力混合机(100L)至 80?C,称取 PVDF 加入其中,开机; 参数设置:转速 25± 转/分,搅拌 115-125 分钟; 2 b) 接通冷却系统,将已经磨号的正极干料平均分四次加入,每次间隔 28-32 分钟,第 三次加料视材料需要添加 NMP,第四次加料后加入 NMP; 动力混合机参数设置:转速为 20± 转/分 2 c) 第四次加料 30± 分钟后进行高速搅拌,时间为 480± 分钟; 2 10 动力混合机参数设置:公转为 30± 转/分,自转为 25± 转/分; 2 2 d) 真空混合:将动力混合机接上真空,保持真空度为-0.09Mpa,搅拌 30± 分钟; 2 动力混合机参数设置:公转为 10± 分钟,自转为 8± 转/分 2 2 e) 取 250-300 毫升浆料,使用黏度计测量黏度; 测试条件:转子号 5,转速 12 或 30rpm,温度范围 25?C; f) 将正极料从动力混合机中取出进行胶体磨、过筛,同时在不锈钢盆上贴上标识,与 拉浆设备操作员交接后可流入拉浆作业工序。 2.1.6 注意事项 a) 完成,清理机器设备及工作环境; b) 操作机器时,需注意安全,避免砸伤头部。 2.2 负极混料 2.2.1 原料的预处理: 1) 石墨:A、混合,使原料均匀化,提高一致性。B、300~400?C 常压烘烤,除去表面油
2.1 正极混料 2.1.1 原料的预处理 1) 钴酸锂:脱水。一般用 120 ?C 常压烘烤 2 小时左右。 2) 导电剂:脱水。一般用 200 ?C 常压烘烤 2 小时左右。 3) 粘合剂:脱水。一般用 120-140 ?C 常压烘烤 2 小时左右,烘烤温度视分子量的大 小决定。 4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。 2.1.2 物料球磨: ? 4 小时结束,过筛分离出球磨; ? 将 LiCoO2 和 Carbon ECP 倒入料桶,同时加入磨球(干料:磨球=1:1),在 滚瓶及上进行球磨,转速控制在 60rmp 以上 2.1.3 原料的掺和: ? 粘合剂的溶解(按标准浓度)及热处理。 ? 钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团 聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为 2 小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 2.1.4 干粉的分散、浸湿: ? 原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表 面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附 力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的 吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90?,固体浸湿。 当润湿角>90?,固体不浸湿。