成人高考专升本高数一复习资料
成人高考(专升本)高等数学(一)知识点复习资料
它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:
当
2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作
或
所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=
的
例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是
专升本资料成人高考(专科起点升本科)《高等数学(一)》
2020年全国各类成人高考(专科起点升本科)《高等数学(一)》考点精讲及典型题(含历年真题)详解
完整版>精研学习䋞>免费试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
目录
第1章极限与连续
1.1考点精讲
1.2典型题(含历年真题)详解
第2章一元函数微分学
2.1考点精讲
2.2典型题(含历年真题)详解
第3章一元函数积分学
3.1考点精讲
3.2典型题(含历年真题)详解第4章空间解析几何
4.1考点精讲
4.2典型题(含历年真题)详解第5章多元函数微积分学
5.1考点精讲
5.2典型题(含历年真题)详解第6章无穷级数
6.1考点精讲
6.2典型题(含历年真题)详解第7章常微分方程
7.1考点精讲
7.2典型题(含历年真题)详解。
成人高等教育《高等数学(一)》复习资料
成人高等教育《高等数学(一)》复习资料知识讲解:(9)若,则(10)设函数,则等于(11)函数处连续是处可导的必要但非充分条件(12)若,则(13)二重积分交换积分次序为(14)若已知级数收敛,是它的前项之和,则此级数的和是(15)二元函数,则(16)积分的值为(17)交换积分次序(18)(19)数量积、向量积及坐标表示(向量的位置关系);(20)柱面,旋转曲面的方程形式及常见曲面画图,平面,直线的方程及其位置关系,平面束;曲面、曲线、实体在坐标平面上的投影(21)偏导数定义及判定一点可导的定义方法;(22)偏导、连续、全微分的关系,方向导数与梯度;(23)极值、条件极值,最值和驻点.及拉格朗日乘数法;(24)七类积分的关系,格林公式、高斯公式;(25)级数的定义,等比级数的和,级数收敛的必要条件,常见级数的敛散性及判定方法。
(26)求极限1)二元函数求极限:代入法、两类特殊极限、无穷小性质等2)极限不存在的判断:取不同的路径(27)求偏导数或全微分1)定义——在某一点可导,常见于分段函数2)一个变量为常数,按一元函数求导法则计算,对于指定点的偏导可以先代入一个变量再求;3)多元复合函数求导——链式法则;4)隐函数(方程与方程组)求导及其高阶导数——不要记公式,理解方法;5)抽象函数求导及其高阶导数——注意符号;6)求(指定点)全微分或判断是否可微——用定义(28)求重积分1)重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】,积分次序的交换;2)三重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】;3)对称性区域上奇、偶函数的积分以及对1积分时的计算。
(29)求曲线、面积分(画图)“一代、二换、三定限”1)代入参数方程或z f x, y;不同的积分换的公式不同;2)定限或定区域的时候注意方向性【第二类】及定限规则3)格林公式、高斯公式的应用——验证条件并灵活使用;4)对称性区域上奇、偶函数的积分以及对1积分时的计算。
成人高考专升本数学一知识点
成人高考专升本数学一知识点一、函数、极限和连续。
1. 函数。
- 函数的概念。
- 设D是非空实数集,如果对于D中的任意一个数x,按照某种确定的对应关系f,在实数集R中都有唯一确定的数y与之对应,则称f:D→ R是定义在D上的一个函数,记作y = f(x),x∈ D。
x称为自变量,y称为因变量,D称为函数的定义域,函数值f(x)的全体所构成的集合称为函数的值域。
- 函数的性质。
- 单调性:设函数y = f(x)在区间I上有定义,如果对于区间I上任意两点x_1,x_2,当x_1时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间I上是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),则称y = f(x)为偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),则称y = f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D,有x + T∈ D且f(x+T)=f(x),则称y = f(x)是周期函数,T称为函数y = f(x)的周期。
通常我们说的周期是指最小正周期。
- 有界性:设函数y = f(x)在区间I上有定义,如果存在正数M,使得对于任意x∈ I,都有| f(x)|≤ M,则称函数y = f(x)在区间I上有界;否则称函数y = f(x)在区间I上无界。
- 反函数。
- 设函数y = f(x)的定义域为D,值域为W。
如果对于W中的任意一个y,在D中有唯一确定的x使得y = f(x),则在W上定义了一个函数,这个函数称为y =f(x)的反函数,记作x = f^-1(y)。
习惯上,我们把y = f(x)的反函数记作y = f^-1(x)。
- 复合函数。
- 设函数y = f(u)的定义域为D_1,函数u = g(x)的定义域为D_2,且g(x)的值域R_2⊆ D_1,则由y = f(u)和u = g(x)复合而成的函数y = f(g(x))称为复合函数,u称为中间变量。
成人高考专升本高等数学(一)复习资料
第一阶段(3月初)主要任务是全面复习,夯实基础。
这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。
复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。
第二阶段(8月初)主要任务是重点复习,强化练习。
这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。
第三阶段(9月底10月初)主要任务是冲刺复习,模拟测试。
这个阶段,在重点复习的同时,要进行模拟测试。
通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。
同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。
第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处连续性的方法 (2)会求函数的间断点。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单的命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限 精选考题例题1 设,0≠b 当0→x 时,bx sin 是2x 的( ) 高阶无穷小量 等阶无穷小量 同阶但不等价无穷小量 低阶无穷小量 【答案】 D【考点】 本题考查了无穷小量的比较的知识点. 【解析】 因为,1lim 1lim sin lim sin lim 00020∞==⋅⋅=→→→→x b x b bxbx x bx x x x x 故bx sin 是比2x 低阶的无穷小量,即bx sin 是2x 的低阶无穷小量.例题2 函数22)(-+=x x x f 的间断点为=x _______________. 【答案】 2【考点】 本题考查了函数的间断点的知识点. 【解析】 函数22)(-+=x x x f 在2=x 处无定义,故2=x 为)(x f 的间断 点.例题3 计算.1)1sin(lim 21--→x x x 解:.2111lim 1)1(lim 1)1sin(lim 12121=+=--=--→→→x x x x x x x x 第二章 一元函数微分学第一节 导数与微分(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义要求函数在一点处的导数的方法。
《高等数学》(专科升本科)复习资料
《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。
数列的极限与函数的极限概念。
收敛数列的基本性质及函数极限的四则运算法则。
数列极限的存在准则与两个重要的函数极限。
无穷小量与无穷大量的概念及其基本性质。
常见的求极限的方法。
连续函数的概念及基本初等函数的连续性。
函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。
闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。
复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。
掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。
掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。
理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。
重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。
重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。
成人高考专升本高等数学(一)考试辅导复习资料【全】
成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。
2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。
3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。
4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。
5、掌握性质掌握基本初等函数的简单性质及其图象。
6、掌握概念掌握初等函数的概念。
第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。
函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。
函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。
两个函数只有在它们的定义域和对应法则都相同时,才是相同的。
例:研究函数y=x和y=2是不是表示相同的函数。
解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。
例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。
函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π- 38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x +B .x tanC .()x cos 12-D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(= B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在 C .在0=x 处连续 D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1C .x x a log 1D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100- D .100-92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( ) A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值 C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线 113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( )A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-y y xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin x e y =则=dy ( )A .xd e x2sin B .x d ex2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d edx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ). A .2ln 12x x x C ++++ B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x e B .x e 22 C .3312+x e D .x e 231136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .xx sin C .x cos D .x xcos138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan 142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x ++)ln 4121(2B .c x x ++)ln 2141(2 C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x ++211 C .x tan arg D .c x +arctan147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sin B .c x dx x +=---⎰43)4(C .c x dx x +=⎰32 D .c dx xx +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( ) A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则( )A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( )A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( ) A .1 B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e x D .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( )A .⎰+∞e dx x xln B .⎰+∞e x x dx lnC .⎰∞+e dx x x 2)(ln 1 D .⎰+∞e dx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ( )A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( ) A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e xD .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx xB .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xx x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e →→-==-,故选B .24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B 29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx xx x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→xxx ,故选D 49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→x x x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C 68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y ey x g x f -⋅='=-,选A97.C 98.A 99.B 100.A 101. C 102.B 103.C。
成人高考专升本高数一复习资料
成人高考高数一复习资料、、等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。
为数列的一般项或通项,例如(1)1,3,5,…,, (2)(3)(4)1,0,1,0,…,…都是数列。
在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。
2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。
数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点定理1.1(惟一性)若数列收敛,则其极限值必定惟一。
定理1.2(有界性)若数列收敛,则它必定有界。
注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。
定理1.3(两面夹定理)若数列,,满足不等式且。
定理1.4若数列单调有界,则它必有极限。
下面我们给出数列极限的四则运算定理。
定理1.5(1)(2)(3)当1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作例如函数或当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。
全国成人高考专升本高等数学(一)考点汇编
第一章极限和连续【考点1】极限的三大性质1.唯一性2.局部保号性3.局部有界性【考点2】极限的四大运算法则若lim f (x )=A ,lim g (x )=B ,那么1.lim f (x )士g (x )=lim f (x )士lim g (x )=A 士B2.lim f (x ).g (x )=lim f (x ).lim g (x )=A .B3.limf g x x =l l i i m m f g x x =AB(B 子0)4.lim f (x )g (x )=lim f (x )lim g (x )=A B (A >0)【考点3】夹逼准则若数列{xn },{y n },{z n }满足y n <x n <z n ,且l n y n =lnz n =a ,则数列的极限存在,且l nx n =a若函数f (x ),g (x ),h (x )满足g (x )<f (x )<h (x ),且lim g (x )=lim h (x )=A ,则lim f (x )存在,且lim f (x )=A 【考点4】无穷小量与无穷大量的比阶是在同一自变量变化过程中的无穷小,且a 子0若lim=0,则β是a 的高阶无穷小,记为β=o (a );若lim =父,则β是a 的低阶无穷小;若lim =c 产0,则β是a 的同阶无穷小;若lim =1,则β是a 的等价无穷小,记为β~a ;若lim=c 产0(k >0),则β是a 的k 阶无穷小。
【考点5】无穷小量的性质无穷小乘有界函数仍为无穷小;有限个无穷小的和仍为无穷小;有限个无穷小的乘积仍为无穷小。
【考点6】两个重要极限1.lim =1x →0x (1)x2.lx1+x )|=e 【考点7】连续与间断(|l x|l l x=lx=f (x 0)若f (x 0+0),f (x 0−0)均存在,则x 0是第一类间断点f (x 0+0)=f (x 0−0)产f (x 0)时,x 0为可去间断点f (x 0+0)产f (x 0−0)时,x 0为跳跃间断点若f (x 0+0),f (x 0−0)至少有一个不存在,则x 0是第二类间断点极限不存在且为无穷大时,x 0为无穷间断点极限不存在且为振荡时,x 0为振荡间断点sin x 连续:〈第二章一元函数微分学【考点1】导数的概念与几何意义增量式:f '(x 0)=ix,f '(x )=ix(证明用)差值式:f '(x 0)=lx(计算用)切线方程:y −f (x 0)=f '(x 0)(x −x 0)法线方程:y −f (x 0)=−(x −x 0)(f '(x 0)士0)【考点2】导数的计算C '=0(x a)'=axa −1(cos x )'=−sin x (tan x )'=sec 2x(sec x )'=sec x tan x (csc x )'=−csc x cot x (e x)'=ex(log a x )'=(arcsin x )'=(arccos x )'=−(arccot x )'=−(ln (x +))'=(u 土v )'=u '土v '(Cu )'=Cu '(uv )'=u 'v +uv '1.复合函数求导2.反函数求导3.隐函数求导4.幂指函数求导5.参数方程求导6.分段函数求导(sin x )'=cos x (cot x )'=−csc 2x(a x)'=axln a(ln x )'=(arctan x )'=(ln (x +))'='=(v 士0)1−x1−x【考点3】微分中值定理1.罗尔定理:设f (x )在[a ,b ]内连续,(a ,b )内可导,且f (a )=f (b ),则二ξe (a ,b ),使得f '(ξ)=0.2.拉格朗日中值定理:设f (x )在[a ,b ]内连续,(a ,b )内可导,则二ξe (a ,b ),使得f '(ξ)=f (b )−f (a ).【考点4】洛必达法则若lim f (x )=0(伪/?),lim g (x )=0(伪),f (x ),g (x )在点x 0的某去心邻域内可导,且limf '(x )存在或为无穷大,则limf (x )=limf '(x )x →x 0g '(x )x →x 0g (x )x →x 0g '(x )【考点5】单调性与极值1.单调性设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导如果在(a ,b )内f '(x )之0,且等号仅在有限个点成立,则y =f (x )在上单调递增;如果在(a ,b )内f '(x )<0,且等号仅在有限个点成立,则y =f (x )在上单调递减;2.极值f (x )在x =x 0处连续,且在x 0的某去心邻域内可导若x e (x 0−δ,x 0)时,f '(x )<0,x e (x 0,x 0+δ)时,f '(x )>0,则x 0为极小值点若x e (x 0−δ,x 0)时,f '(x )>0,x e (x 0,x 0+δ)时,f '(x )<0,则x 0为极大值点【考点6】凹凸性与拐点b −ax →x 0x →x 0设y=f(x)在[a,b]上连续,在(a,b)内二阶可导若f''(x)>0,则称y=f(x)为凹函数;若f''(x)<0,则称y=f(x)为凸函数2.拐点若f(x)在x0处连续,在x0的某去心邻域二阶可导,f''(x)在点(x0,f(x0))两侧变号(f'(x)单调性相反),则点(x0,f(x0))为y=f(x)的拐点【考点7】曲线的渐近线1.铅直渐近线:若x mx0f(x)=伪,则x=x0为一条铅直渐近线(x→x+0)(x→x−0)2.水平渐近线:若lx=b,则y=b为一条水平渐近线第三章一元函数积分学【考点1】原函数与不定积分的概念1.原函数的定义:如果F(x)在区间I上可导,而且对v x=I,都有F'(x)=f(x)或dF(x)=f(x)dx,则称函数F(x)为f(x)在区间I上的一个原函数2.原函数存在定理①连续函数必有原函数②含有跳跃、可去、无穷间断点的函数一定没有原函数③含有震荡间断点的函数可能有也可能没有原函数3.原函数之间的关系:如果F(x)是f(x)的一个原函数,则F(x)+C也是f(x)的原函数,其中C为任意常数,这说明,原函数若存在,不唯一。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料〔含答案〕专升本高等数学复习资料一、函数、极限和连续 1.函数y?f(x)的定义域是〔B 〕y?f(x)的表达式有意义的变量x的取值范围A.变量x的取值范围 B.使函数C.全体实数 D.以上三种情况都不是 2.以下说法不正确的选项是〔 C 〕 A.两个奇函数之和为奇函数 B.两个奇函数之积为偶函数 C.奇函数与偶函数之积为偶函数 D.两个偶函数之和为偶函数 3.两函数相同那么〔 C 〕A.两函数表达式相同 B.两函数定义域相同C.两函数表达式相同且定义域相同 D.两函数值域相同 4.函数y?4?x?x?2的定义域为〔〕4) B.[2,4] 4] D.[2,4)A.(2,C.(2,5.函数f(x)?2x3?3sinx的奇偶性为〔〕A.奇函数 B.偶函数 C.非奇非偶 D.无法判断1?x,那么f(x)等于( )2x?1xx?21?x2?x A. B. C. D.2x?11?2x2x?11?2x6.设f(1?x)?7.分段函数是( )A .几个函数 B.可导函数 C.连续函数 D.几个分析式和起来表示的一个函数 8.以下函数中为偶函数的是( ) A.y?e?x B.y?ln(?x) C.y?x3cosx D.y?lnx9.以下各对函数是相同函数的有( ) A.f(x)?x与g(x)??x B.f(x)?1?sin2x与g(x)?cosx?x?2xf(x)?与g(x)?1 D.f(x)?x?2与g(x)??x?2?xC.x?2x?210.以下函数中为奇函数的是( )ex?e?x A.y?cos(x?) B.y?xsinx C.y?32? D.y?x3?x211.设函数y?f(x)的定义域是[0,1],那么f(x?1)的定义域是( )[?1,0] C .[0,1] D. [1,2]A .[?2,?1] B.?x??2?x?012.函数f(x)??2?0x?0的定义域是( ) ??x2?20?x?2A.(?2,2) B.(?2,0] C.(?2,2] D. (0,2]13.假设f(x)?1?x?2x?33x?2x,那么f(?1)?( )A.?3 B.3 C.?1 D.1 14.假设f(x)在(??,??)内是偶函数,那么f(?x)在(??,??)内是( )A.奇函数 B.偶函数 C.非奇非偶函数 D.f(x)?015.设f(x)为定义在(??,??)内的任意不恒等于零的函数,那么F(x)?f(x)?f(?x)必是( A.奇函数 B.偶函数 C.非奇非偶函数 D.F(x)?0??1?x?116.设f(x)??x?1,?2x2?1,1?x?2 那么f(2?)等于 ( )??0,2?x?4A.2??1 B.8?2?1 C. 0 D.无意义17.函数y?x2sinx的图形〔〕A.关于ox轴对称 B.关于oy轴对称 C.关于原点对称 D.关于直线y?x对称18.以下函数中,图形关于y轴对称的有( )A.y?xcosx B.y?x?x3?1C.y?ex?e?x .y?ex?e?x2 D219.函数f(x)与其反函数f?1(x)的图形对称于直线( )A.y?0 B.x?0 C.y?x D.y??x20. 曲线y?ax与y?logax(a?0,a?1)在同一直角坐标系中,它们的图形( )A.关于x轴对称 B.关于y轴对称 C.关于直线y?x轴对称 D.关于原点对称21.对于极限limx?0f(x),以下说法正确的选项是〔〕 A.假设极限limx?0f(x)存在,那么此极限是唯一的 B.假设极限limx?0f(x)存在,那么此极限并不唯一1)C.极限limx?0f(x)一定存在D.以上三种情况都不正确 22.假设极限limx?0f(x)?A存在,以下说法正确的选项是〔〕A.左极限C.左极限D.x?0?limf(x)不存在 B.右极限lim?f(x)不存在x?0x?0x?0?limf(x)和右极限lim?f(x)存在,但不相等x?0x?0x?0?limf(x)?limf(x)?limf(x)?A ?lnx?1的值是( )x?ex?e1A.1 B. C.0 D.eelncotx24.极限lim的值是( ).+x?0lnxA. 0 B. 1 C .? D. ?1 23.极限limax2?b?2,那么〔〕 25.limx?0xsinxA.a?2,b?0 B.a?1,b?1 C.a?2,b?1 D.a??2,b?0 a?b,那么数列极限limnan?bn是n???26.设0?A.a B.b C.1 D.a27.极限limx?0?b12?3121x的结果是A.0 B.28.lim C.1 D.不存在 51为( )x??2x1A.2 B. C.1 D.无穷大量2sinmx(m,n为正整数〕等于〔〕 29. limx?0sinnxxsinA.mn B.nm C.(?1)m?nmn?mn D.(?1) nmax3?b?1,那么〔〕 30.limx?0xtan2xA.a?2,b?0 B.a?1,b?0 C.a?6,b?0 D.a?1,b?1 x?cosxx??x?cosx( )31.极限limA.等于1 B.等于0 C.为无穷大 D.不存在232.设函数?sinx?1?f(x)??0?ex?1?x?0x?0x?0 那么limx?0f(x)?( )A.1 B.0 C.?1 D.不存在 33.以下计算结果正确的选项是( )A.xxlim(1?)x?e B .lim(1?)x?e4 x?0x?04411111x?x?4 C .lim(1?)x?eD .lim(1?)x?e4x?0x?04434.极限1lim?()tanx等于( ) x?0x A. 1 B.? C .0 D.1235.极限lim?xsin?x?0?11??sinx?的结果是 xx?A.?1 B.1 C.0 D.不存在 1?k?0?为 ( )x??kx1 A.k B. C.1 D.无穷大量k36.limxsin37.极限limsinx=( )x???2A.0 B.1 C.?1 D.?38.当x??时,函数(1??21x)的极限是( ) xA.e B.?e C .1 D.?139.设函数?sinx?1?f(x)??0?cosx?1?x?0x?0,那么limf(x)?x?0x?0A.1 B.0 C.?1 D.不存在x2?ax?6?5,那么a的值是( ) 40.limx?11?xA.7 B.?7 C. 2 D.341.设?tanax?f(x)??x??x?2x?0x?0,且limx?0f(x)存在,那么a的值是( )2A.1 B.?1 C .2 D.?42.无穷小量就是〔〕A.比任何数都小的数 B.零 C.以零为极限的函数 D.以上三种情况都不是43.当x?0时,sin(2x?x3)与x比拟是( )3A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 44.当x A.?0时,与x等价的无穷小是〔〕x B.ln(1?x) C.2(sinx1?x?1?x) D.x2(x?1)45.当x?0时,tan(3x?x3)与x比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 46.设f(x)?1?x,g(x)?1?x,那么当x?1时〔〕2(1?x)A.C.f(x)是比g(x)高阶的无穷小 B.f(x)是比g(x)低阶的无穷小 f(x)与g(x)为同阶的无穷小 D.f(x)与g(x)为等价无穷小47.当xA.a48.当x?0?时, f(x)?1?xa?1是比x高阶的无穷小,那么( ) ?1 B.a?0 C.a为任一实常数 D.a?1?0时,tan2x与x2比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 49.“当x?x0,f(x)?A为无穷小〞是“limf(x)?A〞的〔〕x?x0A.必要条件,但非充分条件 B.充分条件,但非必要条件 C.充分且必要条件 D.既不是充分也不是必要条件 50.以下变量中是无穷小量的有( ) A.lim(x?1)(x?1)1 B.limx?0ln(x?1)x?1(x?2)(x?1) C.lim51.设 A. C.111cos D.limcosxsin x??xx?0xxf(x)?2x?3x?2,那么当x?0时( )f(x)与x是等价无穷小量 B.f(x)与x是同阶但非等价无穷小量 f(x)是比x 较高阶的无穷小量 D.f(x)是比x较低阶的无穷小量52.当x?0?时,以下函数为无穷小的是( )111 A.xsin B.ex C.lnx D.sinxxx53.当x?0时,与sinx2等价的无穷小量是 ( )1? A.ln(54.函数x) B.tanx C.2?1?cosx? D.ex?11y?f(x)?xsin,当x??时f(x) ( )x4。
专升本 成考数学必背知识点复习提纲
专升本成考数学必背知识点复习提纲
1. 复数
- 复数的定义和表示方法
- 复数的四则运算
- 复数的共轭和模
2. 数列与数列极限
- 等差数列和等差数列的通项公式
- 等比数列和等比数列的通项公式
- 数列的极限和收敛性
3. 函数与极限
- 函数的定义和性质
- 函数的基本运算
- 无穷小和无穷大
- 极限的定义和性质
- 极限的计算方法
4. 导数与微分
- 导数的定义和性质
- 导数的基本运算法则
- 高阶导数
- 微分的定义和性质
5. 积分与定积分
- 定积分的定义和性质
- 定积分的计算方法
- 积分运算法则
6. 三角函数
- 弧度与角度的关系
- 正弦函数、余弦函数和正切函数的定义和性质- 三角函数的基本关系式
7. 平面几何
- 直线的方程和性质
- 圆的方程和性质
- 直线与圆的位置关系
8. 空间几何
- 空间中点、向量和坐标的表示方法
- 空间图形的性质和判定方法
9. 概率与统计
- 随机事件与概率的定义
- 计数原理
- 离散型随机变量和连续型随机变量的概念和性质
- 统计量和统计分布的概念和性质
备注:以上为必背知识点的复提纲,建议根据重要性和难度进行合理安排复时间。
专升本高数复习资料(超新超全)
严格依据大纲编写:笔记目录第一章极限与连续第一节极限[复习考试要求]1、了解极限得概念(对极限定义等形式得描述不作要求)。
会求函数在一点处得左极限与右极限,了解函数在一点处极限存在得充分必要条件。
2、了解极限得有关性质,掌握极限得四则运算法则。
3、理解无穷小量、无穷大量得概念,掌握无穷小量得性质、无穷小量与无穷大量得关系。
会进行无穷小量阶得比较(高阶、低阶、同阶与等价)。
会运用等价无穷小量代换求极限。
4、熟练掌握用两个重要极限求极限得方法。
第二节函数得连续性[复习考试要求]1、理解函数在一点处连续与间断得概念,理解函数在一点处连续与极限存在之间得关系,掌握判断函数(含分段函数)在一点处连续性得方法。
2、会求函数得间断点。
3、掌握在闭区间上连续函数得性质会用它们证明一些简单命题。
4、理解初等函数在其定义区间上得连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1、理解导数得概念及其几何意义,了解可导性与连续性得关系,会用定义求函数在一点处得导数。
2、会求曲线上一点处得切线方程与法线方程。
3、熟练掌握导数得基本公式、四则运算法则以及复合函数得求导方法。
4、掌握隐函数得求导法与对数求导法。
会求分段函数得导数。
5、了解高阶导数得概念。
会求简单函数得高阶导数。
6、理解微分得概念,掌握微分法则,了解可微与可导得关系,会求函数得一阶微分。
第二节导数得应用[复习考试要求]1、熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式得极限得方法。
2、掌握利用导数判定函数得单调性及求函数得单调增、减区间得方法。
会利用函数得单调性证明简单得不等式。
3、理解函数极值得概念,掌握求函数得驻点、极值点、极值、最大值与最小值得方法,会解简单得应用题。
4、会判断曲线得凹凸性,会求曲线得拐点。
5、会求曲线得水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1、理解原函数与不定积分得概念及其关系,掌握不定积分得性质。
成人高考专升本《高等数学(一)》通关资料
(特殊情况:对数求导法时,先两边同时取对数, 再求解)
一、求导方法
(七)对数函数求导法
利用对数函数的运算性质可以将原来的函数两边同时取对数后化简 然后利用隐函数求导法或复合求导法求导,因此称为对数求导法 通常解决函数类型为:
y u( x)v( x) 步骤为: (1)两边同时取对数得 ln y vx.lnu( x)
0,则函数f (x)在区间(a, b)内是递增的 0,则函数f (x)在区间(a, b)内是递减的 0不影响f (x)的单调性.
五、导数的应用
(四)函数的极值
1.极值的第一充分条件
设f (x)在x0的某领域内可导.
1 若x x0 时,f"(x) 0,x 0 x ," f (x) 0时则0 称x 为极大值点,0f (x )为极大
在连续的曲线上的凹弧与凸弧之间的分界点称为曲线的拐点。
五、导数的应用
(六)曲线的水平渐近线与铅直渐近线
定义:
若 lim f (x) A或 lim f (x) A或 lim f (x) A,
dt
三、导数
(六)隐函数的求导
解析法表示函数通常有两种: (1).y f(x)来表示的,称之为显函数。
如y sinwx,y xe ln(x 1 2 x ) (2).x与y之间的函数关系是由一 个方程F(x,y)
这种称之为隐函数,
0来确定
如2x y3 -1 0,xy -x e y e 0 对于隐函数的求导通常做法: 可直接在方程F(x,y) 0的两端同时对x求导,而把y 视为中间变量,利用复合函数求导法即可。
M (x0,f (x0 ))的切线方程为:
y - f (x ) "f (x )(x x )
成人高考复习资料_专升本高等数学考纲
成人高考复习资料_专升本高等数学考纲六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念。
掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值判别法。
会用正项级数的比较判别法。
(3)掌握几何级数、调和级数与级数的收敛性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
(4)会运用麦克劳林(Maclaurin)公式。
成人高考复习资料(二)七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的解法。
(二)可降价方程1.知识范围(1) 型方程(2) 型方程2.要求(1)会用降阶法解型方程。
(2)会用降阶法解型方程。
(三)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程的解法。
成人高考复习资料(三)考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:函数、极限和连续约15%一元函数微分学约25%一元函数积分学约20%多元函数微积分(含向量代数与空间解析几何)约20%无穷级数约10%常微分方程约10%试卷题型比例:选择题约15%填空题约25%解答题约60%试题难易比例:容易题约30%中等难度题约50%较难题约20%成人高考复习资料(四)1、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条件(4)二向量的向量积、二向量平行的充分必要条件2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
专升本高数复习资料全
第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
2022年全国成人高考专升本高等数学一复习资料
2022年全国成人高考专升本高等数学一复习资料一、函数一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
2020成人高考专升本数学复习(高数一)复习题及答案
2020成人高考专升本数学复习(高数一)复习题及答案2020年成人高考专升本高等数学一复试卷构成分析一、题型分布:本试卷分为选择题、填空题和解答题三部分,分别占总分的40%、40%和70%。
二、内容分布本试卷内容包括极限函数、求导、微分、积分、空间几何、多元函数、无穷级数和常微分方程。
难点在于隐函数求导、全微分、多元函数极值和常微分方程。
复方法:1、结合自身情况制定研究目标;2、分章节重点突破,多做题,做真题。
第一部分极限与连续题型一:求极限方法一:直接代入法(当代入后分母不为零时可用)练1.lim (2x-1)/sinx = _______练2.lim sinx/x (x→π) = _______方法二:约去为零公因子法练1.lim (x²+x-2)/(x-1) (x→1) = _______练2.lim (x⁴-1)/(x³-1) (x→1) = _______方法三:分子分母同时除以最高次项(当极限为∞或-∞时)练1.lim (3x²+1)/(x-1) = _______练2.lim (2x⁵-x+1)/(x⁵-1) (x→∞) = _______练3.lim (√(5x-4)-√x)/(x-1) = _______方法四:等价代换法(当x→0时,sinx~x,tanx~x,arcsinx~x,arctanx~x,ln(1+x)~x,cosx~1-x²/2)等价代换只能用于乘除,不能用于加减)练1.lim sin(x-1)/(x²-1) (x→1) = _______练2.lim (1-cosx)/(xsinx) = _______练3.lim arcsin(x-1)/(x-1) = _______方法五:洛必达法则(分子分母求导)当极限为1-∞型或0/0型或其他变形形式时练1.lim (2n²-n+1)/(3x+5) (2n→∞) = _______练2.lim ln(x)+ex-eⁿx/(x-1) (x→1) = _______两个重要极限(背2个重要极限)lim (1+x)ⁿ/x = eⁿ (x→0)lim (aⁿ-1)/n = ln a (n→∞)练1.对函数f(x)=x^3-3x^2+2x求出其前三阶导数。
2023福建成人高考专升本高等数学一知识点
2023福建成人高考专升本高等数学一知识点一、导数与微分1. 导数的概念导数的概念是高等数学中非常重要的基础知识之一。
导数表示了函数在某一点上的变化率,可以用来描述函数的增减性、凹凸性以及函数图像的特征。
在学习导数的过程中,需要掌握导数的定义、性质以及一些常见函数的导数表达式。
2. 导数的计算导数的计算是导数知识点的核心内容之一。
在计算导数时,需要掌握基本的导数计算公式,例如幂函数的导数、三角函数的导数、指数函数的导数等。
还需要掌握基本的导数运算法则,例如和差法则、积法则、商法则等。
在解决实际问题时,还需要灵活运用导数的定义和性质进行计算。
3. 微分的概念微分是导数的基本应用之一,它表示了函数在某一点附近的近似变化量。
微分可以应用于求解函数的极值、函数的最优化问题等实际应用中。
在学习微分时,需要掌握微分的定义、微分的计算,以及微分在实际问题中的应用。
二、不定积分与定积分1. 不定积分的概念与性质不定积分是求解函数原函数的过程,它是积分的基本形式之一。
在学习不定积分时,需要掌握不定积分的概念、基本性质、基本的不定积分公式以及一些特殊函数的不定积分表达式。
2. 不定积分的计算方法在计算不定积分时,需要掌握基本的不定积分计算规则,例如换元积分法、分部积分法、有理函数积分法等。
还需要熟练掌握积分的计算技巧,灵活应用积分的基本性质和公式进行计算。
3. 定积分的概念与计算定积分是积分的另一种形式,它表示了函数在一个区间上的累积变化量。
在学习定积分时,需要掌握定积分的概念、性质,以及定积分的计算方法,包括定积分的几何意义、定积分的计算公式、定积分的性质等。
三、级数与幂级数1. 级数的概念与性质级数是一种特殊的数列,它是指将一个数列的各项按照一定的顺序相加得到的一种新的数列。
在学习级数时,需要掌握级数的概念、收敛性、发散性,以及一些常见级数的性质和判别方法。
2. 幂级数的概念与收敛域幂级数是级数的一种特殊形式,它表示了一个形如∑(an*x^n)的无穷级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成人高考高数一复习资料限的概念(对极限定义、、等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。
为数列的一般项或通项,例如(1)1,3,5,…,,…(2)(3)(4)1,0,1,0,…,…都是数列。
在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。
2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n趋于无穷大时,数列以常数A 为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。
数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限定理 1.1(惟一性)若数列收敛,则其极限值必定惟一。
定理 1.2(有界性)若数列收敛,则它必定有界。
注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。
定理 1.3(两面夹定理)若数列,,满足不等式且。
定理 1.4若数列单调有界,则它必有极限。
下面我们给出数列极限的四则运算定理。
定理1.5(1)(2)(3)当时,1.当时函数的极限(1)当时的极限定义对于函数,如果当x 无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数当x从0的左边无限地趋于0时,无限地趋于一个常数 1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。
因此有这就是说,对于函数当时,的左极限是1,而右极限是-1,即但是对于函数,当时,的左极限是2,而右极限是2。
显然,函数的左极限、右极限与函数的极限之间有以下关系:定理 1.6 当时,函数的极限等于A的必要充分条件是这就是说:如果当时,函数的极限等于A,则必定有左、右极限都等于A。
反之,如果左、右极限都等于A,则必有。
这个结论很容易直接由它们的定义得到。
以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点处,当时,的极限也可能不存在。
2.当时,函数的极限(1)当时,函数的极限定义对于函数,如果当时,无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时,函数的极限定义对于函数,如果当时,无限地趋于一个常数A,则称当时,函数的极限是A,记作这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n是正整数;而在这个定义中,则要明确写出,且其中的x不一定是整数。
如函数,当时,无限地趋于常数2,因此有(3)当时,函数的极限定义对于函数,如果当时,无限地趋于一个常数A,则称当时,的极限是A,记作又如函数,当时,无限地趋于常数2,因此我们说,当时,函数的极限是2,即有由上述,,时,函数极限的定义,不难看出:时,的极限是A,这表示当且仅当以及时,函数有相同的极限A。
但是对函数来讲,因为有,即虽然当时,的极限存在,当时,的极限也存在,但这两个极限不相同,我们只能说,当时,的极限不存在。
例如函数,当时,无限地趋于常数1:当时,也无限地趋于同一个常数1,因此称当时的极限是1,记作其几何意义如图3所示.定理 1.7惟一性定理)如果存在,则极限值必定惟一。
定理 1.8(两面夹定理)设函数,,在点的某个邻域内(可除外)满足条件且有。
注意:上述定理 1.7及定理 1.8对也成立。
下面我们给出函数极限的四则运算定理定理 1.9如果则(1)(2)(3)当时,上述运算法则不难推广到有限多个函数的代数和及乘积的情形,并有以下推论:推论(1)(2)(3)用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零,另外,上述极限的运算法则对于的情形也1、无穷小量(简称无穷小)定义对于函数,如果自变量x在某个变化过程中,函数的极限为零,则称在该变化过程中,为无穷小量,一般记作在微积分中常用希腊字母来表示无穷小量。
这里说的"自变量x在某个变化过程中"是指当或,或,或,或,或中的一个。
为了简单起见,我们没有专门再提出数列,而把它归入函数之中,并且有时将数列与函数统称为变量。
定理 1.10函数以A为极限的必要充分条件是:可表示为A与一个无穷小量之和。
注意:(1)无穷小量是变量它不是表示量的大小,而是表示变量的变化趋势是变量无限趋于零的。
(2)一个变量是否为无穷小量是与自变量的变化趋势紧密相关的。
在不同的变化过程中,同一个变量可以有不同的变化趋势,例如,。
所以,当时,是无穷小量;而当时,就不是无穷小量。
因此称为无穷小量时,必须指出自变量的变化趋势。
否则是毫无意义的。
(3)很小很小的数不是无穷小量,越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量。
(4)无穷小量不是一个数,但"0"是无穷小量中惟一的一个数,这是因为。
2.无穷大量(简称无穷大)定义如果当自变量(或)时,的绝对值可以变得充分大(也即无限地增大),则称在该变化过程中,为无穷大量。
记作。
2.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一种简单的关系,见以下的定理。
定理 1.11 在同一变化过程中,如果为无穷大量,则为无穷小量;反之,如果为无穷小量,且,则为无穷大量。
例如当时,是无穷大量,而当时,是无穷小量。
当时,是无穷小量,而当时,是无穷大量。
3.无穷小量的基本性质性质1 有限多个无穷小量的代数和仍是无穷小量;性质2 有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。
性质3 有限多个无穷小量的乘积是无穷小量。
性质4 无穷小量除以极限不为零的变量所得的商是无穷小量。
4.无穷小量的比较定义设是同一变化过程中的无穷小量,即(1)如果则称是比较高阶的无穷小量,记作;(2)如果则称是与同阶的无穷小量;(3)如果则称与是等价无穷小量,记为~;(4)如果则称是比较低价的无穷小量。
记作例如:因为,所以称与x是等价无穷小量(当时)。
因为,所以称与x是同阶无穷小量(当时)。
因为,所以称是比较高阶的无穷小量(当时)。
两个等价无穷小量可以互相代换,且有下列性质:如果当()时,均为无穷小量,又~,~,且存在,则这个性质常常使用在极限运算中,它能起到简化运算的作用。
但是必须注意:等价无穷小量代换只能在极限的乘除运算中使用。
常用的等价无穷小量代换有:当时,~x;~x;~x;~x ;~x ;~x;~;对这些等价无穷小量的代换,应该更深一层的理解为:当→0时其余类似。
例如当时,~,当时,sin~。
1.重要极限I 属三角函数的型的极限问题该公式可以用下面更直观的结构式表示2、重要极限Ⅱ属型的幂指型的极限问题其中e是个常数,叫自然对数的底,它的值为:e=2.718 281 828 495 045…其结构式可表示为2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法则求未定式的极限;6.利用等价无穷小代换定理求极限。
四则运算法则:lim f(x)=A lim g(x)=B①lim〔f(x)±g(x)〕=lim f(x)±lim g(x)=A±B②lim〔f(x)×g(x)〕= lim·f(x)×lim·g(x)=A·B③lim K(x)=K lim f(x)=K·A④lim==(B≠0)⑤lim f(x)=〔limf(x)〕n=A n 基本极限公式(1)limc=c(2),(3),(4)1.约分,求极限。