AD623集成单电源仪表放大器
主流仪表放大器芯片学习详解(1):AD620
主流仪表放大器芯片学习详解(1):AD620电子发烧友网讯:什么是仪表放大器?仪表放大器是精密增益模块,输入为差分式,输出可以是差分式,也可以是相对于参考端的单端式。
这些器件能够放大两个输入信号电压之间的差值,同时抑制两个输入端共有的任何信号。
仪表放大器广泛用于许多工业、测量、数据采集和医疗应用,这些应用要求在高噪声环境下保持直流精度和增益精度,而且其中存在大共模信号(通常为交流电力线频率)。
ADI 公司为每一种应用和市场提供种类齐全的精密、低噪声、低功耗和高共模抑制比(CMRR)的仪表放大器,本文要重点阐述的AD620仪表放大器芯片更是应用领域的佼佼者。
AD620封装图:AD620仪表放大器:低漂移、低功耗仪表放大器,增益设置范围1至10000AD620是一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10,000。
此外,AD620采用8引脚SOIC和 DIP封装,尺寸小于分立电路设计,并且功耗更低(最大电源电流仅1.3 mA),因而非常适合电池供电及便携式(或远程)应用。
AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 μV)和低失调漂移(最大0.6 μV/°C)特性,是电子秤和传感器接口等精密数据采集系统的理想之选。
它还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测仪等医疗应用。
由于其输入级采用Super?eta处理,因此可以实现最大1.0 nA的低输入偏置电流。
AD620在1 kHz时具有9 nV/?Hz的低输入电压噪声,在0.1 Hz至10 Hz频带内的噪声为0.28 μV p-p,输入电流噪声为0.1 pA/?Hz,因而作为前置放大器使用效果很好。
同时,AD620的0.01%建立时间为15 μs,非常适合多路复用应用;而且成本很低,足以实现每通道一个仪表放大器的设计。
AD620 组件介绍AD620 的基本特点为精确度高、使用简单、低噪声,此仪表放大器有高输入阻抗:10GΩ||2pF,高共模具斥比高(CMR):100dB,低输入抵补电压(Input offset Voltage):50uV,低输入偏移电流(Input bias current):1.0nA,低消耗功率:1.3 mA,以及过电压保护等特性应用十分广泛。
仪表放大器AD623的性能与应用
几盛.F
图 4 放 大低 共模 电压双极性信号
3 设计考虑
在仪表放大器的电路设计中, 卜 以 一些实N 问题 ,
需要考虑 :
" 2 的增益是通过改变编程电阻 R 来实现的 A63 D 1 :
为了使 D2 A 63的输出电压增益精确, 应使 用误差小
图3 单电源教据采集系统
《 是由中国石油天然气集团公司主管、 石油仪器》 中国石油物资装备( 集团) 总公司和西安石油勘探仪器总1 主办, 全面介绍和评论国内外石油仪器、 仪表装备的综合性科技期刊。《 石油仪器》 为中国石油天然气集1} }优 4 ; 1 i 1
、
秀期刊, 陕西省优秀科技期刊一等奖。 《 内容丰宫多彩 栏目新顺多样: 石油仪器》 开辟了理论研究 、 开发设计、 仪器设备、 计算机应用、 测试技术 、 综 述、 使用维修、 技术讲座、 产品信息等灵活多样的栏目, 涉及了勘探、 钻井、 录井、 采油、 炼化等方面的新技术、 } 新_ 艺、 新方法, 信息量大, 覆盖面广, 可满足不同读者的需求。她已成为石油、 地质、 化工等行业获取科技信息的桥 梁, 了解仪器仪表装备动态和市场的窗口, 是用户选购仪器仪表的向导, 是管理决策者的参谋和广大读者及科技
后,D2 可编程设置增益, A6 3 其增益最高可达 1 ( 0! 0倍
A 63 D 2 通过提供极好的随增益增大而增大的交流共模 抑制比(C R ) A C R 而保持最小的误差, M 线路噪声及谐 波将由于共模抑制比在高达20 : 0H 时仍保持恒定而受 到抑制 生然 A 63 D2 在单电源方式进行优化设计, 但 当它工作于双电源( 25 6 ) 仍能提供优良的 士 .一士 V 时, 性能。低功耗(V时 15 W)宽电源电压范围、 3 .m , 满电 源幅 度输 出, A 63成 为电池供 电应用 的理想 使 D2
仪表放大器的正确使用方法
仪表放大器的正确使用方法发表于2008/7/12 21:40:05仪表放大器的正确使用方法****************************************************************这篇文章转载自/article-2765-儀表放大器的正確使用方法-Asia.html(12月1日 2005 年)作者:ChaCMRrles Kitchin及Lew Counts,Analog Devices****************************************************************仪表放大器(instrumentation amplifier)被广泛地应用在现实世界中的资料截取。
然而,设计工程师在使用它们时,却经常会出现不当使用的情形。
具体来说,尽管现代仪表放大器具有优异的共模抑制(common-mode rejection,CMR),但设计工程师必须限制总共模电压及信号电压,以避免放大器内部输入缓衝的饱和。
不幸的是,设计工程师经常忽略此一要求。
其他常见的应用问题则是由以下因素所引起的,包括以高阻抗源驱动仪表放大器的基准端;在增益很高的情况下来操作低供应电压的仪表放大器电路;仪表放大器输入端与交流耦合,但却没有提供直流对地的返回路径;以及使用不匹配的 RC 输入耦合元件。
仪表放大器快速入门仪表放大器是具有差分输入和单端输出的闭环增益电路区块。
仪表放大器一般还有一个基准输入端,以便让使用者可以对输出电压进行上或下的位准移位(level-shift)。
使用者还可以一个或多个的内部或外部电阻来设定增益。
图 1 是一个桥式前置放大器(bridge-preamplifier)电路,这是一种典型的仪表放大器应用电路。
当检测到讯号时,该桥式电阻(bridge-resistor)值即改变,使得桥的平衡被破坏,而引起它的差分电压改变。
此一信号输出即是差分电压,它可以直接连接到仪表放大器的输入端。
AD623单电源、电源限输出仪表放大器的原理及应
摘 要: 介绍了美国ADI公司最新推出的单电源供电(+3~+12V)输出摆幅能达到电源电压的集成仪表放大器AD623的基本原理、使用方法和典型应用。AD623具有低功耗、宽电源范围和电源限输出特性,它非常适合电池供电应用场合。
关键词: 仪表放大器 电源限输出 单电源
AD623的误差很低,有两个误差源:输入误差和输出误差。当折合到输入端(RTI)时,输出误
差除以增益,实际上在增益很高时,输入误差起主要作用;在低增益时,输出误差起主要作
用。对给定增益,总失调电压(V OS )由下式计算:
总误差(RTI)=输入误差+输出误差/增益
总误差(RTO)=输入误差×增益+输出误差
(7)AD623可以取代分立器件搭成的仪表放大器具有优良的线性度、温度稳定性和小体积可靠
性。
(8)AD623仪表放大器采用8脚工业标准封装形式,即DIP,SOIC和小型SOIC三种形式,其引脚排列如图1所示。
迄今为止,尚未见到一种仪表放大器的性能能达到AD623的水平。AD623主要用于低功耗医用
1 概述
AD623仪表放大器是美国模拟器件公司(Analog Devices Inc.,简称ADI)最近推出的一种低价格、单电源、输出摆幅能达到电源电压(通常称之为电源限输出,即rail to rail output)的最新仪表放大器。主要特点是:
(1)AD623使用一只外接电阻设置增益(G),高达1000,从而给用户带来极大方便。
3 4 抗射频干扰措施
所有的仪表放大器能对通带外高频信号检波,被检波的信号以直流失调误差的形式出现在输
出端。为了防
ad623芯片手册
ad623芯片手册AD623是一款低成本、高精度的仪表放大器,广泛应用于各种模拟信号的放大和处理。
以下是对AD623芯片的详细介绍:一、概述AD623是一款低成本、高精度的仪表放大器,具有增益可编程、低噪声、低失真等特点。
它采用了先进的电路设计和制造工艺,能够在宽的增益范围内提供高精度的放大性能。
AD623非常适合用于各种需要放大和测量微弱信号的应用场景,如医疗仪器、工业控制、测量设备和科学仪器等领域。
二、主要特点1.增益可编程:AD623的增益可以通过外部电阻器进行编程,范围从1到1000。
用户可以根据需要选择合适的增益值,以便获得最佳的放大效果。
2.低噪声:AD623具有低噪声特性,可以有效地减小放大信号中的噪声干扰。
这使得它非常适合用于放大微弱信号的应用场景。
3.低失真:AD623采用了先进的电路设计,具有低失真特性。
它能够将输入信号中的失真成分减小到最低程度,从而提高信号的质量。
4.宽电源电压范围:AD623可以在较宽的电源电压范围内工作,范围从±2.5V到±18V。
这使得它非常适合用于各种不同的电源配置中。
5.兼容TTL/CMOS输入/输出:AD623的输入和输出兼容TTL/CMOS电平,这使得它能够与各种不同的数字电路和微控制器等器件进行无缝连接。
三、应用场景1.医疗仪器:AD623的低噪声和高精度特性使得它非常适合用于医疗仪器中,如心电图机、血压计和血氧仪等设备。
2.工业控制:在工业控制领域中,AD623可以用于各种传感器信号的放大和处理,如压力传感器、温度传感器和流量传感器等。
3.测量设备:在测量设备中,如示波器、频谱分析仪和信号发生器等设备中,AD623可以用于放大微弱信号和提高信号的质量。
4.科学仪器:在科学研究中,如物理实验、化学分析和生物学研究中,AD623可以用于放大和测量各种微。
AD623单电源、电源限输出仪表放大器的原理及应
AD623单电源、电源限输出仪表放大器的原理及应AD623单电源、电源限输出仪表放大器的原理及应摘要:介绍了美国ADI公司最新推出的单电源供电(+3~+12V)输出摆幅能达到电源电压的集成仪表放大器AD623的基本原理、使用方法和典型应用。
AD623具有低功耗、宽电源范围和电源限输出特性,它非常适合电池供电应用场合。
关键词:仪表放大器电源限输出单电源1 概述AD623仪表放大器是美国模拟器件公司(Analog Devices Inc.,简称ADI)最近推出的一种低价格、单电源、输出摆幅能达到电源电压(通常称之为电源限输出,即rail to rail output)的最新仪表放大器。
主要特点是:(1)AD623使用一只外接电阻设置增益(G),高达1000,从而给用户带来极大方便。
(2)AD623具有优良的直流特性:增益精度0 1%(G=1),增益漂移25ppm(G=1),输入失调电压最大100μV(AD623B),输入失调电压漂移1μV/°C(AD623B),输入偏置电流最大25nA。
(3)AD623具有优良的CMRR(它随增益增加而增加),使误差最小。
电源线噪声及其谐波都受到抑制,因为CMRR抑制频率高达200Hz。
(4)AD623带宽800kHz(G=1),达0 01%建立时间20μs(G=10)。
(5)AD623的输入共模范围很宽,可以放大比地电位低150mV的共模电压。
虽然AD623单电源供电能达到最佳性能,但双电源供电(±2 5~±6 0V)也能提供优良的性能。
(6)AD623低功耗(电源电流最大575μA)、宽电源范围和电源限输出特性非常适合电池供电应用场合。
电源限输出特性使低电源供电条件下,电源限输出级使其动态范围达到最大。
(7)AD623可以取代分立器件搭成的仪表放大器具有优良的线性度、温度稳定性和小体积可靠性。
(8)AD623仪表放大器采用8脚工业标准封装形式,即DIP,SOIC和小型SOIC三种形式,其引脚排列如图1所示。
ad620用法介绍以及典型电路连接要点
单片仪表放大器为了满足对更容易应用的仪表放大器的需求,ADI公司研发出单片IC仪表放大器。
这些IC包含对如前所述的三运放和双运放仪表放大器电路的改进,同时提供激光微调的电阻器和其它有益於单片IC的技术。
由於有源器件和无源器件现在都在同一颗管芯内,所以它们能够精密匹配——这保证了器件提供高CMR。
另外,这些器件在整个温度范围内保持匹配,从而保证了在宽温度范围内优良的性能。
IC技术(例如,激光晶圆微调)能够使单片集成电路调整到极高精度并且提供低成本、高量产。
单片仪表放大器的另一个优点是它们可以采用尺寸极小、成本极低的SOIC或MSOP封装,适合用於高量产。
表1提供一个ADI公司仪表放大器性能快速一览表。
图1. AD8221原理图一、采用仪表放大器还是差分放大器尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。
差分放大器本质上是一个运放减法器,通常使用大阻值输入电阻器。
电阻器通过限制放大器的输入电流提供保护。
它们还将输入共模电压和差分电压减小到可被内部减法放大器处理的范围。
总之,差分放大器应当用於共模电压或瞬态电压可能会超过电源电压的应用中。
与差分放大器相比,仪表放大器通常是带有两个输入缓冲放大器的运放减法器。
当总输入共模电压加上输入差分电压(包括瞬态电压)小於电源电压时,应当使用仪表放大器。
在最高精度、最高信噪比(SNR)和最低输入偏置电流(IB)是至关重要的应用中,也需要使用仪表放大器。
二、单片仪表放大器内部描述1、高性能仪表放大器ADI公司於1971年推出了第一款高性能单片仪表放大器AD520,2003年推出AD8221。
这款仪表放大器采用超小型MSOP封装并且在高於其它同类仪表放大器的带宽内提供增加的CMR。
它还比工业标准AD620系列仪表放大器有很多关键的性能提高。
图2. AD8221的引脚排列AD8221是一种基於传统的三运放结构的单片仪表放大器(见图1)。
ad623典型应用电路
ad623典型应用电路
ad623典型应用电路
ad623典型应用电路
AD623是一款低成本、高精度、高通用性的差动放大器,被广泛应用于测量、控制和监测系统中。
下面将介绍一些AD623的典型应用电路。
1. 温度传感器电路
在温度传感器应用中,AD623被用作差动放大器。
该电路具有高精度和可靠性,能够提供稳定的输出信号。
传感器的输出信号被输入到AD623的两个差分端口,从而实现增益和放大。
2. 电压测量电路
在电压测量应用中,AD623可以被用作高精度电压测量电路。
该电路具有低失真和高增益,能够有效地测量低电压信号。
在该电路中,测量电压被输入到AD623的一个差分端口,而另一个差分端口接地。
3. 血氧仪电路
在血氧仪应用中,AD623可用作差动放大器。
该电路能够提供高增益和高精度,能够有效地测量低电平信号。
在该电路中,传感器的输出信号被输入到AD623的两个差分端口,从而实现增益和放大。
总之,AD623具有高精度、低成本、高可靠性等优点,被广泛应用于各种测量、控制和监测系统中。
以上是AD623的典型应用电路介绍,可以为读者提供参考和借鉴。
- 1 -。
ad620用法介绍以及典型电路连接解读
单片仪表放大器为了满足对更容易应用的仪表放大器的需求,ADI公司研发出单片IC仪表放大器。
这些IC包含对如前所述的三运放和双运放仪表放大器电路的改进,同时提供激光微调的电阻器和其它有益於单片IC的技术。
由於有源器件和无源器件现在都在同一颗管芯内,所以它们能够精密匹配——这保证了器件提供高CMR。
另外,这些器件在整个温度范围内保持匹配,从而保证了在宽温度范围内优良的性能。
IC技术(例如,激光晶圆微调)能够使单片集成电路调整到极高精度并且提供低成本、高量产。
单片仪表放大器的另一个优点是它们可以采用尺寸极小、成本极低的SOIC或MSOP封装,适合用於高量产。
表1提供一个ADI公司仪表放大器性能快速一览表。
图1. AD8221原理图一、采用仪表放大器还是差分放大器尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。
差分放大器本质上是一个运放减法器,通常使用大阻值输入电阻器。
电阻器通过限制放大器的输入电流提供保护。
它们还将输入共模电压和差分电压减小到可被内部减法放大器处理的范围。
总之,差分放大器应当用於共模电压或瞬态电压可能会超过电源电压的应用中。
与差分放大器相比,仪表放大器通常是带有两个输入缓冲放大器的运放减法器。
当总输入共模电压加上输入差分电压(包括瞬态电压)小於电源电压时,应当使用仪表放大器。
在最高精度、最高信噪比(SNR)和最低输入偏置电流(IB)是至关重要的应用中,也需要使用仪表放大器。
二、单片仪表放大器内部描述1、高性能仪表放大器ADI公司於1971年推出了第一款高性能单片仪表放大器AD520,2003年推出AD8221。
这款仪表放大器采用超小型MSOP封装并且在高於其它同类仪表放大器的带宽内提供增加的CMR。
它还比工业标准AD620系列仪表放大器有很多关键的性能提高。
图2. AD8221的引脚排列AD8221是一种基於传统的三运放结构的单片仪表放大器(见图1)。
ADI可穿戴无线ECG动态心电监护仪参考设计
ADI可穿戴无线ECG动态心电监护仪参考设计传统心电监护仪通常需要随身携带记录监视仪,放在靠近病人颈部或腕部的口袋里,而无线心电图监视仪的噪声和干扰大大降低,尺寸减小到甚至可以安装在电极背面,能够提供比传统方案更精确的信号。
这种电路价格便宜,且能够提供诊断质量的1 导联心电图迹线,驱动腿免除了对60 Hz 陷波滤波器的需求。
所有的电路都能穿戴在衣服内,因此患者舒适度和隐私度大幅提高。
病人的监测数据经过加密,每隔几分钟就自动上载至医院、护理机构或养护机构中的现场采集分析系统。
病人可以在预定的时间(每天或每周)到医生办公室或诊所上载信息,而无需移除监视仪或重新放置电极。
无线心电图监视仪还可以安装存储卡,通过手机或局域网进行数据传输。
除了性能、可靠性、低功耗以及成本等因素,无线心电图监视仪设计必须支持专用的遥测频段,以使监视仪的心电图数据可以迅速、准确、安全的传输至数据采集器进行评估。
概述在北美地区,无线医疗遥测服务(WMTS)频段以及其它免授权的工业、科学和医用(ISM)频段提供专用的频谱,以确保数据传输的无干扰、可靠连接。
ADI 公司的ADF7021 高性能、窄带ISM 收发器IC 支持WMTS 频段以及433MHz、868 MHz 与915 MHz 的ISM 频段。
ADF7021 具有同类最佳的接收机灵敏度,在1 kbps 时为-123 dBm,内置T/R 开关、VCO tank、RF/IF 滤波器、全自动化的自动频率控制(AFC)与自动增益控制(AGC)电路。
为了延长电池寿命,ADF7021 可以设置在功耗极低的休眠模式,使电流消耗下降至不足0.1μA。
ADF7021 与低功耗微控制器一起使用时,平均待机电流不足2μA。
WMTS 优化的无线电电台参考设计(EVAL-ADF7021DBZ6)包括原理图与布局,可供用户作为无线心电图监视仪设计的参考。
ad623典型应用电路
ad623典型应用电路
AD623是一种低成本的高增益精密仪器放大器,常用于工业、医疗、汽车电子和消费类电子等领域的测量和控制应用。
以下是AD623的一个典型应用电路:
该电路是一个单电源、可编程增益的差分放大器电路,具有高精度和稳定性。
该电路采用AD623芯片和几个外部元件构成,主要包括:
电源滤波器:由电感L和电容C构成,用于滤除电源中的高频噪声和杂波。
偏置电阻:由R1和R2构成,用于设置差分输入的偏置电压。
偏置电容:由C1和C2构成,用于消除直流偏置电压对差分输入的影响。
可编程增益电阻:由R3和R4构成,可通过改变R3或R4的阻值来调节放大器的增益。
输出滤波器:由C3和R5构成,用于滤除输出信号中的高频噪声和杂波。
该电路的工作原理是,将差分输入信号经过偏置电阻和偏置电容后输入到AD623芯片的差分输入端,经过差分放大器的放大后,通过可编程增益电阻调节放大器的增益,然后通过输出滤波器输出放大后的信号。
该电路具有增益可编程、高精度、低噪声、低失真、稳定性好等优点,适用于需要高增益、高精度测量和控制的应用场合。
ad623共模电压
ad623共模电压
【实用版】
目录
1.介绍共模电压的概念
2.共模电压的计算方法
3.ad623 在共模电压抑制中的应用
4.ad623 的优点和局限性
正文
共模电压是指两个输入信号的电压的平均值,它是模拟电路设计中的一个重要概念。
在实际应用中,共模电压可能会对电路的性能造成影响,因此需要对其进行抑制。
ad623 是一种用于共模电压抑制的集成电路,它具有良好的性能和稳定性。
计算共模电压的方法有多种,其中一种常见的方法是使用运算放大器。
运算放大器可以对两个输入信号的差分电压进行放大,从而得到共模电压。
在使用 ad623 进行共模电压抑制时,需要将其连接到运算放大器的非反
相输入端,以实现对共模电压的抑制。
ad623 具有多种优点,例如响应速度快、抑制精度高、输入阻抗高等。
这些优点使得 ad623 成为共模电压抑制电路的理想选择。
然而,ad623 也存在一些局限性,例如输出电压范围有限、对电源电压的稳定性要求较高等。
第1页共1页。
仪表放大器AD623(AD627)简介
仪表放大器AD623(AD627)1、放大器性能特点AD623是一款性能非常好的仪表放大器,它有以下特点:·在单电源3——12V下提供满电源幅度输出,使设计更为简单;·虽为单电源工作方式优化设计,但在±2.5——±6V双电源时,仍有优良性能;·增益通过一只外接电阻可方便地调节.无外接电阻时,被设置为单位增益(G=1),接人电阻时,增益可高达1000;·共模抑制比随增益的增加而增大,保持最小误差;·低功耗,宽电源电压,适合电池供电电路,线性度、温度稳定性、可靠性好;·具有较宽的共模输入范围,可以放大具有低于地电平150mv的共模电压信号;·高精度直流、交流性能。
放大器应用电路 AD623(AD627)主要应用于传感器接口、工业过程控制、低功耗医疗仪器、热电偶放大器、便携式供电仪器(AD627)。
·双电源应用。
图1(a)为双电源应用的基本电路,正负电源引脚处接0.1uF的电容(最好是表面安装的陶瓷片状电容)和10uF电容(最好为钽电解电容)。
·单电源应用。
图1(b)为单电源应用的基本电路,电源引脚处接0.1uF的电容(最好是表面安装的陶瓷片状电容)和10uF电容(最好为钽电解电容)。
AD623内设以电源为基准的箝位二极管,使得输入端、输出端、基准端、增益调节端能安全地承受高于或低于0.3V的过电压。
AD623设计为驱动10kΩ或以上的负载,如果负载小于10kΩ,则需用一个诸如OPll3的精密单运放作为缓冲器提高驱动能力,如图2。
这时当负载小到600Ω时也能在负载上得到0——4V的输出摆幅。
图3为一AD623工作于单电源方式下双极性信号数据采集系统的应用实例。
在实际应用中,经常遇到将双极性信号放大后送入ADC进行A/D转换的情况,这就需要将双极性信号转换到ADC的有效输入范围内,图3利用AD623的参考电压端相好地解决了这个问题。
AD620放大器 AD623放大器 仪表放大器 差分放大器 微弱信号放大 原理图和PCB设计
AD620放大器AD623放大器仪表放大器差分放大器微弱信号放大原理图和PCB设计基本原理仪表放大器是差分放大器的一种改良,具有输入缓冲器,不需要输入阻抗匹配,使放大器适用于测量以及电子仪器上。
特性包括非常低直流偏移、低漂移、低噪声、非常高的开环增益、非常大的共模抑制比、高输入阻抗。
仪表放大器用于需要精确性和稳定性非常高的电路。
芯片选型今天要介绍的是AD620和AD623芯片,一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10000(ad623为1000)倍。
在管脚上两个芯片是互用的,只是增益的运算公式不一样。
AD620的增益G=49.4kΩ/R G+1,AD623的增益G=100k Ω/R G+1。
增益带宽积参数上也是差不多,都在1M以内,基本是用于低频的信号。
如需较高增益带宽的仪表放大器可以使用AD8421,但是注意芯片管脚不是兼容的。
原理图&3D-PCBAD620的供电范围是大于AD623的,为了兼容AD623芯片我们设计采用了正负5V的供电。
由单电源降压后再转换为负电源。
具体讲解1、单端模式下,P1跳线端子插上跳线帽,R3的阻值选用0欧,IN-直接接地,信号从IN+输入,一般单端输入可以使用SMA座子或者IN+和GND输入信号。
2、单端模式下,R6为IN+的偏置调节电位器,也是单端使用时候的调零电阻。
R7,R8选取10K是为了限制偏置的过度调节。
3、差分输入模式下,需要去掉电位器和P1的跳线帽。
输入端的电阻R3,R5和C1,C3,C5构成的是一个低通滤波器,模块实际没有焊接电容,用户可以根据自己需求焊接。
4、单端和差分模式的放大倍率配置,RG等于R2和R1的并联,实际使用中模块默认为焊接R2固定电阻。
如需滑变调节可将R2电阻去掉,焊接R1电位器即可。
AD620:G=49.4K/RG+1 AD623:G=100K/RG+1。
5、芯片的REF脚是输出电压基准,由于芯片是正负电源供电,这里将REF脚接GND,输出的就是以0为中心。
ad623放大电路设计
ad623放大电路设计AD623是一种高精度仪表放大器,被广泛应用于传感器信号放大、激光测距仪、热电偶、压力传感器等仪表放大电路中。
在本篇文章中,我们将围绕AD623放大电路设计进行详细的探讨。
一、原理介绍AD623的输入端有两个,分别为正输入端和负输入端。
是差分放大电路,即将输入信号的正、负输入端信号进行差分放大处理。
AD623的输出端为单端输出,放大倍数由增益电阻决定。
当正、负输入端电压相等时,AD623的输出电压为0V。
二、设计步骤(1)选择输入信号在进行AD623放大电路设计前,需要选择需要进行放大的信号类型,常用的有电阻、电容、热电偶、压力传感器等。
(2)计算增益电阻根据需要放大的信号类型,我们可以计算出对应的放大系数,然后根据公式:放大系数=Rf/Rg,来计算出增益电阻Rf和Rg的取值。
(3)布置电路将AD623芯片布置在电路板上,并根据计算出来的Rf和Rg的取值进行连线,同时需要接上对应的电源线和输入信号线。
(4)调试电路在完成电路布置后,需要进行调试,可以使用万用表来测试AD623输出电压,在实验室条件下,可以使用信号发生器来输入信号,并观测放大效果是否达到预期。
三、设计要注意的问题1. 选择相应的输入信号类型,根据信号类型计算出放大系数。
2. 采用合适的增益电阻的取值,要保证不过度放大或放大不足。
3. 正确布置电路,并保证各电路之间的连接正确,其电源线和输入信号线接口清晰。
4. 进行调试时,需要注意实验环境是否对测试结果产生干扰。
总之,AD623放大电路设计是一个复杂的过程,需要依据具体发现而定。
在设计时,需要对原理进行深入理解,并采取合适的方法来实现设计目标。
同时,在实际操作中要谨慎,在进行调试前要进行充分的准备,以保证电路的稳定性和安全性。
AD623
AD623是一款集成式单电源仪表放大器,采用3 V至12V电源供电时提供轨到轨输出摆幅。
它可以通过单一增益设置电阻进行编程,并遵照8引脚工业标准引脚排列配置,赋予用户出众的灵活性。
不接外部电阻时,A D623采用单位增益配置(G = 1);连接外部电阻时,AD623可通过编程实现最高增益1000。
AD623具有优异的交流共模抑制比(CM RR),并且随着增益提高而增大,因此可确保误差极小。
由于C MRR在最高200 H z时仍然保持稳定,因此线路噪声和线路谐波均得到抑制。
AD623具有宽输入共模范围,可以放大共模电压低于地电压150mV的信号。
虽然AD623设计针对单电源供电进行了优化,但采用双电源(±2.5V至±6.0V)供电时,AD623仍能提供出色的性能。
低功耗(3 V电源时为1.5 mW)、宽电源电压范围以及轨到轨输出摆幅使A D623成为电池供电应用的理想之选。
采用低电源电压工作时,轨到轨输出级可以使动态范围达到最大。
A D623可以取代分立式仪表放大器设计,在极小的空间中提供出色的线性度、温度稳定性和可靠性。
应用∙低功耗医疗仪器∙传感器接口∙热电偶放大器∙工业过程控制∙差动放大器∙低功耗数据采集产品特性∙易于使用∙具有比分立式设计更高的性能∙单电源与双电源供电∙轨到轨输出摆幅∙输入电压范围达到地电压以下150 mV(单电源)∙低功耗,最大电源电流为550 µA∙通过一个外部电阻设置增益,增益范围:1(无电阻)至1000∙高精度直流性能增益精度:0.10% (G = 1)增益精度:0.35% (G >1)增益漂移:10 ppm (G = 1)输入偏置电流:25 nA(最大值)∙出色的交流特性CMRR:90 dB (最小值,G = 10);CM RR:70 dB(最小值,G = 1、60 Hz、1kΩ非均衡电源)带宽:800 kH z (G = 1)0.01%建立时间:20 µs (G = 10)∙噪声折合到输入端噪声:35 nV/√H z(1 kH z、G = 1)功能框图AD623AD623是一个集成单电源仪表放大器,它能在单电源(+3V到+12V)下提供满电源幅度的输出。
AD623A
Conditions G = 1 + (100 k/RG)
Min 1
AD623A Typ Max 1000
Min 1
AD623ARM Typ Max 1000
Min 1
AD623B Typ Max 1000
Units
G1 VOUT = 0.05 V to 3.5 V G > 1 VOUT = 0.05 V to 4.5 V 0.03 0.10 0.10 0.10 G1 VOUT = 0.05 V to 3.5 V G > 1 VOUT = 0.05 V to 4.5 V 50 5 50 Total RTI Error = VOSI + VOSO/G 25 0.1 200 2.5 200 350 2 1000 1500 10 200 0.1 500 2.5 500 650 2 2000 2600 10 25 0.1 200 2.5 100 160 1 500 1100 10 10 50 5 50 10 50 5 50 10 ppm ppm/°C ppm/°C 0.10 0.35 0.35 0.35 0.03 0.10 0.10 0.10 0.10 0.35 0.35 0.35 0.03 0.10 0.10 0.10 0.05 0.35 0.35 0.35 % % % %
120 110 100 x1000 x100
The AD623 is an integrated single supply instrumentation amplifier that delivers rail-to-rail output swing on a single supply (+3 V to +12 V supplies). The AD623 offers superior user flexibility by allowing single gain set resistor programming, and conforming to the 8-lead industry standard pinout configuration. With no external resistor, the AD623 is configured for unity gain (G = 1) and with an external resistor, the AD623 can be programmed for gains up to 1,000. The AD623 holds errors to a minimum by providing superior AC CMRR that increases with increasing gain. Line noise, as well as line harmonics, will be rejected sincp to 200 Hz. The AD623 has a wide input REV. C
单电源心电图机前置放大器的设计
单电源心电图机前置放大器的设计
郭艳卫;谢建华;刘海波
【期刊名称】《吉林大学学报(信息科学版)》
【年(卷),期】2011(029)002
【摘要】为使心电图(ECG:Electrocardiograph)机简单便携,采用干电池供电模式,提供不高于3 V的电压,应用放大器AD623、TLV2254和阻容器件组成心电图机的前置放大器,实现了心电微弱信号的高精度放大、极化电压的快速消除等功能,保证了心电微弱信号的精确和稳定,便于心电图机后续数据采集和分析.同时,由于采用单电源供电,使心电图机供电模式简化,电路更加简单,促进了心电图机进一步向便携式方向发展.
【总页数】5页(P116-120)
【作者】郭艳卫;谢建华;刘海波
【作者单位】吉林大学,电子科学与工程学院,长春,130012;吉林大学,电子科学与工程学院,长春,130012;吉林大学,电子科学与工程学院,长春,130012
【正文语种】中文
【中图分类】TN722
【相关文献】
1.ECG-6511心电图机前置放大器和主放大器电路原理分析 [J], 尤伟
2.ECG-6511心电图机走纸系统及前置放大器剖析与维修 [J], 吉丽敏;王丹妹
3.心电图机专用IC—CMOS低噪声前置放大器的设计 [J], 李联;姜黎
4.心电图机前置放大器电路结构分析 [J], 郑照众
5.ECG-6511型心电图机前置放大器单偏故障特点及检修 [J], 吴同文;吴凡
因版权原因,仅展示原文概要,查看原文内容请购买。
三点式力矩平衡质量测量
3点力矩平衡式质量测量系统【内容摘要】本文通过对基于3点式力矩平衡原理对物体的质量测量系统的组成、原理、设计选材过程详细的阐述,并对影响系统精度的因素进行了分析,根据力矩平衡原理的要求以及实际应用中存在的问题,给出了在应用中注意的事项和解决问题的方法和措施,为基于力矩平衡原理的物体质量测量系统应用领域的进一步拓展具有借鉴作用。
关键词:3点式力矩平衡、应变片式称重传感器、电桥、单片机、RS232C 通信一、概述确定物体的质量在日常生活、工业生产及工程中都有着非常重要的意义,尤其对于对于重量较大的物体重心测量,力矩平衡法是现在最常用的一种,利用力矩平衡原理测量物体重量及重心的方式目前有三种方式:称重平台式、悬挂式、千斤顶式;无论何种方式都是通过3点、4点或多支撑点的测力传感器感知力值的大小,再通过采集系统对传感器感知力值数据信号的采集,通过计算机软件对该信号的解算,便得到物体重心的位置值,这便是本文将要介绍的基于力矩平衡原理的物体重量重心测量系统;二、系统的基本原理和组成1.系统组成和原理系统由三个称重传感器、信号放大电路、模数转换电路模块、看门狗模块、单片机、RS232通信接口电路模块及PC机等部件组成。
从各测力传感器(或称重平台)感知的力信号通过数字模块进行采集、A/D转换、处理。
系统组成原理图见图1;1 系统组成原理图2. 系统的支撑操作组合方式利用力矩平衡原理测量物体重量及重心的方式目前有称重平台式、悬挂式、千斤顶式三种,因系统支撑操作不同而有多种组合 ,其一,单一的称重平台式是在每一测力的支撑点下放置一台称重平台,通过称重平台感受被测物体施加的力;其二,悬挂式是通过多套拉式测力传感器将被测物体以一定的要求悬挂起来,由拉式测力传感器感知被测物体施加的力;其三,千斤顶式是在每一支撑点下的千斤顶头部配装一压式测力传感器,通过千斤顶顶推测力传感器,测力传感器顶起被测物体进行测力;其四,在每一称重平台上放置一千斤顶,将称重平台作为千斤顶的底座平台,由千斤顶支撑被测物体,通过称重平台感知所测力;以上这四种组合形式可根据被测物体的实际,需灵活组合和使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD623集成单电源仪表放大器
在无外接电阻条件下,AD623被设置为单增益(G=1)。
在外接电阻后,AD623可编程设置增益,增益最高可达1000倍。
AD623通过提供极好的随增益增大而增大的交流共模抑制比(AC CMRR)而保持最小的误差。
线路噪声及谐波将由于CMRR在高达200HZ时仍保持恒定。
它有较宽的共模输入范围,可以放大具有低于地电平150mv共模电压信号。
它在双电源(2.5至6V)仍能提供优良性能。
低功耗,宽电源电压范围,满电源幅度输出,使AD623成为电池供电的理想选择。
在低电源电压下工作时,满电源幅度输出级使动态范围达最大。
它可以取代分立的仪表放大器设计,且在最小的空间提供很好的线性度,温度稳定性很可靠。
图2。